CN115398315A - 具有宽视场的波导显示系统 - Google Patents

具有宽视场的波导显示系统 Download PDF

Info

Publication number
CN115398315A
CN115398315A CN202180028350.7A CN202180028350A CN115398315A CN 115398315 A CN115398315 A CN 115398315A CN 202180028350 A CN202180028350 A CN 202180028350A CN 115398315 A CN115398315 A CN 115398315A
Authority
CN
China
Prior art keywords
waveguide
diffractive
diffraction
grating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180028350.7A
Other languages
English (en)
Inventor
奥克萨那·什拉姆科娃
瓦尔特·德拉齐克
V·艾莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital CE Patent Holdings SAS
Original Assignee
InterDigital CE Patent Holdings SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital CE Patent Holdings SAS filed Critical InterDigital CE Patent Holdings SAS
Publication of CN115398315A publication Critical patent/CN115398315A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

实施方案包括可包括在波导显示器中的光学系统。示例性光学系统包括具有第一透射衍射内耦合器(DG1)和第一衍射外耦合器(DG6)的第一波导以及具有第二透射衍射内耦合器(DG2)、反射衍射内耦合器(DG3)、第二衍射外耦合器(DG4)和第三衍射外耦合器(DG5)的第二波导。该第二透射衍射内耦合器(DG2)在输入区域中被布置在该第一透射衍射内耦合器(DG1)与该反射衍射内耦合器(DG3)之间。

