CN115392560A - 一种基于决策树的变流器故障预测方法和系统 - Google Patents

一种基于决策树的变流器故障预测方法和系统 Download PDF

Info

Publication number
CN115392560A
CN115392560A CN202211014223.4A CN202211014223A CN115392560A CN 115392560 A CN115392560 A CN 115392560A CN 202211014223 A CN202211014223 A CN 202211014223A CN 115392560 A CN115392560 A CN 115392560A
Authority
CN
China
Prior art keywords
fault
decision tree
converter
information
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211014223.4A
Other languages
English (en)
Inventor
于喜春
朱峰
罗雄飞
石自辉
厉磊
梁金秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guoneng Longyuan Electric Co ltd
Original Assignee
Guoneng Longyuan Electric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guoneng Longyuan Electric Co ltd filed Critical Guoneng Longyuan Electric Co ltd
Priority to CN202211014223.4A priority Critical patent/CN115392560A/zh
Publication of CN115392560A publication Critical patent/CN115392560A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提出一种基于决策树的变流器故障预测方法和系统。其中,方法包括:收集设备故障状况明细,即设备信息和故障日志信息,收集设备的运行状态信息,通过Decision Tree决策树算法对数据进行运算,得出故障预测模型。应用设备信息和运行状态信息通过故障预测模型对设备安全情况进行预测。本发明提出的方案,提高了故障预测的准确性,提前进行风机维护准备工作,减少了风机待机时间,提高了设备利用率,提高了生产的安全性及生产效率。