Description

具有宽视场的波导显示系统
相关申请的交叉引用
本申请要求2020年3月23日提交的名称为“Waveguide Display System withWide Field of View”的欧洲专利申请第20315042.0号和2020年4月23日提交的名称为“Full-Color Waveguide Combiner”的欧洲专利申请第20315216.0号的优先权,所述两个专利申请据此全文以引用方式并入。
背景技术
本公开涉及光学器件和光子的领域,并且更具体地涉及包括至少一个衍射光栅的光学装置。它可以在可适形且可佩戴的光学器件的领域中(例如,AR/VR眼镜(增强现实/虚拟现实))以及包括显示器和/或轻质成像系统(包括平视显示器(HUD))的各种其他电子消费产品中获得应用,如例如在汽车工业中。
本部分意图向读者介绍本领域的各个方面,这些方面可与下文描述和/或要求保护的本公开的各种方面有关。此讨论被认为有助于向读者提供背景信息,以促进更好地理解本文所述的系统和方法的各个方面。因此,应当理解,这些陈述应当从这个角度来解读,而不是承认现有技术。
AR/VR眼镜被视为是新一代人机界面。AR/VR眼镜(以及更一般的眼镜防护电子装置)的开发与许多挑战相关联,包括减少此类装置的尺寸和重量以及改进图像质量(就对比度、视场、颜色深度等而言),该图像质量应足够真实,以实现真正的沉浸式用户体验。
光学的图像质量和物理尺寸之间的权衡促动研究超紧凑光学部件,该超紧凑光学部件可以用作更复杂的光学系统(诸如AR/VR眼镜)的构建块。期望此类光学部件易于制造和复制。
在此类AR/VR眼镜中,各种类型的折射和衍射透镜和波束形成部件用于将来自微型显示器或投影仪的光引导到人眼,从而允许形成与用肉眼看到的物理世界的图像叠加的(在有AR眼镜的情况下)或由相机捕捉(在有VR眼镜的情况下)的虚拟图像。
一些类型的AR/VR眼镜利用光学波导,其中光仅在有限的内角度范围内通过TIR(指代全内反射(Total Internal Reflection))传播到光学波导中。波导的FoV(指代视场(Field of View))取决于波导的材料以及其他因素。
波导的FoV可以表达为通过TIR传播到波导中的
Figure BDA0003888598370000021
的最大跨度。在一些情况下,如图17所示,可以耦合到波导中的最大角跨度可以由两条光线表达:具有入射角
Figure BDA0003888598370000022
的临界光线(图17中的
Figure BDA0003888598370000023
)和具有入射角
Figure BDA0003888598370000024
的掠射光线(图17中的
Figure BDA0003888598370000025
)。该临界光线是刚好以由
Figure BDA0003888598370000026
限定的临界角
Figure BDA0003888598370000027
衍射到波导中的光线,其中n2是波导材料的折射率,并且λ是入射光的波长。高于临界角
Figure BDA0003888598370000028
发生全内反射(TIR)。掠射光线是具有输入角的光线,该光线以可以是
Figure BDA0003888598370000029
的掠射入射衍射到波导中。上面呈现的波导的理论FoV是用于单个模式系统,其中一个单个衍射模式用于承载图像:+1或-1衍射模式。
基于光学波导的一些系统中的视场受到玻璃板的角度带宽的限制。如果我们将一种模式衍射到玻璃板中,则给出FoV,作为玻璃板材料的折射指数的函数。折射率为n2的波导的FoV由下式给出:
Figure BDA00038885983700000210
Figure BDA00038885983700000211
图18示出了用于n2的合理范围的图。对于n2=1.5,单模式系统的总视场更确切地说限于Δθ1=28.96度。可以看出,60度FoV是一些类型的波导的实用限制,因为使用折射率高于2.0的材料通常是不可行的。
通过利用波导内部的第二传播方向,可以进一步扩展光学波导的视场,使该视场加倍。
例如,在WO2017180403中,提出了具有延长视场的波导,其中使用双模式图像传播。在此方法中,使用衍射模式+1来在一个方向上承载右手侧图像(在内耦合器(in-coupler)上的负入射角),并且使用-1模式将正入射角传播到波导中的相反方向。在WO2017180403中,由于瞳孔扩张器和波导出口处的外耦合器(out-coupler),将这两个半图像进行组合,使得用户看到单个图像。该系统的目标是使视场加倍,因为每个半图像可以在每个传播方向上使用波导的整个角度带宽。
在EP18215212.4(“An optical device comprising at least one diffractiongrating having a grating pitch above the wavelength”,O.Shramkova,V.Drazic)中,公开了一种包括被配置为使至少一个给定波长的光衍射入射在光学波导上的衍射光栅的光学波导。衍射光栅具有高于至少一个给定波长的光栅间距,并且被配置为使入射光以衍射阶|M|>1衍射,其中M是衍射阶。
使用高于1的衍射阶具有将波长乘以在衍射方程中使用的衍射阶的效果。由于光栅间距直接是乘积Mλ的函数,所以这意味着光栅间距乘以M。在EP18215212.4中示出了用于内耦合器的结构大得多并且开创了制造技术中的新的可能性,因为可以使用纳米压印。可以使用具有较少线/毫米的光栅密度,并且可以通过使用超波长结构而不是亚波长来简化制造工艺。
还在EP18215212.4中示出了使用±2个衍射阶的光学波导提供约60°的FoV,其中折射率为1.5。因此,可能使用具有折射率1.5的材料,而不是单模式中的2,来获得60°视场。
然而,60°FoV仍然相对于总人类视场而被限制,在该总人类视场中立体视觉对人类视觉有效并且为约114°。
已经研究了两个波导全RGB组合器架构,其中绿色FoV在第一波导与第二波导之间共享,如B.C.Kress,“Optical waveguide combiners for AR headsets:features andlimitation,”Proc.of SPIE,第11062卷,第110620J页,2019中所述。
发明内容
说明书中的“一个实施方案”、“实施方案”、“示例性实施方案”等指示所描述的实施方案可以包含特定特征、结构或特性;但不是每个实施方案必然包括特定特征、结构或特性。而且,此类短语不一定是指相同的实施方案。此外,当结合实施方案描述特定特征、结构或特性时,此类特征、结构或特性可以与其他实施方案结合使用,无论是否明确地描述。
在一些实施方案中,光学系统包括:第一波导,该第一波导具有第一透射衍射内耦合器(DG1);第二波导,该第二波导具有第二透射衍射内耦合器(DG2)和反射衍射内耦合器(DG3);其中第二透射衍射内耦合器(DG2)在输入区域中被布置在第一透射衍射内耦合器(DG1)与反射衍射内耦合器(DG3)之间。
在一些此类实施方案中,第一波导还包括第一衍射外耦合器(DG6),并且第二波导还包括第二衍射外耦合器(DG4)和第三衍射外耦合器(DG5)。
在一些实施方案中,该光学系统被配置为使得蓝光:(i)在相对较高的入射角下优先地耦合到第一波导中,并且(ii)在相对较低的入射角下优先地耦合到第二波导中。
在一些实施方案中,该光学系统被配置为使得绿光:(i)在相对较高的入射角下优先地耦合到第一波导中,并且(ii)在相对较低的入射角下优先地耦合到第二波导中。
在一些实施方案中,该光学系统被配置为使得红光:(i)在相对较高的入射角下优先地通过第二透射衍射内耦合器耦合到第二波导中,并且(ii)在相对较低的入射角下优先地通过反射衍射内耦合器耦合到第二波导中。
在一些实施方案中,该光学系统被配置为基本上复制跨越至少100°的视场的图像。
在一些实施方案中,该系统被配置为复制全色图像。
在一些实施方案中,第一衍射内耦合器具有第一光栅间距,第二衍射内耦合器具有大于第一光栅间距的第二光栅间距,并且反射衍射内耦合器具有大于第二光栅间距的第三光栅间距。
在一些实施方案所述的光学系统中,
Figure BDA0003888598370000041
其中d1是第一透射衍射内耦合器(DG1)的光栅间距,M1是非零整数(例如,1或2),n2是第一波导的折射率,λ是介于450nm与700nm之间的波长,
Figure BDA0003888598370000042
是介于55度与90度之间的角度,并且
Figure BDA0003888598370000043
基本上等于以第二波导的临界角衍射的角度,其中第二波导的临界角是arcsin(1/n3),其中n3是第一波导的折射率。
在一些实施方案所述的光学系统中,
Figure BDA0003888598370000051
其中d2是第二透射衍射内耦合器(DG2)的光栅间距,M2是非零整数(例如,1或2),n3是第二波导的折射率,λ是介于450nm与700nm之间的波长,
Figure BDA0003888598370000052
是介于55度与90度之间的角度,并且
Figure BDA0003888598370000053
是法向入射的±5度内的角度。
在一些实施方案所述的光学系统中,
Figure BDA0003888598370000054
其中d3是反射衍射内耦合器(DG3)的光栅间距,N是非零整数(例如,1或2),n3是第二波导的折射率,λ是介于450nm与700nm之间的波长,
Figure BDA0003888598370000055
是介于55度与90度之间的角度,并且
Figure BDA0003888598370000056
是法向入射的±5度内的角度。
在一些实施方案中,该光学系统是双模式系统,该双模式系统被配置为:(i)将具有第一入射角的至少一些入射光耦合成在第一波导和第二波导中的至少一者中以第一方向行进,以及(ii)将具有与第一入射角基本上相反的第二入射角的至少一些入射光耦合成在第一波导和第二波导中的至少一者中以与第一方向基本上相反的第二方向行进。
在该光学系统的一些实施方案中,第一透射衍射内耦合器的第一光栅间距(d1)介于420nm与520nm之间;第二透射衍射内耦合器的第二光栅间距(d2)介于600nm与700nm之间;并且反射衍射内耦合器的第三光栅间距(d3)介于720nm与820nm之间。
在该光学系统的一些实施方案中,第一透射衍射内耦合器的第一光栅间距(d1)介于460nm与480nm之间;第二透射衍射内耦合器的第二光栅间距(d2)介于640nm与660nm之间;并且反射衍射内耦合器的第三光栅间距(d3)介于760nm与780nm之间。
在该光学系统的一些实施方案中,第二光栅间距比第一光栅间距大30%与50%之间;并且第三光栅间距比第二光栅间距大10%与30%之间。
在一些实施方案中,一种操作光学系统的方法包括:将表示图像的输入光引导到第一波导的第一透射衍射内耦合器(DG1)上,该第一波导具有第一衍射外耦合器(DG6);使用第一透射衍射内耦合器(DG1),将输入光的第一部分耦合到第一波导中;使用第二波导的第二透射衍射内耦合器(DG2),将输入光的第二部分耦合到第二波导中;以及使用第二波导的反射衍射内耦合器(DG3),将输入光的第三部分耦合到第二波导中。
在一些此类实施方案中,方法还包括:使用第一波导上的第一衍射外耦合器(DG6),将光的第一部分的至少一部分耦合出第一波导;使用第二波导上的第二衍射外耦合器(DG4),将光的第二部分的至少一部分耦合出第二波导;以及使用第二波导上的第三衍射外耦合器(DG5),将光的第三部分的至少一部分耦合出第二波导。
附图说明
图1A是波导显示器的横截面示意图。
图1B是具有衍射光学部件的第一布局的双目波导显示器的示意图。
图1C是具有衍射光学部件的第二布局的双目波导显示器的示意图。
图1D是根据一些实施方案的双波导显示器的示意性分解图。
图1E是根据一些实施方案的双波导显示器的横截面示意图。
图2A至图2C示出了示例性波导的视场。
图3是根据一些实施方案的双波导显示器的一部分的示意性侧视图,示出了入射光和衍射光的角度。
图4A至图4B是双波导显示器中的第二波导的输入瞳孔区域的示意性侧视图。
图5是根据一些实施方案的双波导显示器的一部分的示意性侧视图。
图6A至图6C是根据一些实施方案的示出蓝光(图6A)、绿光(图6B)和红光(图6C)耦合到具有宽视场的双波导显示器的波导中的示意图。
图7是示出在一些实施方案中耦合到双波导显示器的第一波导中的入射光针对蓝光、绿光和红光的角度范围的图表。
图8是示出在一些实施方案中耦合到双波导显示器的第一波导中的入射光针对蓝光、绿光和红光的角度范围的图表。
图9A至图9D是示出可以在一些实施方案中用作衍射内耦合器和/或外耦合器的衍射光栅结构的元件的示例的剖视图。
图10示出了TiO2针对不同波长的折射率。
图11是反射光栅内耦合器的金属化U形元元件的基础型式的剖视图。
图12A示出了波长为530nm的TM偏振绿光通过使用如图9A所示的孪生形衍射光栅的第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图12B示出了波长为530nm的TE偏振绿光通过使用如图9A所示的孪生形衍射光栅的第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图12C示出了波长为530nm的TM偏振绿光通过使用如图9B所示的U形衍射光栅的第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图12D示出了波长为530nm的TE偏振绿光通过使用如图9B所示的U形衍射光栅的第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图12E示出了波长为530nm的TM偏振绿光通过使用如图9A所示的孪生形衍射光栅的第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图12F示出了波长为530nm的TE偏振绿光通过使用如图9A所示的孪生形衍射光栅的第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图13A示出了波长为460nm的TM偏振蓝光通过使用如图9A所示的孪生形衍射光栅的第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图13B示出了波长为460nm的TE偏振蓝光通过使用如图9A所示的孪生形衍射光栅的第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图13C示出了波长为460nm的TM偏振蓝光通过在一些实施方案中使用如图9B所示的U形衍射光栅的第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图13D示出了波长为460nm的TE偏振蓝光通过使用如图9B所示的U形衍射光栅的第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图13E示出了波长为460nm的TM偏振蓝光通过使用如图9A所示的孪生形衍射光栅的第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图13F示出了波长为460nm的TE偏振蓝光通过使用如图9A所示的孪生形衍射光栅的第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图14A示出了波长为625nm的TM偏振红光通过使用如图9A所示的孪生形衍射光栅的第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图14B示出了波长为625nm的TE偏振红光通过使用如图9A所示的孪生形衍射光栅的第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图14C示出了波长为625nm的TM偏振红光通过在一些实施方案中使用如图9B所示的U形衍射光栅的第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图14D示出了波长为625nm的TE偏振红光通过使用如图9B所示的U形衍射光栅的第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图14E示出了波长为625nm的TM偏振红光通过使用如图9A所示的孪生形衍射光栅的第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图14F示出了波长为625nm的TE偏振红光通过使用如图9A所示的孪生形衍射光栅的第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。
图14G示出了波长为625nm的TM偏振红光通过使用如图9D所示的孪生形衍射光栅的第二波导的反射衍射内耦合器的不同衍射阶的反射率和透射率。
图14H示出了波长为625nm的TE偏振红光通过使用如图9D所示的孪生形衍射光栅的第二波导中的反射衍射内耦合器的不同衍射阶的反射率和透射率。
图14I示出了波长为625nm的TM偏振红光通过使用如图9C所示的U形衍射光栅的第二波导的反射衍射内耦合器的不同衍射阶的反射率和透射率。
图14J示出了波长为625nm的TE偏振红光通过使用如图9C所示的U形衍射光栅的第二波导中的反射衍射内耦合器的不同衍射阶的反射率和透射率。
图15是示出视场的一部分以相对较低的入射角传播通过第二波导的示意图。
图16是示出视场的一部分以相对较高的入射角传播通过第二波导的示意图。
图17是单模式系统的示意图,其中使用单衍射模式来使用+1或-1衍射模式来承载图像。
图18是波导的视场作为其材料的折射率的函数的示例性曲线图。
图19是提供真实出射瞳孔的透镜系统的横截面侧视图。
图20是适合在一些实施方案中使用的透镜系统的横截面侧视图。
图21是对称衍射光栅的剖视图。
图22是另一对称衍射光栅的剖视图。
图23是倾斜衍射光栅的剖视图。
图24示出了采用两个不同的衍射光栅的具有非对称光栅的对称衍射的用途。
图25示意性地示出了针对图24的光栅的典型衍射效率作为入射角的函数。
图26A是如在一些实施方案中使用的衍射光栅轮廓的剖视图。
图26B是使用如图26A中的光栅轮廓跨不同入射角耦合光的示意图。
图27是在一些实施方案中使用的波导的示意性侧视图。
图28A至图28B是单波导内耦合系统的示意性侧视图,示出了针对透射衍射光栅(图28A)和反射衍射光栅(图28B)的入射光和衍射光的角度。
图29A至图29C示意性地示出了针对蓝光(29A)、绿光(29B)和红光(29C)的入射在单波导系统上并在其中衍射的角度。
图30A至图30C示出了透射(30A)衍射光栅和反射(30B)衍射光栅的基础型式的剖视图。图30C示出了图30B的衍射光栅的表面的金属化。
图31是示出TiO2的折射率作为波长的函数的图。
图32是示出第一透射光栅DG1针对蓝光的模拟性能的图。
图33是示出第一透射光栅DG1针对绿光的模拟性能的图。
图34是示出第一透射光栅DG1针对红光的模拟性能的图。
图35是示出第二反射光栅DG2针对蓝光的模拟性能的图。
图36是示出第二反射光栅DG2针对绿光的模拟性能的图。
图37是示出第二反射光栅DG2针对红光的模拟性能的图。
图38A示出了在一些实施方案中使用的透射光栅的光栅轮廓。
图38B示出了在一些实施方案中使用的反射光栅的光栅轮廓。
图38C示出了图38B的光栅上的金属化表面。
图39是示出第一透射光栅DG1针对蓝光的模拟性能的图。
图40是示出第一透射光栅DG1针对绿光的模拟性能的图。
图41是示出第一透射光栅DG1针对红光的模拟性能的图。
图42是示出第二反射光栅DG2针对绿光的模拟性能的图。
图43是示出第二反射光栅DG2针对红光的模拟性能的图。
图44是具有反射内耦合衍射光栅DG2和透射外耦合衍射光栅DG4的第二波导的一半的示意性横截面侧视图。
图45是具有透射内耦合衍射光栅DG1和2个外耦合衍射光栅DG3和DG4形成的系统的第二波导的一半的示意性横截面侧视图。
具体实施方式
本文描述了波导显示系统和方法。一些实施方案提供了具有高视场的全RGB显示器。一些实施方案使用两个波导的堆叠提供了全色显示能力。此类光学装置可以用作例如AR/VR眼镜的波导。在示例性实施方案中,显示器不需要具有特定偏振的光来进行其操作。例如,它可以使用TE偏振光、TM偏振光或具有这两种偏振的光来操作。
图1A中示出了示例性波导显示装置。图1A是操作中的波导显示装置的示意性横截面侧视图。图像由图像生成器102投影。图像生成器102可以使用各种技术中的一种或多种技术来投影图像。例如,图像生成器102可以是激光束扫描(LBS)投影仪、液晶显示器(LCD)、发光二极管(LED)显示器(包括有机LED(OLED)或微型LED(μLED)显示器)、数字光处理器(DLP)、硅上液晶(LCoS)显示器或其他类型的图像生成器或光引擎。
表示由图像生成器102生成的图像112的光通过衍射内耦合器106耦合到波导104中。内耦合器106将表示图像112的光衍射成一个或多个衍射阶。例如,作为表示图像的底部的一部分的光线中的一条光线108由内耦合器106衍射,并且衍射阶110中的一个衍射阶(例如,二阶)处于能够通过全内反射传播通过波导104的角度。
通过衍射内耦合器106耦合到波导104中的光110的至少一部分通过衍射外耦合器114耦合出波导。耦合出波导104的至少一些光复制耦合到波导中的光的入射角。例如,在图示中,外耦合的光线116a、116b和116c复制内耦合的光线108的角度。由于离开外耦合器的光复制进入内耦合器的光的方向,所以波导基本上复制原始图像112。用户的眼睛118可以聚焦在复制的图像上。
在图1A的示例中,外耦合器114仅通过每次反射外耦合光的一部分,允许单个输入束(诸如光束108)生成多个并行输出光束(诸如光束116a、116b和116c)。以此方式,即使眼睛不与外耦合器的中心完全对准,来源于图像的每个部分的至少一些光可能到达用户的眼睛。例如,如果眼睛118向下移动,即使光束116a和116b没有进入眼睛,光束116c也可以进入眼睛,因此尽管位置偏移,用户仍然可以感知到图像112的底部。因此,外耦合器114部分地操作为竖直方向上的出射瞳孔扩展器。波导还可以包括一个或多个额外出射瞳孔扩展器(图1A中未示出),以在水平方向上扩展出射瞳孔。
在一些实施方案中,波导104相对于源自波导显示器外部的光至少部分透明。例如,来自真实世界物体(诸如物体122)的至少一些光120穿过该波导104,允许该用户在使用该波导显示器时看到真实世界物体。由于来自真实世界物体的光120也穿过衍射光栅114,因此将存在多个衍射阶并因此存在多个图像。为了最小化多个图像的可见性,期望衍射阶零(不被114偏差)对于光120具有很大的衍射效率以及零阶,而较高的衍射阶能量较低。因此,除了扩展和外耦合虚拟图像之外,外耦合器114优选地被配置为通过实际图像的零阶。在此类实施方案中,由波导显示器显示的图像可能似乎叠加在真实世界上。
在一些实施方案中,如下文进一步详细描述的,波导显示器包括多于一个波导层。每个波导层可以被配置为优先将具有特定波长范围和/或入射角的光从图像生成器输送到观看者。
如图1B和图1C所示,具有内耦合器、外耦合器和瞳孔扩展器的波导显示器可以具有各种不同配置。图1B中示出了一个双目波导显示器的示例性布局。在图1B的示例中,显示器分别包括左眼和右眼的波导152a、152b。波导包括作为外耦合器和水平瞳孔扩展器操作的内耦合器154a、154b、瞳孔扩展器156a、156b和部件158a、158b。瞳孔扩展器156a、156b沿内耦合器和外耦合器之间的光学路径布置。图像生成器(未示出)可以提供给每只眼睛,并且被布置成投射表示相应内耦合器上的图像的光。
图1C中示出了另一双目波导显示器的示例性布局。在图1C的示例中,显示器分别包括左眼和右眼的波导160a、160b。波导包括内耦合器162a、162b。来自图像的不同部分的光可以由内耦合器162a、162b耦合到波导内的不同方向。朝向左侧行进的内耦合光穿过瞳孔扩展器164a、164b,而朝向右侧行进的内耦合光穿过瞳孔扩展器166a、166b。已经穿过瞳孔扩展器,使用部件168a、168b将光耦合出波导,该部件作为外耦合器和竖直瞳孔扩展器两者操作以基本上复制在内耦合器162a、162b处提供的图像。
在不同实施方案中,波导显示器的不同特征可以设置在波导的不同表面上。例如(如图1A的配置中),内耦合器和外耦合器都可以布置在波导的前表面上(远离用户的眼睛)。在其他实施方案中,内耦合器和/或外耦合器可以在波导的后表面上(朝向用户的眼睛)。内耦合器和外耦合器可以在波导的相对表面上。在一些实施方案中,内耦合器、外耦合器和瞳孔扩展器中的一者或多者可以存在于波导的两个表面上。图像生成器可以朝向波导的前表面或朝向波导的后表面布置。内耦合器不一定在波导与图像生成器的同一侧上。波导中的任何瞳孔扩展器可以布置在波导的前表面上、后表面上或两个表面上。在具有多于一个波导层的显示器中,不同的层可以具有内耦合器、外耦合器和瞳孔扩展器的不同配置。
图1D是根据一些实施方案的双波导显示器的示意性分解视图,包括图像生成器170、第一波导(WG1)172和第二波导(WG2)174。图1E是根据一些实施方案的双波导显示器的示意性侧视图,包括图像生成器176、第一波导(WG1)178和第二波导(WG2)180。第一波导包括第一透射衍射内耦合器(DG1)180和第一衍射外耦合器(DG6)182。第二波导具有第二透射衍射内耦合器(DG2)184、反射衍射内耦合器(DG3)186、第二衍射外耦合器(DG4)188和第三衍射外耦合器(DG5)190。不同的实施方案可以使用第一波导和第二波导上的光学部件(诸如瞳孔扩展器的不同布置)的不同布置。
虽然图1A至图1E示出了在近眼显示器中使用波导,但是相同原理可以用于其他显示技术,诸如用于汽车或其他用途的平视显示器。
波导的视场可以通过参考通过TIR传播到波导中的
Figure BDA0003888598370000131
的最大跨度来描述。如图2A至图2C所示,可以耦合到双模式波导中的最大角跨度可以由两条光线表示:具有入射角θC的临界光线(图2A至图2C中的θC)和具有入射角θG的掠射光线(图2A至图2C中的θG)。该临界光线是刚好以由下式表达的临界角ΦC衍射到波导中的光线:
Figure BDA0003888598370000132
其中n2是波导材料在波长处的折射率,并且是入射光的波长。高于临界角ΦC,发生全内反射(TIR),如图2A所示。掠射光线是具有输入角θG的光线,该光线以接近90°的掠射入射ΦG衍射到波导中,如图2C所示。在一些情况下,掠射光线具有为或接近0°的输入角θG,但是为了易读性起见,在图2C中以较大角度示出了θG。在一些实施方案中,向左侧耦合的光的角度范围可以与向右侧耦合的光的角度范围重叠。上面呈现的波导的理论FoV是用于单个模式系统,其中一个单个衍射模式用于承载图像:+1或-1衍射模式。
基于光学波导的系统中的视场可受到玻璃板的角度带宽的限制。如果将一种模式衍射到玻璃板中,则FoV可以被描述作为玻璃板材料的折射率的函数。折射率n2的波导的FoV由下式给出:
Figure BDA0003888598370000141
对于n2=1.5,单模式系统的总视场更确切地说限于Δθ1=28.96度。可以看出,由于缺乏折射率高于2.0的材料的一般可用性,60度FoV可能是单模式平坦波导的实用限制。
通过利用波导内部的第二传播方向,可以进一步扩展光学波导的视场。
用于全RGB系统的示例性双波导解决方案
图3是双波导堆叠的示意图,其中每个波导具有一个衍射光栅。图3的系统使用更高阶模式和超波长光栅来提供宽视场。名称以字母Θ开始的角度位于空气中。名称以Φ开始的角度位于波导中并测量已经衍射的光线的角度。上标C是指空气中或波导中的临界光线,并且上标G是指掠射光线。一些实施方案操作以拆分视场并将其分配在两个波导中。
示例性实施方案使用超波长光栅和第二阶衍射,以便将用于超高视场的高入射角耦合到第一波导(WG1)中。在一些示例中,耦合到第一波导中的高入射角对应于绝对值大于Δθ1/2的角度。在这种情况下,低入射角是绝对值小于Δθ1/2的角度。一些此类实施方案提供了比通过针对Δθ1的以上公式获得的FoV更宽的Fov。
根据图3,角度范围[ΘC WG1;ΘG WG1]和[-ΘC WG1;-ΘG WG1]在第一波导WG1内部衍射呈角度范围[ΦC WG1;ΦG WG1]和[-ΦC WG1;-ΦG WG1]。
在[-ΘG WG1;ΘG WG1]之间的角度范围以高效率透射通过第一衍射光栅(其对应于0透射阶T0)。
进入第一波导中,图像的左手侧将朝向左侧传播到波导中,而图像的右手侧将朝向右侧传播。
透射光束具有在[-ΘC WG2;ΘC WG2]之间的角度范围,掠射光线处于法线附近。T0将在第二波导WG2的顶部上的第二光栅上衍射,并且正入射角将在波导中朝向右侧传播,而负入射角将朝向左侧传播到WG2中。第二光栅与第一个光栅不同,因为该第二光栅具有不同的间距大小。然而,在一些实施方案中,几何结构可具有与先前波导相同的形状。可选择光栅形状以强调纳米射流波。
不同的实施方案可采用不同的技术以使用仅两个波导来提供全色显示。
在一些实施方案中,第一衍射光栅(具有间距d1的DG1)和第二衍射光栅(具有间距d2的DG2)的间距大小被配置为在覆盖全FoV的角度范围内(参见图3)针对绿色光以第±2衍射阶提供高衍射效率。在此类实施方案中,第一波导优先地耦合高入射角,并且第二波导优先地耦合低入射角。
具有朝向较低角度的偏移的类似角度分布将对应于通过这两个光栅的蓝色衍射。(如下图5所示,第一波导将优先地耦合高入射角和低入射角,并且第二波导将耦合低角度。)对于通过DG2的蓝色衍射,存在第±2衍射阶的一些角度重叠。结果,正衍射阶将对应于正入射角和一些范围的负入射角,并且负衍射阶将对应于负入射角和一些正入射角。存在对于这两个衍射阶存在响应(特性的角度重叠)的一系列低角度。这可能有助于考虑限制图像质量的不期望劣化。
在红色的情况下,由第一波导和第二波导耦合的入射角的角度分布将朝向较高角度偏移。如图5所示,第一衍射光栅DG1将优先地衍射非常高的入射角,并且第二波导将耦合高入射角和低入射角。较低的剩余入射角将透射通过具有高效率的第二衍射光栅。为了将该透射光束耦合到第二波导(WG2)中,示例性实施方案使用将被放置在第二波导WG2的底部上的第三反射衍射光栅(具有间距d3的DG3),并且正入射角将朝向左侧传播(参见图4A),而负入射角将在WG2中朝向右侧传播。为了改善反射衍射光栅的性能并对其进行保护,DG3的表面可以被薄金属层覆盖。
在第二示例中,系统被配置为考虑由第三衍射光栅在对应于绿色的波长处反射的特性的部分重叠。在此类实施方案中,前两个衍射光栅被配置为针对蓝色覆盖全FoV并且针对绿色和红色覆盖高入射角和低入射角(仅低入射角的一部分)。第三衍射光栅将针对绿色和红色衍射对应于低入射角的剩余角度范围。
图4A是具有两个衍射光栅内耦合器的第二波导WG2系统的示意图。图4B是通过DG3衍射到波导的左手侧的角度的跨度的示意图。名称以字母Θ开始的角度位于空气中。名称以Φ开始的角度位于波导中并测量已经衍射的光线的角度。上标C’指示DG3的临界入射光线,并且上标G’指示DG3的掠射光线。
在一些实施方案中,以下四个衍射方程用于选择两个波导WG1和WG2的透射衍射光栅DG1和DG2的间距大小d1和d2以提供由图3所示的光学装置耦合的总视场:
Figure BDA0003888598370000161
Figure BDA0003888598370000162
Figure BDA0003888598370000163
Figure BDA0003888598370000164
在这些方程中,假设环境材料(例如,空气)的折射率等于一(n1=1)。一些值由对材料的选择确定,例如,
Figure BDA0003888598370000165
以及
Figure BDA0003888598370000166
其中n2是第一波导材料的折射率,n3是第二波导材料的折射率,并且M1和M2分别对应于第一衍射光栅DG1和第二衍射光栅DG2的衍射阶。根据本公开的实施方案,将ΦG WG1和ΦG WG2选择为大约等于75°。
在本文中给出特定值作为在一些实施方案中使用的参数,但是可以为其他实施方案选择其他值。可以根据该图像必须在被提取之前行进到该波导中的距离、TIR反弹的数目和该波导的厚度来选择为ΦG WG1和ΦG WG2选择的值。
根据本文所公开的至少一个实施方案,例如针对λ=λG=530nm,将ΘG WG2选择为-1°。在此,λG是对应于绿色的波长。根据以下设计条件,其他值也是可能的:是否期望在最终图像的中间叠加左图像和右图像,或者是否期望左图像和右图像没有交叉/重叠。
因此,我们可求解先前针对间距大小的方程集。从最后一个:
Figure BDA0003888598370000171
并在先前的方程中替换,我们可以获得第二光栅的临界入射角:
Figure BDA0003888598370000172
则,因为
Figure BDA0003888598370000173
所以
Figure BDA0003888598370000174
并且
Figure BDA0003888598370000175
Figure BDA0003888598370000176
因此,我们可以此类形式呈现针对间距大小的方程:
Figure BDA0003888598370000177
为了计算第二波导WG2的反射衍射光栅DG3的间距大小d3,我们使用此类2个衍射光栅方程:
Figure BDA0003888598370000178
Figure BDA0003888598370000179
则,
Figure BDA00038885983700001710
并且
Figure BDA00038885983700001711
在此,对应第三衍射光栅DG3的衍射阶。我们注意到,对于负入射角,我们获得对应于正衍射阶的正衍射角度,并且对应地,对于正入射角,我们获得针对负模式的负衍射角度(参见图4B对于正入射角的情况以及对于负衍射阶的对应负衍射角度)。针对DG3的间距的方程可以以下形式呈现:
Figure BDA0003888598370000181
这些方程可用于计算每个波导的部分视场以及最终视场。表1示出了一些实用参数和根据先前求解的针对被配置用于三种不同波长的三个衍射光栅的方程集以及n2=n3=1.7计算的值:
表1
Figure BDA0003888598370000182
为了避免一些颜色的黑色带,在一些实施方案中,全RGB系统的FoV可以等于2×66.32=132.64°(该值对应于2×针对红色的ΘC WG2)。出于以下描述的目的,FoV被认为受到角度范围[-ΘC* WG2;ΘC* WG2]的限制,其中ΘC* WG2=66.32°。此类实施方案使用仅两个波导来实现宽视场,该宽视场大于足以覆盖总人类视场,其中立体视场对人类视觉是有效的,其为114度。在一些实施方案中,两个波导的折射率可以增加,并且可以针对具有两个波导的全RGB系统实现全180度视场。
图5是使用两个波导的示例性显示系统的示意性剖视图。图5中呈现了对应于表1中提出的值的波导系统的示意图。
图6A至图6C是具有宽视场的双波导系统的示意图。这些图示出了针对分别对应于蓝、绿和红的三种不同颜色以不同入射角将光耦合到第一波导(顶部)和第二波导(底部)中。图6A示出了蓝光通过双波导系统的耦合。如图6A所示,在相对较高的入射角下的蓝光优先地通过第一透射衍射内耦合器耦合到第一波导602中,该第一透射衍射内耦合器可在第一波导的前表面(图6A-C中的顶表面)上。在相对较低的入射角下的蓝光穿过第一波导,并且优先地通过第二透射衍射内耦合器耦合到第二波导604中,该第二透射衍射内耦合器可在第二波导的前表面上。
图6B示出了绿光通过双波导系统的耦合。图6B示出了在相对较高的入射角下的绿光优先地通过第一波导的第一透射衍射内耦合器耦合到第一波导602中。在相对较低的入射角下的绿光穿过第一波导,并且优先地通过第二透射衍射内耦合器耦合到第二波导604中。