Description

一种基于决策树的变流器故障预测方法和系统
技术领域
本发明属于风电故障预测领域,尤其涉及一种基于决策树的变流器故障预测方法和系统。
背景技术
在风电生产运营监控系统中,采集风电机组的设备故障数据,形成一段时间的设备故障数据日志。在智慧生产的背景下,设备故障日志只能对历史数据进行展示,而无法预测未来一段时间的设备运行状况。因此,生产运营监控系统需要有一种方法,能够利用历史数据,对设备未来一段时间内的运行状况时行预测。变流器是风力发电机组的关键部件,据统计,目前风力发电机系统中,由变流器及其相关部件损坏导致的系统故障占比高达36%,而故障之后到修复完成所需平均时间为10天,其中修理时间仅为1天,其它时间为维修人员调度时间。
传统的设备故障预测方式为通过人工定期巡检,每季度或半年让技术人员进行预防性检修。而检修不能预防所有问题发生,仅能发现1/3的故障。设备故障造成的非计划性停机,严重影响生产效率,极大降低了设备的利用率,影响风场生产,影响了经济效益。
发明内容
为解决上述技术问题,本发明提出一种基于决策树的变流器故障预测方法的技术方案,以解决上述技术问题。
本发明第一方面公开了一种基于决策树的变流器故障预测方法,所述方法包括:
步骤S1、收集风电的变流器的设备信息,所述设备信息包括:设备分类、投入运行时间、使用场景和环境温度;
步骤S2、收集风电的变流器的故障日志信息,所述故障日志信息包括:故障时间、故障源、故障类型和故障代码;
步骤S3、收集风电的变流器的历史的运行状态信息;
步骤S4、将所述设备信息、故障日志信息和历史运行状态信息输入决策树模型,并通过所述设备信息、故障日志信息和历史运行状态信息对所述决策树模型进行优化,得到输出故障分类的决策树模型;
步骤S5、采集风电的变流器的当前实时的运行状态信息和设备信息;
步骤S6、将所述当前实时的运行状态信息和设备信息输入优化好的决策树模型,输出故障分类;
步骤S7、根据当前输出的故障分类,预测风电的变流器的故障状态。
根据本发明第一方面的方法,在所述步骤S1中,所述使用场景包括:陆上风电场、潮间带和潮下带滩涂风电场、近海风电场和深海风电场。
根据本发明第一方面的方法,在所述步骤S1中,所述陆上风电场的区域包括:华东地区、华南地区、华中地区、华北地区、西北地区、西南地区和东北地区。
根据本发明第一方面的方法,在所述步骤S2中,所述故障源分为风电的变流器的机侧和网侧。
根据本发明第一方面的方法,在所述步骤S2中,所述故障类型包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障和网侧接触器故障。
根据本发明第一方面的方法,在所述步骤S3中,所述历史的运行状态信息包括:机侧电流、机侧直流母线电压、发电机转子有功功率、定子无功功率、定子有功功率、定子电流、发电机转速、机侧温度、网侧温度、网侧有功功率、网侧无功功率、电网电压、定子电压、电网有功功率和电网无功功率。
根据本发明第一方面的方法,在所述步骤S4中,所述故障分类包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障、网侧接触器故障和设备正常。
本发明第二方面公开了一种基于决策树的变流器故障预测系统,所述系统包括:
第一处理模块,被配置为,收集风电的变流器的设备信息,所述设备信息包括:设备分类、投入运行时间、使用场景和环境温度;
第二处理模块,被配置为,收集风电的变流器的故障日志信息,所述故障日志信息包括:故障时间、故障源、故障类型和故障代码;
第三处理模块,被配置为,收集风电的变流器的历史的运行状态信息;
第四处理模块,被配置为,将所述设备信息、故障日志信息和历史运行状态信息输入决策树模型,并通过所述设备信息、故障日志信息和历史运行状态信息对所述决策树模型进行优化,得到输出故障分类的决策树模型;
第五处理模块,被配置为,采集风电的变流器的当前实时的运行状态信息和设备信息;
第六处理模块,被配置为,将所述当前实时的运行状态信息和设备信息输入优化好的决策树模型,输出故障分类;
第七处理模块,被配置为,根据当前输出的故障分类,预测风电的变流器的故障状态。
根据本发明第二方面的系统,所述第一处理模块,被配置为,所述使用场景包括:陆上风电场、潮间带和潮下带滩涂风电场、近海风电场和深海风电场。
根据本发明第二方面的系统,所述第一处理模块,被配置为,所述陆上风电场的区域包括:华东地区、华南地区、华中地区、华北地区、西北地区、西南地区和东北地区。
根据本发明第二方面的系统,所述第二处理模块,被配置为,所述故障源分为风电的变流器的机侧和网侧。
根据本发明第二方面的系统,所述第二处理模块,被配置为,所述故障类型包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障和网侧接触器故障。
根据本发明第二方面的方法,所述第三处理模块,被配置为,所述历史的运行状态信息包括:机侧电流、机侧直流母线电压、发电机转子有功功率、定子无功功率、定子有功功率、定子电流、发电机转速、机侧温度、网侧温度、网侧有功功率、网侧无功功率、电网电压、定子电压、电网有功功率和电网无功功率。
根据本发明第二方面的方法,所述第四处理模块,被配置为,所述故障分类包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障、网侧接触器故障和设备正常。
本发明第三方面公开了一种电子设备。电子设备包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时,实现本发明第一方面中任一项的一种基于决策树的变流器故障预测方法中的步骤。
本发明第四方面公开了一种计算机可读存储介质。计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时,实现本发明第一方面中任一项的一种基于决策树的变流器故障预测方法中的步骤。
本发明提出的方案,提高了故障预测的准确性,提前进行风机维护准备工作,减少了风机待机时间,提高了设备利用率,提高了生产的安全性及生产效率。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明实施例的一种基于决策树的变流器故障预测方法的流程图;