图6C示出了红光通过双波导系统的耦合。图6C示出了几乎没有红光耦合到第一波导中。相反,红光穿过第一波导并且优先地耦合到第二波导中。在相对较高的入射角下,第二波导的前表面(图6C中的顶表面)上的第二透射衍射内耦合器将红光优先地耦合到第二波导中。在相对较低的入射角下,第二波导的后表面(图6C中的底表面)上的反射衍射内耦合器将红光优先地耦合到第二波导中。
图6A至图6C和图7中呈现了每个波导相对于具有132.64度视场的RGB图像的波长和角度范围的作用的示意性解释。图6A至图6C示意性地描绘了系统针对三种颜色的工作原理。表1中呈现了可能的角度值。图7是示出由具有两个波导的实施方案对不同颜色的光的耦合和透射的图表,这两个波导从具有衍射光栅DG1的WG1开始,其耦合蓝色和绿色。提供RGB图像作为输入,并且这三种颜色可以被叠加,但是为清晰起见,单独示出它们以便强调每种颜色的行为差异。示意图解释针对每种颜色的角度空间(从蓝色开始)。
图7示出了关于针对由波导耦合并透射通过波导的入射光的角度空间的信息。在该图中,针对由波导耦合的角度范围的最小角度值在波导内部的掠射角等于90°的假设下确定。对于第二波导,图8示出了由该波导使用DG2的第±2衍射阶耦合的光的部分,以及对应于DG2的第零衍射阶的直接透射光的部分(参见图8的左侧部分),该部分可以由该波导仅使用第三反射衍射光栅DG3来耦合(参见图8的右侧部分)。
从图7和图8显而易见的是,通过多路复用颜色和角度空间的不同组合,两个波导可以耦合132.64度的宽视场。反射衍射光栅DG2的尺寸可以被选择为足够小(给定第二衍射光栅的厚度)以至于DG2的第±2衍射阶不投射在DG3上。如上所述,整个系统的FoV可受到针对由DG2衍射的红色获得的FoV的限制。
图7是示出第一波导(WG1)相对于具有132.64度视场的RGB图像的波长和角度范围的作用的示意图。第一波导具有一个透射衍射光栅内耦合器(具有间距d1的DG1)。
图8是示出第二波导相对于具有132.64度视场的RGB图像的波长和角度范围的作用的示意图。第二波导具有两个衍射光栅内耦合器(具有间距d2的透射DG2和具有间距d3的反射衍射光栅DG3)。
非偏振光衍射光栅实施方案
在此部分中,我们呈现了针对具有高折射率的2种类型的透射衍射光栅(具有孪生(图9A)和U形(图9B)元元件)的数值模拟集,该透射衍射光栅被配置为同时产生用于两种偏振(TE和TM)的密集第±2衍射阶。
图9A是具有孪生形元元件的透射光栅的衍射光栅的基础型式的剖视图。图9B是具有U形元元件的透射光栅的衍射光栅的基础型式的剖视图。图9C是具有U形元元件的反射光栅的衍射光栅的基础型式的剖视图。图9D是具有孪生形元元件的反射光栅的衍射光栅的基础型式的剖视图。
使用COMSOL Multiphysics软件获得所呈现的数据。模拟实施方案使用TiO2作为光栅的元件的材料并且使用具有折射率n2=n3=1.7的玻璃作为衬底的材料。所呈现的数值模拟考虑了TiO2材料的色散,如在J.R.Devore,“Refractive indices of rutile andsphalerite,”J.Opt.Soc.Am.41,416-419(1951)中所述。根据此文件中呈现的普通光谱测量的结果,对于三种不同的颜色,我们使用了以下折射率值(参见图10):
蓝色(λ=460nm)-nH=2.7878;
绿色(λ=530nm)-nH=2.6702;
红色(λ=625nm)-nH=2.5884。
图10是TiO2针对一系列波长的折射率的图。
图12至图22中呈现了针对具有高折射率的被配置为与两种偏振一起使用的两种类型的衍射光栅(孪生和U形形貌)的数值模拟的结果。在模拟实施方案中,n1是宿主介质的折射率,并且n1=1。我们已经为具有FoV=132.64°的全RGB系统考虑两个波导的组合。
被配置用于绿色以在高入射角下耦合第±2阶的用于第一波导(WG1)的第一透射光栅DG1具有间距大小d1=471.27nm并且孪生形元元件具有W1=130nm;W2=110nm;H2=240nm。组合针对两种偏振的响应,我们可以在对应于绿色和蓝色的波长下针对入射角-66.34°-+66.34°获得第±2阶透射波的相当良好的衍射均匀性(参见表1和图7)。
被配置用于绿色以在低入射角下耦合第±2阶的用于第二波导(WG2)的第二透射光栅DG2具有间距大小d2=652.46nm并且孪生形元元件的此类参数为:W1=180nm;W2=140nm;H2=240nm。使用具有高度H1=20nm的附加块,我们获得U形元元件。对两种偏振的响应的组合将提供在不同的角度范围下针对三种颜色的总响应的高衍射均匀性(参见表1和图8)。针对两种不同元元件所呈现的示例证实了元元件形貌对系统性能的影响。
用于第二波导(WG2)的第三反射光栅DG3被配置用于红色波长以将由第二衍射光栅透射的红光的一部分(0透射阶T0)转换为将由WG2耦合的第±2衍射阶。元元件的本文所述的形貌(例如,U形和孪生形形貌)也可用于高性能超波长内耦合高折射率色散材料反射光栅,该反射光栅也可以同时产生用于两种偏振(TE和TM)的密集第±2衍射阶。为了防止通过波导的透射并增加衍射光的强度,在一些实施方案中,衍射光栅的表面被金属化(参见图11)。在一个实施方案中,第三衍射光栅具有间距大小d3=769.41nm,并且孪生形元元件具有W1=180nm;W2=200nm;H2=400nm。对于该示例中的U形系统,中心块的高度等于H1=20nm。
图11是反射光栅内耦合器的金属化U形元元件的基础型式的剖视图。金属化表面由深色线描绘。
图12A至图12F描绘了双波导系统针对绿光的衍射性能。模拟实施方案针对第一波导WG1使用孪生形衍射光栅DG1。针对第二波导WG2模拟了U形和孪生形衍射光栅DG2两者。
具体地,图12A示出了波长为530nm的TM偏振绿光通过第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图12B示出了波长为530nm的TE偏振绿光通过第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图12A至图12B中模拟的实施方案的透射衍射内耦合器具有如图9A所示的孪生形衍射光栅。
图12C示出了在一些实施方案中波长为530nm的TM偏振绿光通过第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。图12D示出了波长为530nm的TE偏振绿光通过第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图12C至图12D中模拟的实施方案的透射衍射内耦合器具有如图9B所示的U形衍射光栅。
图12E示出了在一些实施方案中波长为530nm的TM偏振绿光通过第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。图12F示出了波长为530nm的TE偏振绿光通过第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图12E至图12F中模拟的实施方案的透射衍射内耦合器具有如图9A所示的孪生形衍射光栅。
图13A至图13F描绘了双波导系统针对蓝光的衍射性能。在所呈现的系统中,我们针对第一波导WG1使用了孪生形衍射光栅DG1;针对第二波导WG2使用了U形/孪生形(用于比较)衍射光栅DG2。
具体地,图13A示出了波长为460nm的TM偏振蓝光通过第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图13B示出了波长为460nm的TE偏振蓝光通过第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图13A至图13B中模拟的实施方案的透射衍射内耦合器具有如图9A所示的孪生形衍射光栅。
图13C示出了在一些实施方案中波长为460nm的TM偏振蓝光通过第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。图13D示出了波长为460nm的TE偏振蓝光通过第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图13C至图13D中模拟的透射衍射内耦合器具有如图9B所示的U形衍射光栅。
图13E示出了在一些实施方案中波长为460nm的TM偏振蓝光通过第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。图13F示出了波长为460nm的TE偏振蓝光通过第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图13E-F中模拟的透射衍射内耦合器具有如图9A所示的孪生形衍射光栅。
图14A至图14J描绘了双波导系统针对红光的衍射性能。在所呈现的系统中,我们针对第一波导WG1使用了孪生形衍射光栅DG1;针对第二波导WG2使用了U形/孪生形(用于比较)透射衍射光栅DG2和U形/孪生形(用于比较)反射衍射光栅DG3。
具体地,图14A示出了波长为625nm的TM偏振红光通过第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图14B示出了波长为625nm的TE偏振红光通过第一波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图14A至图14B中模拟的实施方案的透射衍射内耦合器具有如图9A所示的孪生形衍射光栅。
图14C示出了在一些实施方案中波长为625nm的TM偏振红光通过第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。图14D示出了波长为625nm的TE偏振红光通过第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图14C至图14D中模拟的实施方案的透射衍射内耦合器具有如图9B所示的U形衍射光栅。
图14E示出了在一些实施方案中波长为625nm的TM偏振红光通过第二波导的透射衍射内耦合器的不同衍射阶的反射率和透射率。图14F示出了波长为625nm的TE偏振红光通过第二波导中的透射衍射内耦合器的不同衍射阶的反射率和透射率。图14E至图14F中模拟的实施方案的透射衍射内耦合器具有如图9A所示的孪生形衍射光栅。
图14G示出了在一些实施方案中波长为625nm的TM偏振红光通过第二波导的反射衍射内耦合器的不同衍射阶的反射率和透射率。图14H示出了波长为625nm的TE偏振红光通过第二波导中的反射衍射内耦合器的不同衍射阶的反射率和透射率。图14G至图14H中模拟的实施方案的反射衍射内耦合器具有如图9D所示的孪生形衍射光栅。
图14I示出了在一些实施方案中波长为625nm的TM偏振红光通过第二波导的反射衍射内耦合器的不同衍射阶的反射率和透射率。图14J示出了波长为625nm的TE偏振红光通过第二波导中的反射衍射内耦合器的不同衍射阶的反射率和透射率。图14I至图14J中模拟的实施方案的反射衍射内耦合器具有如图9C所示的U形衍射光栅。
用于第二波导的外耦合器系统
下面讨论的是被配置用于从第二波导中外耦合红色图像的外耦合器的示例性实施方案。示例性实施方案被配置为使入射图像以适当角跨度外耦合。
为了使通过衍射光栅DG2和DG3耦合到波导WG2中的红色图像外耦合,一些实施方案从板的两侧使用两个衍射光栅DG4(反射光栅)和DG5(透射光栅)。示例性实施方案是双模式装置,该双模式装置使用DG2的衍射模式+2以在右手方向上承载右手侧图像(在内耦合器上的正高入射角),并且使用-2模式以将负高入射角传播到波导的相反方向中。正低入射角将由衍射光栅DG2直接透射并且转换为传播到左手方向中的反射DG3的-2阶,负低入射角将变换为+2模式并且传播到波导的右手侧方向中。在示例性实施方案中,外耦合器被配置为保持相同的角跨度。为了说明起见,考虑图像传播到波导的左侧部分的一部分,如关于图15和图16所示。
图15是示出具有反射内耦合衍射光栅DG3和透射外耦合衍射光栅DG5的第二波导的一些光学部件的示意图。
图16是具有透射内耦合衍射光栅DG2和两个外耦合衍射光栅DG4和DG5形成的系统的第二波导中的一些光学部件的示意图。
为了使由第二衍射光栅DG2直接透射(在没有衍射的情况下透射的零阶光束T0)并由第三反射衍射光栅转换为第+2衍射阶的图像的一部分外耦合,示例性实施方案使用具有间距大小d5的第五衍射光栅。波导的厚度以及衍射光栅DG4的大小和位置可以被选择为避免图像的该部分与DG4的相互作用。根据图15,角度范围[-ΘG” WG2;-ΘL WG2],其中ΘL WG2是直接透射通过DG2的最大入射角,在波导WG2内部透射并通过DG3在该波导内部衍射成角度范围[ΦG WG2;ΦL WG2]。进入该波导中,具有低入射角的图像的右手侧将朝向左侧传播。最后,在多次内部反射之后,其将到达DG5。为了获得具有相同角度空间的外耦合光,波导WG2的透射衍射光栅DG5的间距大小d5可以使用此类衍射光栅方程系统来选择:
Figure BDA0003888598370000241
Figure BDA0003888598370000242
如前所述,假设n1=1,并将
Figure BDA0003888598370000251
选择为大约等于75°。M′对应于衍射光栅DG5的衍射阶。
则,
Figure BDA0003888598370000252
考虑到对应角度的符号,所呈现的表达与方程6的比较示出为了获得外耦合光的相同角跨度,d5可以被选择为使得d5=d3并且N=-M’。
为了使由WG2耦合的通过第二衍射光栅DG2衍射(具体是第+2衍射阶)的图像的一部分外耦合从而避免通过DG3的衍射,可以使用具有间距大小d4的第四衍射光栅。根据图16,角度范围[ΘC WG2;ΘG WG2](高入射角)在波导WG2内部衍射成朝向左侧传播的角度范围[Φc WG2;ΦG WG2]。最后,在多次内部反射之后,其将到达反射衍射光栅DG4,该反射衍射光栅具有可根据衍射方程系统来选择的间距大小:
Figure BDA0003888598370000253
Figure BDA0003888598370000254
其中
Figure BDA0003888598370000255
Figure BDA0003888598370000256
是由反射衍射光栅DG4衍射的掠射角和临界角。在该示例中,假设入射角是正的,对应衍射阶的角度是正的并且衍射阶是负的。N′对应于衍射光栅DG4的衍射阶。
因此,DG4的间距可以计算为:
Figure BDA0003888598370000257
假设在此之后,衍射光应当被DG5直接透射(使得角度范围
Figure BDA0003888598370000258
Figure BDA0003888598370000259
将对应于0衍射阶)到具有折射率n1=1的宿主介质中并且具有角度范围[ΘC WG2;ΘG WG2],我们获得
Figure BDA00038885983700002510
并且
Figure BDA00038885983700002511
Figure BDA00038885983700002512
然后,可以使用下式计算DG4的间距:
Figure BDA0003888598370000261
考虑到对应角度的符号,所呈现的表达与方程4的比较示出为了获得外耦合光的相同角跨度,在一些实施方案中,针对N’=-M2,d4=d2
考虑到波导内部的衍射角度,可以得出结论,绿色和蓝色虚拟图像将仅由衍射光栅DG5外耦合,而不与DG3和DG4发生实质性相互作用。
虽然本文所述的实施方案中的一些实施方案采用内耦合器和外耦合器中的每一者的第二衍射阶,但是其他实施方案可使用第一衍射阶。在此类实施方案中,使用第一衍射阶的耦合器可具有是使用第二衍射阶的对应耦合器的光栅间距的一半的光栅间距。
一些实施方案的优点是减少用于使用非偏振光提供高FoV的波导的数量。示例性实施方案组合由从玻璃板的两侧放置的反射衍射光栅和透射衍射光栅衍射的光束。我们还计算了外耦合器保持外耦合光的角度范围的参数。还需注意,我们基于纳米射流波的技术可在孪生和U形结构的反射衍射光栅中使用以实现±2阶衍射。应当注意,如果两个波导的折射率被轻微调整一点,则可以针对具有两个波导的全RGB系统实现全180度视场。
在一些实施方案中,为了计算FoV范围,使用以下公式:
Figure BDA0003888598370000262
Figure BDA0003888598370000263
在一些实施方案中,针对n3=1.5,λR=625nm并且λG=530nm,系统操作以将入射角大于38°且低于100°的光耦合到第一波导和第二波导中的至少一者中。
在一些实施方案中,针对n3=2.0,λR=625nm并且λG=530nm,系统操作以将入射角大于100°且最高至180°的光耦合到第一波导和第二波导中的至少一者中。
在一些实施方案中,针对n3从1.5改变至2.0,λR=625nm并且λG=530nm,系统操作以将入射角大于38°且最高至180°的光耦合到第一波导和第二波导中的至少一者中。
在一些实施方案中,为了确定间距d2的可接受范围,使用以下公式:
Figure BDA0003888598370000271
Figure BDA0003888598370000272
Figure BDA0003888598370000273
在一些实施方案中,针对n2和n3在1.5与2.0之间并且针对M1=1或2,第一透射衍射内耦合器的第一光栅间距(d1)在170nm与760nm之间。
在一些实施方案中,针对n3在1.5与2.0之间并且针对M1=1或2,第二透射衍射内耦合器的第二光栅间距(d2)在260nm与890nm之间。
在一些实施方案中,针对n3在1.5与2.0之间并且针对M1=1或2,反射衍射内耦合器的第三光栅间距(d3)在300nm与1050nm之间。
示例性单波导结构
一些示例性实施方案提供具有高FoV的全RGB单波导系统。一些此类实施方案基于从波导的两侧放置的两个内耦合衍射光栅和两个外耦合衍射光栅的组合。一些此类实施方案允许仅使用一个波导。由于使用双模式图像传播,一些实施方案表现出非常高的视场。
示例性实施方案使用具有仅一个波导的高FoV光学全RGB系统,该仅一个波导可用于将光耦合到光学装置中和/或从光学装置中外耦合光。此类光学装置可以用作例如AR/VR眼镜的波导。减少波导的数量同时保持引导率允许的高FoV有助于使系统小型化(重量或大小减小)和简化。
对于基于具有产生要在视场中叠加的合成图像的光学系统的衍射光栅的波导,期望透镜系统具有真实的而非虚拟的出射瞳孔。换句话讲,其出射瞳孔位置在透镜外部,并且其同时也是透镜的孔径光阑。
图19的透镜系统提供适当的出射瞳孔。该系统具有盘形孔径光阑,该孔径光阑的直径取决于透镜的直径,透镜的直径主要限制系统大小。由于在孔径光阑之后没有透镜,因此它是其本身的图像,因此是出射瞳孔。它在可以设置内耦合器的地方或在其附近。
如果对象或图像中的任一个处于无穷大,则透镜系统可以称为无焦的。图19的透镜系统在图像侧上无焦的,因为离开透镜的光线对于每个场是平行的,并且在无穷大处存在图像。
对象上的点位置可以称为场。图19示出了离开五个不同场的光线。在一些情况下,像素可以被认为是场。与系统中的其他量相比,可以假设像素的大小可忽略不计。
如图19中所见,每个场的光线通过整个出射瞳孔倾泻。因此,如果我们对出射瞳孔进行光圈收缩,则我们也将针对所有场同时均匀地阻隔像素的光线数量,这意味着光强度会下降。这是孔径光阑的功能,并且这证实出射瞳孔和孔径光阑在该透镜中是相同的,并且出射瞳孔是真实的而非虚拟的。
瞳孔可以在空间上平铺。这意味着瞳孔的正侧(以y>0撞击瞳孔的光线)将经历一个衍射过程,而在负侧(y<0)撞击瞳孔的光线将经历另一衍射过程。y轴的原点是光轴。以一定角度符号撞击瞳孔的光线将经历特定过程,而以相反符号撞击的那些将经历另一衍射过程。另选地,瞳孔角度平铺可导致具有范围[θ12]的光线被衍射到波导中的一个方向中,而具有[-θ1,-θ2]的光线被衍射到相反方向中。
无焦透镜的另一特性是将所有像素从显示器映射到球形坐标系中,这些像素由其在笛卡尔坐标中的相应位置通过其在显示器上的(x,y)坐标引用。相对于图19,将图像平面考虑为在x-y平面中,其中y轴在页面上上下延伸,并且x轴垂直于页面。在无焦透镜系统之后,从一个单个场发出的光线不能由x或y引用,因为它们扩散,但是它们都具有像素间彼此不同的唯一方向。透镜将像素(x,y)坐标转换为球形(θ,φ)对。这意味着对于出射瞳孔(或内耦合器)中的每个光线方向,我们处理另一像素。
在图20的示例中,来自y>0的场的光线和来自y<0的场的光线具有在极坐标系中在出射瞳孔处具有相反符号的角度。如果我们使用z轴沿光轴指向的球形坐标系,则极角度始终介于0与pi(正)之间,并且仅方位角方向符号将区分‘从上方’或‘从下方’撞击出射瞳孔的光线。在沿着出射瞳孔的每个位置处,我们在极坐标系中具有正和负的光线方向。
当使用对称衍射模式时,衍射光栅将以加或减阶衍射进入光线。在一些情况下,如果光线具有一个特定符号取向,则其将在一个模式中衍射,并且如果该符号改变,则它将衍射到相反模式中。实际上,在数学上,衍射始终在所有模式中发生。因此,这里我们意味的是,如果针对特定方向的进入光线,我们衍射到特定模式中,那么该模式中的能量比在相反符号的模式中的更强。这里的对称意味着如果加上方向高效地衍射到模式M中,则减方向将高效地衍射到-M方向中。(M是相对自然数)。
对称衍射光栅通常允许对称衍射模式的先前特性。这种特性可以通过使用具有左右几何对称性的基础结构(基本间距)来实现。闪耀倾斜光栅不是对称衍射光栅。基于正方形形状阶梯(门形状)的光栅可以是对称衍射光栅。图21和图22提供了对称衍射光栅的示例。
示例性实施方案使用可实现非常高效率的对称衍射模式的对称衍射光栅。对于相反符号的入射角,一些实施方案提供高效率的+M或-M衍射模式。
图23示出了倾斜光栅,在从上方照射时,其将对朝向左侧倾斜(在我们的情况下为负角度)的光线有效,并且将具有朝向右手侧的最佳衍射模式。当从右手侧(正角度)照射时,朝向左侧的衍射模式将非常弱。
图24示出了采用两个不同的衍射光栅的具有非对称光栅的对称衍射的用途。图24中的内耦合光栅具有非对称凹槽轮廓。光栅被分成两个部分,每个部分主要与一个方向耦合。在图24的系统中,针对有限的角度范围,左手侧的光线将以高效率朝向左侧衍射,右手侧的光线将以高效率向右侧衍射。除了该过程之外,一小部分能量也将衍射到针对相反衍射模式的相反方向中。
在如图24中的光栅中,仅撞击右手侧光栅具有负传播方向的光线将高效地衍射到右手侧衍射模式中。撞击右手侧衍射光栅具有负入射角的光线将不会衍射到右手侧衍射模式中。(但是它们实际上将具有低强度)。仅撞击左手侧光栅具有正传播方向的光线将高效地衍射到左手侧衍射模式中。撞击左手侧衍射光栅具有负入射角的光线将仅以低强度衍射到左手侧衍射模式中。如此,在出射瞳孔的每个位置处,存在相等分布的正角度和负角度的传播,大约一半的光将被丢失。图25示出了针对两个光栅的典型衍射效率作为入射角的函数。
相比之下,在一些实施方案中使用的具有如图26A所示的轮廓的衍射光栅跨不同入射角提供更均匀的光耦合,如图26B中示意性地示出的。
一些示例性实施方案提供了用于将光内耦合到光学装置中的具有高FOV的单波导全色解决方案。一些实施方案为内耦合光提供了高效率和高衍射均匀性。图27是在一些实施方案中使用的波导的示意性侧视图。
图28A至图28B是单波导内耦合系统的示意性侧视图,示出了针对透射衍射光栅(图28A)和反射衍射光栅(图28B)的入射光和衍射光的角度。名称以Θ开始的角度位于空气(或其他环境介质)中。名称以Φ开始的角度位于波导中并测量已经衍射的光线的角度。C是空气或波导中的临界光线,G是掠射光线。负入射角和波导内部的对应衍射角由实线箭头标记,并且正入射角和波导内部的对应衍射角由虚线箭头标记。
示例性实施方案通过由两个衍射光栅衍射入射光并将其内耦合到波导中来操作。本公开中描述的衍射光栅的正确组合针对三种颜色提供了高FoV。图28A至图28B示出了透射(28A)衍射光栅和反射(28B)衍射光栅的功能。角度范围[ΘC;ΘG]和[-ΘG;-ΘC]在波导内部衍射成角度范围[ΦC;ΦG]和[-ΦG;-ΦC]。穿过透射衍射光栅进入波导中,图像的左手侧将朝向左侧传播到波导中,而图像的右手侧将朝向右侧传播。最后,图像的左手侧对应于负入射角,其在波导内部将主要转移到负透射衍射阶(第一阶或第二阶,这取决于系统的形貌)中。对应于正入射角的图像的右手侧将转移到正透射衍射阶中。在从波导的底部的反射衍射光栅进行光衍射的情况下,正入射角将在波导中朝向对应于负反射衍射阶的左侧传播,而负入射角将朝向对应于正反射衍射阶的右侧传播。反射光栅与透射光栅不同,在于其具有针对适当波长计算的不同间距大小,但是强调边缘波的几何结构可具有相同形状。
为了将波导的数量减少到一个波导,一些实施方案使用具有以下特性的衍射光栅。
在一些实施方案中,针对透射衍射光栅(具有间距d1的DG1),针对蓝色波长和覆盖该透射衍射光栅的全FoV的角度范围(对于双模式系统的2Δθ1)来计算间距大小,假设进入掠射光线处于法线附近。衍射光栅可以被选择为在所提及的角度范围中在蓝色波长下获得对应阶(第±2阶或第±1阶,这取决于形貌)的高衍射效率。如图29A所示,对应于蓝色,角度范围[ΘC 1;ΘG 1]和[-ΘG 1;-ΘC 1]在波导内部衍射成角度范围[ΦG 1;ΦC 1]和[-ΦC 1;-ΦG 1]。DG1可被配置为使得ΘC 1≈Δθ1。(需注意ΘC 1、ΘG 1、ΦG 1、和ΦC 1可针对每种颜色具有不同的值)。
在对应于绿色的波长下,存在角度分布朝向较高入射角的偏移。如图29B所示,在绿色波长下,角度范围[ΘC 1;ΘG 1]和[-ΘG 1;-ΘC 1]在波导内部衍射成角度范围[ΦG 1;ΦC 1]和[-ΦC 1;-ΦG 1]。在[-ΘG 1;ΘG 1]之间的角度范围以非常高效率透射通过透射衍射光栅DG1(其对应于0透射阶T0)。入射图像的该部分将由从波导的底部的反射光栅衍射。如果针对高于|±ΘG 1|的角度范围,透射率T0也高,则其也将由反射DG2衍射(对应的衍射角度范围取决于反射DG2的参数,并且不可以大于[-ΘC 2;ΘC 2]),并且在此之后,其可以与由DG1衍射的图像的一部分组合。
在对应于红色的波长下将观察到类似的功能。增加波长,我们获得角度分布朝向较高入射角的另外偏移。如图29C所示,在红色波长下,角度范围[ΘC 1;ΘG 1]和[-ΘG 1;-ΘC 1]在波导内部衍射成角度范围[ΦG 1;ΦC 1]和[-ΦC 1;-ΦG 1]。如在绿色的情况下一样,在[-ΘG 1;ΘG 1]之间的角度范围以非常高效率透射通过透射衍射光栅DG1(其对应于0透射阶T0)。入射图像的该部分也将由反射光栅DG2衍射。如果针对高于|±ΘG 1|的角度范围,透射率T0也高,则其也可由反射DG2衍射(衍射角度范围取决于DG2的参数,并且不可以大于[-ΘC 2;ΘC 2]),并且在此之后,其可以与由DG1衍射的图像的一部分组合。
在一些实施方案中,反射衍射光栅(具有间距d2的DG2)具有针对红色波长和覆盖该反射衍射光栅的全FoV的角度范围(对于双模式系统的2Δθ1)来计算的间距大小,也假设掠射光线处于法线附近。该衍射光栅可以被选择为在所提及的角度范围中在红色波长下提供对应阶(第±2阶或第±1阶,这取决于形貌)的高衍射效率。根据图29C,对应于红色,角度范围[ΘC 2;ΘG 2]和[-ΘG 2;-ΘC 2]在波导内部衍射成角度范围[ΦG 2;ΦC 2]和[-ΦC 2;-ΦG 2]。DG2可被配置为使得ΘC 2≈Δθ1
在对应于绿色的波长下,存在角度分布朝向较低入射角的偏移,导致对应的正/负衍射阶的角度重叠。这意味着正衍射阶将对应于负入射角和一些范围的正入射角。负衍射阶将对应于正入射角和一些负入射角。最后,我们获得我们对这两个衍射阶具有响应(特性的角度重叠)的低角度范围。可以考虑这一事实以防止图像质量的不期望劣化。
在一些实施方案中,可以使用以下衍射方程来计算两个波导WG1和WG2的透射和反射衍射光栅DG1和DG2的间距大小d1和d2以及由图27所示的光学内耦合装置耦合的总视场。
Figure BDA0003888598370000321
Figure BDA0003888598370000322
Figure BDA0003888598370000323
Figure BDA0003888598370000324
我们假设n1=1。一些值是已知的,
Figure BDA0003888598370000325
其中n2是波导材料的折射率,M1和M2分别对应于第一衍射光栅DG1和第二衍射光栅DG2的衍射阶。根据本公开的实施方案,将
Figure BDA0003888598370000326
Figure BDA0003888598370000327
选择为大约等于75°。
需要提醒的是,这些值是设计参数,并且可以选择其他值。可以根据该图像必须在被提取之前行进到该波导中的距离、TIR反弹的数目和该波导的厚度来选择为
Figure BDA0003888598370000328
Figure BDA0003888598370000329
选择的值。
考虑到角度和衍射阶的对应符号,我们可以此类形式呈现针对DG1的间距大小的方程:
Figure BDA00038885983700003210
并且我们可以获得第一光栅的临界入射角:
Figure BDA0003888598370000331
反射衍射光栅DG2的间距大小d2可以以下形式呈现:
Figure BDA0003888598370000332
第二光栅的临界入射角具有以下形式:
Figure BDA0003888598370000333
这些方程可用于计算系统的视场。下一个表(表2)示出了一些实用参数和根据先前求解的针对2个衍射光栅在3个不同波长下的方程集以及n2对应于高折射率晶圆计算的值。考虑到波导材料(例如,蓝宝石(Al2O3))的色散,针对3种不同的颜色,我们具有此类折射率值:
在λ=460nm(蓝色)下n2=1.7783;
在λ=530nm(绿色)下n2=1.7719;
在λ=625nm(红色)下n2=1.7666。
在表2中,所提出的系统的输入参数在括号中示出。所有的计算参数均不在括号中。为了针对优化为内耦合第一衍射阶(M1,2=1)的衍射光栅计算在3个不同波长下的间距,我们使用方程(2)和(4)。(针对M1,2=2,将使光栅的间距加倍:d1=535.598nm,d2=749.67nm)
Figure BDA0003888598370000334
表2
下面我们假设针对蓝色FoV受到角度范围[-ΘC 1;ΘC 1]的限制,其中ΘC 1=45.87°。为了避免一些颜色的黑色带,我们提出全RGB系统的FoV应等于2×45.87=91.74°(该值对应于2×针对蓝色的
Figure BDA0003888598370000341
)。此类系统使用仅1个波导实现高视场。但是,如果波导的折射率增加,则可针对具有单个波导的全RGB系统实现更高视场。
图29A至图29C示意性地描绘了示例性系统使用三种颜色的操作。表2中呈现了可能的角度值的示例。作为输入,我们具有RGB图像并且三种颜色被叠加,但是为了说明起见,我们示出它们不相交,以便强调每种颜色的行为差异。示意图解释针对每种颜色的角度空间(从图29A中的蓝色开始)。对于绿色(29B)和红色(29C),我们示出了使用DG1和DG2的第±1衍射阶通过该波导耦合的光的一部分。
在该示例中,大多数蓝色零阶具有低于TIR限值的角度。当撞击DG2时,这些角度将具有若干衍射分量。如图35所示,它们将被衍射成模式0、+1和-1。衍射到模式0中的光将被反射回去,其角度将在法线周围镜像,并且其将再次撞击输入界面。如果其撞击到不存在DG1的地方,则其将从波导中离开,这是期望的。如果其撞击DG1,则其将通过衍射离开。其通过DG2保持两种衍射蓝光模式,它们可以在约20度处以约30%的最大效率衍射。在波导内部的20度处,由于斯涅尔定律,这对应于在该入射时DG1的37.5度入射角,光线具有低于10%的T0模式下的初始功率(图32),这意味着由于DG2进行的不期望反射,最大3.0%的蓝色将留下。
关于DG2相对于DG1的横向大小,第一个应当足够大,以便收集用于绿色和红色通道的所有有用的衍射光线。其大小可以是波导厚度的函数。
整个系统的FoV可受到针对由DG1衍射的蓝色获得的FoV的限制。此类系统的总FoV为约2Δθ1,其中Δθ1为波导材料的最大理论上可能的FoV。
已经针对优化为产生用于TE偏振的密集第±1衍射阶的具有高折射率的透射(图30A)和反射(图30B)衍射光栅实施数值模拟。
使用COMSOL Multiphysics软件获得所呈现的数据。模拟使用TiO2作为光栅的元件的材料并且使用蓝宝石(Al2O3)作为衬底的材料。所呈现的数值模拟考虑了TiO2材料的色散。根据此文件中呈现的普通光谱测量的结果,对于3种不同的颜色,我们具有此类折射率值(参见图31):
在λ=460nm(蓝色)下n3=2.7878;
在λ=530nm(绿色)下n3=2.6702;
在λ=620nm(红色)下n3=2.5915。
图32至图37中呈现了针对被配置用于TE偏振的具有高折射率的两个衍射光栅的数值模拟集。我们已经假设n1是宿主介质的折射率并且n1=1(空气)。我们已经为具有FoV=91.74°的全RGB系统考虑2个衍射光栅的组合。
图32至图34中示出的是被配置用于蓝色(λ=460nm)的第一透射光栅DG1耦合第±1阶的模拟性能,其中间距大小d1=267.799nm并且元件具有w1=80nm;h1=110nm。在图32中示出了与蓝光(λ=460nm)的性能。在图33中示出了与绿光(λ=530nm)的性能。在图34中示出了与红光(λ=620nm)的性能。
图35至图37中示出的是被配置用于红色(λ=620nm)的第二反射光栅DG2的模拟性能,其中间距大小d2=374.835nm并且元件具有参数w2=140nm;h2=380nm。该光栅将由第一衍射光栅透射的红光的一部分(0透射阶T0)转换为由波导耦合的第±1衍射阶。为了防止通过波导的透射并增加衍射光的强度,衍射光栅的表面可被金属化(参见图30C)。图35至图37中呈现的角度范围对应于从具有折射率n2的介质的入射。使用斯涅尔定律,我们可以计算对应于介质n1的范围。在图35中示出了与蓝光(λ=460nm)的性能。在图36中示出了与绿光(λ=530nm)的性能。在图37中示出了与红光(λ=620nm)的性能。
还针对被配置为产生用于TE偏振的密集第±2衍射阶的具有高折射率的透射(图39至图41)和反射(图42至图43)执行了数值模拟。图38A示出了模拟透射光栅的光栅轮廓。图38B示出了模拟反射光栅的光栅轮廓。图38C示出了图38B的光栅上的金属化表面。
针对相同的材料(TiO2作为光栅的元件的材料并且蓝宝石(Al2O3)作为衬底的材料)并使用COMSOL Multiphysics软件获得所呈现的数据。
图39至图43中呈现了针对优化用于TE偏振的具有高折射率的2个衍射光栅的数值模拟集。我们已经假设n1是宿主介质的折射率并且n1=1(空气)。我们已经为具有FoV=91.74°的全RGB系统考虑两个衍射光栅的组合。
图39至图41中示出的是被配置用于蓝色的第一透射光栅DG1耦合第±2阶的模拟性能,其中间距大小d1=535.598nm并且元件具有w1=80nm;h1=110nm;w’1=187.799nm;h’1=10nm。使用更复杂的u形元件可针对蓝光提供更好的衍射均匀性。图39示出了DG1与蓝光(λ=460nm)的模拟性能。图40示出了DG1与绿光(λ=530nm)的模拟性能。图41示出了DG1与红光(λ=620nm)的模拟性能。
图42和图43中示出的是被配置用于红色的第二反射光栅DG2的模拟性能,其中间距大小d2=749.67nm并且元件的此类参数为:w2=140nm;h2=380nm;w’2=234.835nm;h’2=10nm。该光栅将由第一衍射光栅透射的红光的一部分(0透射阶T0)转换为由波导耦合的第±2衍射阶。为了防止通过波导的透射并增加衍射光的强度,一些实施方案使衍射光栅的表面金属化(参见图38C)。图42至图43中呈现的角度范围对应于从具有折射率n2的介质的入射。使用斯涅尔定律,我们可以计算对应于介质n1的范围。图42示出了第二反射光栅DG2针对绿光的模拟性能。图43示出了第二反射光栅DG2针对红光的模拟性能。