图2为根据本发明实施例的设备通信连接图;
图3为根据本发明实施例的一种基于决策树的变流器故障预测系统的结构图;
图4为根据本发明实施例的一种电子设备的结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明第一方面公开了一种基于决策树的变流器故障预测方法。图1为根据本发明实施例的一种基于决策树的变流器故障预测方法的流程图,如图1所示,所述方法包括:
步骤S1、收集风电的变流器的设备信息,所述设备信息包括:设备分类、投入运行时间、使用场景和环境温度;
步骤S2、收集风电的变流器的故障日志信息,所述故障日志信息包括:故障时间、故障源、故障类型和故障代码;
步骤S3、收集风电的变流器的历史的运行状态信息;
步骤S4、将所述设备信息、故障日志信息和历史运行状态信息输入决策树模型,并通过所述设备信息、故障日志信息和历史运行状态信息对所述决策树模型进行优化,得到输出故障分类的决策树模型;
步骤S5、采集风电的变流器的当前实时的运行状态信息和设备信息;
步骤S6、将所述当前实时的运行状态信息和设备信息输入优化好的决策树模型,输出故障分类;
步骤S7、根据当前输出的故障分类,预测风电的变流器的故障状态。
在步骤S1,收集风电的变流器的设备信息,所述设备信息包括:设备分类、投入运行时间、使用场景和环境温度。
在一些实施例中,在所述步骤S1中,所述使用场景包括:陆上风电场、潮间带和潮下带滩涂风电场、近海风电场和深海风电场。
所述陆上风电场包括:华东地区、华南地区、华中地区、华北地区、西北地区、西南地区和东北地区。
在步骤S2,收集风电的变流器的故障日志信息,所述故障日志信息包括:故障时间、故障源、故障类型和故障代码。
在一些实施例中,在所述步骤S2中,所述故障源分为风电的变流器的机侧和网侧。
所述故障类型包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障和网侧接触器故障。
在步骤S3,收集风电的变流器的历史的运行状态信息。
在一些实施例中,在所述步骤S3中,所述历史的运行状态信息包括:机侧电流、机侧直流母线电压、发电机转子有功、定子无功功率、定子有功功率、定子电流、发电机转速、机侧温度、网侧温度、网侧有功功率、网侧无功功率、电网电压、定子电压、电网有功和电网无功。
在步骤S4,将所述设备信息、故障日志信息和历史运行状态信息输入决策树模型,并通过所述设备信息、故障日志信息和历史运行状态信息对所述决策树模型进行优化,得到输出故障分类的决策树模型。
在一些实施例中,在所述步骤S4中,所述故障分类包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障、网侧接触器故障和设备正常。
具体地,将所述设备信息、故障日志信息和历史运行状态信息作为训练样本数据集。将训练样本数据集分为若干子集,每个取值形成一个分枝,有几个取值形成几个分枝。进行剪枝,去掉对结果影响较小的数据,对特征进行选择。将特征组装成树,即根据数据值的大小生成多个决策树。保存决策树为决策树模型。
决策树的基本概念:
为达到目的根据一定的条件进行选择的过程就是决策树,是基于树形结构利用信息学中熵的概念构建出的监督学习算法模型。利用决策树可以解决基本的分类和回归问题。
构成决策树的元素是节点和边。节点会根据样本的特征作出判断,最初的分支点称为根节点,其余的被称为子节点,不再有分支的节点则被称为叶子节点,这些节点代表了样本的分类结果。边则指示着方向。
决策树的构造:
为了构造决策树,人们使用了一个衡量标准—熵。在决策树中,熵代表分支样本种类的丰富性,样本中种类越多越混乱,熵就越大,如果分支下的样本完全属于同一类,熵就等于0.
条件熵H(Y∣X)H(Y|X)H(Y∣X)表示在已知随机变量X的条件下随机变量Y的不确定性,随机变量X给定的条件下随机变量Y的条件熵(conditional entropy)H(Y|X),定义X给定条件下Y的条件概率分布的熵对X的数学期望:
Figure BDA0003811863240000071
其中,pi=P(X=xi),xi为具体数值;
构建树的基本思路,是随着树的深度也就是层数的增加,让熵快速降低。熵降低的速度越快,代表决策树的分类效率越高。
具体实施方案如下:
变流器以RS-485与COMServer连接;COMServer以RJ45接口网线与PC连接,采用UDP协议进行通信。故障采集程序运行在PC端。通信连接图如图2。
PC运行故障采集程序,以UDP协议对COMServer的IP及指定端口发送故障采集指令。
COMServer收到故障采集指令后,以RS-485串口模式转发到变流器。
变流器以RS-485串口模式回复故障历史数据到COMServer。
COMServer把故障历史数据以UDP协议发到PC指定端口。
故障采集程序接收数据,包括设备id、故障时间、故障源、故障类型和故障代码等,保存在数据库中。
步骤1、故障采集程序收集风电的变流器的设备信息,所述设备信息包括:设备分类、投入运行时间、使用场景和环境温度;
步骤2、故障采集程序收集风电的变流器的故障日志信息,所述故障日志信息包括:故障时间、故障源、故障类型和故障代码;
步骤3、故障采集程序收集风电的变流器的历史的运行状态信息;所述历史的运行状态信息包括:机侧电流、机侧直流母线电压、发电机转子有功、定子无功功率、定子有功功率、定子电流、发电机转速、机侧温度、网侧温度、网侧有功功率、网侧无功功率、电网电压、定子电压、电网有功和电网无功;
步骤4、将所述设备信息、故障日志信息和历史运行状态信息输入决策树模型,并通过所述设备信息、故障日志信息和历史运行状态信息对所述决策树模型进行优化,得到输出故障分类的决策树模型;具体地,将所述设备信息、故障日志信息和历史运行状态信息作为训练样本数据集。将训练样本数据集分为若干子集,每个取值形成一个分枝,有几个取值形成几个分枝。进行剪枝,去掉对结果影响较小的数据,对特征进行选择。将特征组装成树,即根据数据值的大小生成多个决策树;保存决策树为决策树模型;
步骤5、故障采集程序采集风电的变流器的当前实时的运行状态信息和设备信息;所述当前实时的运行状态信息包括:机侧电流、机侧直流母线电压、发电机转子有功、定子无功功率、定子有功功率、定子电流、发电机转速、机侧温度、网侧温度、网侧有功功率