下面讨论的是被配置用于从波导中外耦合朝向左侧衍射的RGB图像的一半的外耦合器的示例性实施方案。示例性实施方案被配置为使入射图像以适当角跨度外耦合。
为了使通过衍射光栅DG1和DG2耦合到波导中的图像外耦合,一些实施方案从板的两侧使用两个衍射光栅DG3(反射光栅)和DG4(透射光栅)。示例性实施方案使用DG1的正衍射模式以在右手方向上承载右手侧图像(在内耦合器上的正高入射角),并且使用负模式以将负高入射角传播到波导的相反方向中。针对蓝色波长以及在绿色和红色波长下的高入射角,负入射角将由衍射光栅DG1转换为传播到左手方向中的负阶,针对蓝色波长以及在绿色和红色波长下的高入射角,正入射角将由衍射光栅DG1转换为传播到波导的右手侧方向中的正阶。在示例性实施方案中,外耦合器被配置为保持相同的角跨度。针对绿色和红色,正低入射角将由衍射光栅DG1直接透射并且转换为传播到左手方向中的反射DG3的负阶,负低入射角将变换为正模式并且传播到波导的右手侧方向中。在示例性实施方案中,外耦合器被配置为保持相同的角跨度。为了说明起见,考虑图像传播到波导的左侧部分的一部分,如关于图44和图45所示。
为了使在红色和绿色波长下以低入射角入射的由第一衍射光栅DG1直接透射(在没有衍射的情况下透射的零阶光束T0)并由第二反射衍射光栅转换为正衍射阶的图像的一部分外耦合,示例性实施方案使用具有间距大小d4的衍射光栅。波导的厚度以及衍射光栅DG3的大小和位置可以被选择为避免图像的该部分与DG3的相互作用。根据图44,角度范围[ΘG 2;ΘC 2],其中ΘC 2是直接透射通过DG1的临界入射角,在波导内部透射并通过DG2在该波导内部衍射成角度范围[-ΦG 2;-ΦC 2]。因此,具有低入射角的图像的右手侧将朝向左侧传播。最后,在多次内部反射之后,其将到达DG4。为了获得具有相同角度空间的外耦合光,波导的透射衍射光栅DG4的间距大小4可以使用此类衍射光栅方程系统来选择:
Figure BDA0003888598370000371
Figure BDA0003888598370000372
如前所述,假设n1=1,并将
Figure BDA0003888598370000373
选择为大约等于75°。M4对应于衍射光栅DG4的衍射阶。
则,
Figure BDA0003888598370000374
考虑到对应角度的符号(针对反射光栅DG2:入射角
Figure BDA0003888598370000375
为正,耦合衍射阶M2为负,
Figure BDA0003888598370000376
为负;针对透射光栅DG4:入射角
Figure BDA0003888598370000377
为正,外耦合衍射阶M4为正,
Figure BDA0003888598370000378
为正),所呈现的表达与方程14的比较示出了为了获得外耦合光的相同角跨度,d4可以被选择为使得d4/M4=-d2/M2
为了使由波导耦合的通过第一衍射光栅DG1衍射(具体是负衍射阶)的图像的一部分(图像在蓝色波长以及在绿色和红色波长下的高入射角的一部分)外耦合从而避免通过DG2的衍射,可以使用具有间距大小d3的第三衍射光栅。根据图45,角度范围[ΘC 1;ΘG 1](高入射角)在波导内部衍射成朝向左侧传播的角度范围[Φc 1;ΦG 1]。最后,在多次内部反射之后,其将到达反射衍射光栅DG3,该反射衍射光栅具有可根据衍射方程系统来选择的间距大小:
Figure BDA0003888598370000381
Figure BDA0003888598370000382
在此,
Figure BDA0003888598370000383
Figure BDA0003888598370000384
是由反射衍射光栅DG3衍射的掠射角和临界角,M3对应于衍射光栅DG3的衍射阶。
因此,DG3的间距可以计算为:
Figure BDA0003888598370000385
假设在此之后,衍射光应当被DG4直接透射(使得角度范围
Figure BDA0003888598370000386
Figure BDA0003888598370000387
将对应于0衍射阶)到具有折射率n1=1的宿主介质中并且具有角度范围[ΘC 1;ΘG 1],我们获得
Figure BDA0003888598370000388
并且
Figure BDA0003888598370000389
然后,可以使用下式计算DG3的间距:
Figure BDA00038885983700003810
考虑到对应角度的符号(针对透射光栅DG1:入射角
Figure BDA00038885983700003811
为负,耦合衍射阶M1为负,
Figure BDA00038885983700003812
为负;针对光栅DG3(考虑e/m波入射侧):入射角
Figure BDA00038885983700003813
为负,外耦合衍射阶M3为正,
Figure BDA00038885983700003814
为正,
Figure BDA00038885983700003815
为负),所呈现的表达与方程(12)的比较示出了为了获得外耦合光的相同角跨度,在一些实施方案中,d3可以被选择为使得d3/M3=-d1/M1
由于衍射光栅的对称响应,为了使朝向右侧衍射的RGB图像的一半外耦合,我们使用相同的反射DG3和透射DG4光栅。
在一些实施方案中,为了确定间距d1的可接受范围,使用以下公式:
Figure BDA0003888598370000391
Figure BDA0003888598370000392
在此,λ是蓝色的波长,λ是红色的波长。
在一些实施方案中,针对n2和n3在1.5与2.0之间并且针对M1=1(λ=460nm),第一透射衍射内耦合器的第一光栅间距(d1)在230nm与390nm之间。
在一些实施方案中,针对n2和n3在1.5与2.0之间并且针对M1=2(λ=460nm),第一透射衍射内耦合器的第一光栅间距(d1)在460nm与780nm之间。
在一些实施方案中,针对n2在1.5与2.0之间并且针对M2=1(λ=620nm),第二反射衍射内耦合器的第二光栅间距(d2)在310nm与520nm之间。
在一些实施方案中,针对n2在1.5与2.0之间并且针对M2=2(λ=620nm),第二反射衍射内耦合器的第二光栅间距(d2)在620nm与1040nm之间。
一些实施方案使用仅单个波导来提供用于RGB图像的高视场。一些此类实施方案操作以组合由从玻璃板的两侧放置的反射衍射光栅和透射衍射光栅衍射的光束。在一些实施方案中,选择波导的折射率以增加视场。
一些实施方案使用一个波导来提供高视场RGB显示。波导的内耦合器可包括单个透射衍射光栅和单个反射衍射光栅。透射光栅DG1可被配置用于蓝光。透射光栅DG1可具有通过上文给出的公式描述的范围的间距。反射光栅DG2可被配置用于红光。反射光栅DG2可具有通过上文给出的公式描述的范围的间距。
波导可具有外耦合器系统,其中外耦合器透射光栅具有与反射内耦合器相同的间距与衍射阶比。外耦合器反射光栅可具有与透射内耦合器光栅相同的间距与衍射阶比。
在一些实施方案中,衍射光栅具有允许边缘波行为以形成远场的单元格。
在一些实施方案中,提供金属层以覆盖反射光栅。
在一些实施方案中,所有衍射光栅针对内耦合器使用大于或等于1的|M|以实现高衍射效率。
一些实施方案在内耦合衍射光栅的每个位置处使用两种衍射模式以实现瞳孔角度平铺。
一些实施方案使用瞳孔角度平铺来在多个衍射光栅之间多路复用不同的角度空间和波长。
在一些实施方案中,内耦合器衍射光栅与各种不同光引擎源(诸如DLP或LCOS)兼容以实现低的光丢失。
在本公开中,有时使用诸如“第一”、“第二”、“第三”等修饰词来区分不同特征。这些修饰词并不意味着暗示任何特定的操作顺序或部件的布置。此外,术语“第一”、“第二”、“第三”等可以在不同实施方案中具有不同的含义。例如,在一个实施方案中,作为“第一”部件的部件可以是不同实施方案中的“第二”部件。
附加实施方案
根据一些实施方案的光学系统包括具有第一透射衍射内耦合器(DG1)的第一波导以及具有第二透射衍射内耦合器(DG2)和反射衍射内耦合器(DG3)的第二波导,其中第二透射衍射内耦合器(DG2)在输入区域中被布置在第一透射衍射内耦合器(DG1)与反射衍射内耦合器(DG3)之间。
在一些实施方案中,第一波导还包括第一衍射外耦合器(DG6);并且第二波导还包括第二衍射外耦合器(DG4)和第三衍射外耦合器(DG5)。
在一些实施方案中,光学系统还包括图像生成器,该图像生成器操作以在输入区域处提供图像,其中该光学系统被配置为在输出瞳孔区域基本上复制图像,该输出瞳孔区域包括第一衍射外耦合器(DG6)、第二衍射外耦合器(DG4)和第三衍射外耦合器(DG5)。
在一些实施方案中,该系统被配置为基本上复制跨越至少100°的视场的图像。在一些实施方案中,该系统被配置为基本上复制跨越至少120°的视场的图像。在一些实施方案中,该系统被配置为基本上复制跨越至少140°的视场的图像。在一些实施方案中,该系统被配置为基本上复制跨越至少160°的视场的图像。
在一些实施方案中,该图像生成器操作以产生具有最大波长的光,并且该系统的视场等于针对最大波长的最大视场。
在一些实施方案中,该系统被配置为复制全色图像。
在一些实施方案中,第一衍射内耦合器具有第一光栅间距,第二衍射内耦合器具有大于第一光栅间距的第二光栅间距,并且反射衍射内耦合器具有大于第二光栅间距的第三光栅间距。
该光学系统的一些实施方案的特征在于以下方程:
Figure BDA0003888598370000411
其中d1是第一透射衍射内耦合器(DG1)的光栅间距,M1是非零整数,n2是第一波导的折射率,λ是介于450nm与700nm之间的波长,
Figure BDA0003888598370000412
是介于55度与90度之间的角度,并且
Figure BDA0003888598370000413
基本上等于以第二波导的临界角衍射的角度,其中第二波导的临界角是arcsin(1/n3)。
该光学系统的一些实施方案的特征在于以下方程:
Figure BDA0003888598370000414
其中d2是第二透射衍射内耦合器(DG2)的光栅间距,M2是非零整数,n3是第二波导的折射率,λ是介于450nm与700nm之间的波长,
Figure BDA0003888598370000415
是介于55度与90度之间的角度,并且
Figure BDA0003888598370000416
是法向入射的±5度内的角度。
在一些实施方案中,该光学系统操作以将入射角大于50°的光耦合到第一波导和第二波导中的至少一者中。在一些实施方案中,该光学系统操作以将入射角大于60°的光耦合到第一波导和第二波导中的至少一者中。在一些实施方案中,该光学系统操作以将入射角大于70°的光耦合到第一波导和第二波导中的至少一者中。在一些实施方案中,该光学系统操作以将入射角大于80°的光耦合到第一波导和第二波导中的至少一者中。
在一些实施方案中,该光学系统被配置为:(i)将具有第一入射角的至少一些入射光耦合成在第一波导和第二波导中的至少一者中以第一方向行进,以及(ii)将具有与第一入射角基本上相反的第二入射角的至少一些入射光耦合成在第一波导和第二波导中的至少一者中以与第一方向基本上相反的第二方向行进。
在一些实施方案中,该光学系统被配置为使得针对至少第一波长的光,入射在第一透射衍射内耦合器上的光:(i)在相对较高的入射角下优先地耦合到第一波导中,并且(ii)在相对较低的入射角下优先地耦合到第二波导中。
在一些实施方案中,该光学系统被配置为使得针对至少第二波长的光,入射在第二透射衍射内耦合器上的光:(i)在相对较高的入射角下优先地通过第二透射衍射内耦合器耦合到第二波导中,并且(ii)在相对较低的入射角下优先地通过反射衍射内耦合器耦合到第二波导中。
在一些实施方案中,第一波长短于第二波长。
在一些实施方案中,入射光是具有约460nm的第一光波长的蓝光。
在一些实施方案中,入射光是具有约530nm的第一波长的绿光。
在一些实施方案中,入射光是具有约625nm的第二波长的红光。
在一些实施方案中,该光学系统被配置为使得针对在输入区域处的至少一个光入射角:(i)具有相对较短波长的光优先地耦合到第一波导中,并且(ii)具有相对较长波长的光优先地耦合到第二波导中。
在一些实施方案中,该光学系统被配置为使得针对入射在输入区域上的至少第一波长的光和第二不同波长的光:第一波长的光的至少一部分和第二波长的光的至少一部分耦合到第一波导中。
在一些实施方案中,该光学系统被配置为使得针对入射在输入区域上的至少第一波长的光和第二不同波长的光:第一波长的光的至少一部分和第二波长的光的至少一部分耦合到第二波导中。
在一些实施方案中,第一透射衍射内耦合器的第一光栅间距(d1)在420nm与520nm之间。
在一些实施方案中,第二透射衍射内耦合器的第二光栅间距(d2)介于600nm与700nm之间。
在一些实施方案中,反射衍射内耦合器的第三光栅间距(d3)介于720nm与820nm之间。
在一些实施方案中,第一透射衍射内耦合器的第一光栅间距(d1)在460nm与480nm之间。
在一些实施方案中,第二透射衍射内耦合器的第二光栅间距(d2)介于640nm与660nm之间。
在一些实施方案中,反射衍射内耦合器的第三光栅间距(d3)介于760nm与780nm之间。
在一些实施方案中,第二光栅间距比第一光栅间距大30%与50%之间。
在一些实施方案中,第三光栅间距比第二光栅间距大10%与30%之间。
在一些实施方案中,第三光栅间距比第二光栅间距大50%与70%之间。
在一些实施方案中,第一透射衍射内耦合器操作以将第二衍射阶的光耦合到第一波导中。
在一些实施方案中,第二透射衍射内耦合器和反射衍射内耦合器操作以将第二衍射阶的光耦合到第二波导中。
在一些实施方案中,第一波导包括沿第一透射衍射内耦合器与第一衍射外耦合器之间的光学路径的至少一个瞳孔扩展器。
在一些实施方案中,第二波导包括沿(i)第二透射衍射内耦合器与反射衍射内耦合器之间以及(ii)第二衍射外耦合器与第三衍射外耦合器之间的光学路径的至少一个瞳孔扩展器。
在一些实施方案中,第二波导包括沿(i)第二透射衍射内耦合器与反射衍射内耦合器之间以及(ii)第二衍射外耦合器与第三衍射外耦合器之间的光学路径的至少两个瞳孔扩展器。
在一些实施方案中,第一衍射外耦合器(DG6)是反射衍射外耦合器。
在一些实施方案中,第一衍射外耦合器(DG6)是透射衍射外耦合器。
在一些实施方案中,第二衍射外耦合器(DG4)是反射衍射外耦合器。
在一些实施方案中,第二衍射外耦合器(DG4)是透射衍射外耦合器。
在一些实施方案中,第三衍射外耦合器(DG5)是透射衍射外耦合器。
在一些实施方案中,第三衍射外耦合器(DG5)是反射衍射外耦合器。
在一些实施方案中,第一衍射外耦合器具有基本上等于第一透射衍射内耦合器的光栅间距(d1)的光栅间距(d6)。
在一些实施方案中,第二衍射外耦合器具有基本上等于第二透射衍射内耦合器的光栅间距(d2)的光栅间距(d4)。
在一些实施方案中,第三衍射外耦合器具有基本上等于反射衍射内耦合器的光栅间距(d3)的光栅间距(d5)。
在一些实施方案中,第一波导和第二波导是基本上平面的并且彼此基本上平行。
在一些实施方案中,第一波导和第二波导被布置为包括仅两个波导的波导堆叠。
在一些实施方案中,该光学系统被配置为使得蓝光:(i)在相对较高的入射角下优先地耦合到第一波导中,并且(ii)在相对较低的入射角下优先地耦合到第二波导中。
在一些实施方案中,该光学系统被配置为使得绿光:(i)在相对较高的入射角下优先地耦合到第一波导中,并且(ii)在相对较低的入射角下优先地耦合到第二波导中。
在一些实施方案中,该光学系统被配置为使得红光:(i)在相对较高的入射角下优先地通过第二透射衍射内耦合器耦合到第二波导中,并且(ii)在相对较低的入射角下优先地通过反射衍射内耦合器耦合到第二波导中。
一种操作根据一些实施方案的光学系统的方法包括:将表示图像的输入光引导到第一波导的第一透射衍射内耦合器(DG1)上,第一波导具有第一衍射外耦合器(DG6);使用第一透射衍射内耦合器(DG1),将输入光的第一部分耦合到第一波导中;使用第二波导的第二透射衍射内耦合器(DG2),将输入光的第二部分耦合到第二波导中;以及使用第二波导的反射衍射内耦合器(DG3),将输入光的第三部分耦合到第二波导中。
在一些实施方案中,该方法还包括:使用第一波导上的第一衍射外耦合器(DG6),将光的第一部分的至少一部分耦合出第一波导;使用第二波导上的第二衍射外耦合器(DG4),将光的第二部分的至少一部分耦合出第二波导;以及使用第二波导上的第三衍射外耦合器(DG5),将光的第三部分的至少一部分耦合出第二波导。
在一些实施方案中,在输入光包括蓝光的情况下,该蓝光:(i)在相对较高的入射角下优先地耦合到第一波导中,并且(ii)在相对较低的入射角下优先地耦合到第二波导中。
在一些实施方案中,在输入光包括绿光的情况下,该绿光:(i)在相对较高的入射角下优先地耦合到第一波导中,并且(ii)在相对较低的入射角下优先地耦合到第二波导中。
在一些实施方案中,输入光包括红光,并且该红光:(i)在相对较高的入射角下优先地通过第二透射衍射内耦合器耦合到第二波导中,并且(ii)在相对较低的入射角下优先地通过反射衍射内耦合器耦合到第二波导中。
根据一些实施方案的光学系统包括波导,该波导具有在其第一表面上的透射衍射内耦合器(DG1)和在与第一表面基本上相反的第二表面上的反射衍射内耦合器(DG2),其中透射衍射内耦合器(DG1)具有被选择为将蓝光耦合到波导中的光栅周期,并且其中反射衍射内耦合器(DG2)具有被选择为将红光耦合到波导中的光栅周期。
在一些实施方案中,波导还包括至少一个反射衍射外耦合器和至少一个透射衍射外耦合器。
在一些实施方案中,该光学系统还包括图像生成器,该图像生成器操作以在输入区域处提供图像,该输入区域包括透射衍射内耦合器和反射衍射内耦合器,其中该光学系统被配置为在至少一个输出瞳孔区域基本上复制图像,该输出瞳孔区域包括反射衍射外耦合器和透射衍射外耦合器。
尽管上文以特定组合描述了特征和元件,但是本领域的普通技术人员将理解,每个特征或元件可单独使用或以与其他特征和元件的任何组合来使用。

Claims (15)

1.一种光学系统,包括:
第一波导,所述第一波导具有第一透射衍射内耦合器(DG1);和
第二波导,所述第二波导具有第二透射衍射内耦合器(DG2)和反射衍射内耦合器(DG3);
其中所述第二透射衍射内耦合器(DG2)在输入区域中被布置在所述第一透射衍射内耦合器(DG1)与所述反射衍射内耦合器(DG3)之间。
2.根据权利要求1所述的光学系统,其中:
所述第一波导还包括第一衍射外耦合器(DG6);并且
所述第二波导还包括第二衍射外耦合器(DG4)和第三衍射外耦合器(DG5)。
3.根据前述权利要求中任一项所述的光学系统,还包括图像生成器,所述图像生成器操作以在所述输入区域处提供图像,其中所述光学系统被配置为在输出瞳孔区域基本上复制所述图像,所述输出瞳孔区域包括所述第一衍射外耦合器(DG6)、所述第二衍射外耦合器(DG4)和所述第三衍射外耦合器(DG5)。
4.根据权利要求3所述的光学系统,其中所述系统被配置为基本上复制跨越至少100°的视场的图像。
5.根据权利要求3或4所述的光学系统,其中所述系统被配置为复制全色图像。
6.根据前述权利要求中任一项所述的光学系统,其中所述第一衍射内耦合器具有第一光栅间距,所述第二衍射内耦合器具有大于所述第一光栅间距的第二光栅间距,并且所述反射衍射内耦合器具有大于所述第二光栅间距的第三光栅间距。
7.根据前述权利要求中任一项所述的光学系统,其中
Figure FDA0003888598360000021
其中d1是所述第一透射衍射内耦合器(DG1)的光栅间距,M1是非零整数,n2是所述第一波导的折射率,λ是介于450nm与700nm之间的波长,
Figure FDA0003888598360000022
是介于55度与90度之间的角度,并且
Figure FDA0003888598360000023
基本上等于以所述第二波导的临界角衍射的角度,其中所述第二波导的所述临界角是arcsin(1/n3),其中n3是所述第一波导的折射率。
8.根据前述权利要求中任一项所述的光学系统,其中
Figure FDA0003888598360000024
其中d2是所述第二透射衍射内耦合器(DG2)的光栅间距,M2是非零整数,n3是所述第二波导的折射率,λ是介于450nm与700nm之间的波长,
Figure FDA0003888598360000025
是介于55度与90度之间的角度,并且
Figure FDA0003888598360000026
是法向入射的±5度内的角度。
9.根据前述权利要求中任一项所述的光学系统,其中所述系统被配置为:(i)将具有第一入射角的至少一些入射光耦合成在所述第一波导和所述第二波导中的至少一者中以第一方向行进,以及(ii)将具有与所述第一入射角基本上相反的第二入射角的至少一些入射光耦合成在所述第一波导和所述第二波导中的至少一者中以与所述第一方向基本上相反的第二方向行进。
10.根据前述权利要求中任一项所述的光学系统,其中:
所述第一透射衍射内耦合器的第一光栅间距(d1)介于420nm与520nm之间;
所述第二透射衍射内耦合器的第二光栅间距(d2)介于600nm与700nm之间;并且
所述反射衍射内耦合器的第三光栅间距(d3)介于720nm与820nm之间。
11.根据前述权利要求中任一项所述的光学系统,其中:
所述第一透射衍射内耦合器的第一光栅间距(d1)介于460nm与480nm之间;
所述第二透射衍射内耦合器的第二光栅间距(d2)介于640nm与660nm之间;并且
所述反射衍射内耦合器的第三光栅间距(d3)介于760nm与780nm之间。
12.根据前述权利要求中任一项所述的光学系统,其中:
所述第二光栅间距比所述第一光栅间距大30%与50%之间;并且
所述第三光栅间距比所述第二光栅间距大10%与30%之间。
13.一种操作光学系统的方法,所述方法包括:
将表示图像的输入光引导到第一波导的第一透射衍射内耦合器(DG1)上,所述第一波导具有第一衍射外耦合器(DG6);
使用所述第一透射衍射内耦合器(DG1),将所述输入光的第一部分耦合到所述第一波导中;
使用第二波导的第二透射衍射内耦合器(DG2),将所述输入光的第二部分耦合到所述第二波导中;以及
使用所述第二波导的反射衍射内耦合器(DG3),将所述输入光的第三部分耦合到所述第二波导中。
14.根据权利要求13所述的方法系统,其中
Figure FDA0003888598360000031
其中d1是所述第一透射衍射内耦合器(DG1)的光栅间距,M1是非零整数,n2是所述第一波导的折射率,λ是介于450nm与700nm之间的波长,
Figure FDA0003888598360000032
是介于55度与90度之间的角度,并且
Figure FDA0003888598360000033
基本上等于以所述第二波导的临界角衍射的角度,其中所述第二波导的所述临界角是arcsin(1/n3),其中n3是所述第一波导的折射率。
15.根据权利要求13或14所述的方法,其中
Figure FDA0003888598360000041
其中d2是所述第二透射衍射内耦合器(DG2)的光栅间距,M2是非零整数,n3是所述第二波导的折射率,λ是介于450nm与700nm之间的波长,
Figure FDA0003888598360000042
是介于55度与90度之间的角度,并且
Figure FDA0003888598360000043
是法向入射的±5度内的角度。
CN202180028350.7A 2020-03-23 2021-03-22 具有宽视场的波导显示系统 Pending CN115398315A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP20315042.0 2020-03-23
EP20315042 2020-03-23
EP20315216 2020-04-23
EP20315216.0 2020-04-23
PCT/EP2021/057234 WO2021191132A1 (en) 2020-03-23 2021-03-22 Waveguide display system with wide field of view

Publications (1)

Publication Number Publication Date
CN115398315A true CN115398315A (zh) 2022-11-25

Family

ID=75108343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180028350.7A Pending CN115398315A (zh) 2020-03-23 2021-03-22 具有宽视场的波导显示系统

Country Status (4)

Country Link
US (1) US20240210612A1 (zh)
EP (1) EP4127820A1 (zh)
CN (1) CN115398315A (zh)
WO (1) WO2021191132A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023061919A1 (en) * 2021-10-12 2023-04-20 Interdigital Ce Patent Holdings, Sas Full color eye-pupil-expanders with high vertical field of view
CN115145042B (zh) * 2022-09-06 2022-11-18 北京亮亮视野科技有限公司 衍射波导器件和近眼显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219106A (ja) * 2006-02-16 2007-08-30 Konica Minolta Holdings Inc 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ
US9791703B1 (en) 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
JP2018054978A (ja) * 2016-09-30 2018-04-05 セイコーエプソン株式会社 虚像表示装置及びその製造方法
US10466561B2 (en) * 2016-12-08 2019-11-05 Magic Leap, Inc. Diffractive devices based on cholesteric liquid crystal

Also Published As

Publication number Publication date
WO2021191132A1 (en) 2021-09-30
EP4127820A1 (en) 2023-02-08
US20240210612A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
US11668935B2 (en) Waveguide image combiners for augmented reality displays
US11994680B2 (en) Methods and systems for high efficiency eyepiece in augmented reality devices
US20220357579A1 (en) Optical device for coupling a high field of view of incident light
CN113544551A (zh) 光学设备
CN113219671A (zh) 光学装置和显示设备
WO2021204656A1 (en) Waveguide display with cross-polarized eye pupil expanders
CN115398315A (zh) 具有宽视场的波导显示系统
WO2023226142A1 (zh) 一种光波导结构、光学模组以及头戴显示设备
CN114911058B (zh) 利用衍射光波导实现单片全彩的方法、衍射光波导及设备
WO2022008378A1 (en) Reflective in-coupler design with high refractive index element using second diffraction order for near-eye displays
US20230324595A1 (en) Low distortion imaging through a c-shape flat optical architecture
US20230273449A1 (en) Full-color waveguide combiner with embedded metagrating
US20230400618A1 (en) Single mode full color waveguide combiner using asymmetric transmissive and reflective diffraction gratings
US20230134576A1 (en) Unpolarized light grating incoupler
CN218122364U (zh) 光学装置和显示设备
US20240094537A1 (en) Uniform incoupler for conical incidence
EP4191293A1 (en) Waveguide-type display apparatus
WO2023061919A1 (en) Full color eye-pupil-expanders with high vertical field of view
EP4352553A1 (en) Dual diffraction grating in-coupler for reduced waveguide thickness
WO2021233877A1 (en) High-uniformity high refractive index material transmissive and reflective diffraction gratings
CN115943329A (zh) 包括阶梯状腔的高颜色均匀性双材料衍射光栅
WO2022268954A1 (en) Exit pupil expander leaks cancellation
WO2023245188A2 (en) Holographic metasurface grating elements for augmented and virtual reality
CN118011644A (zh) 光波导系统、增强现实显示设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination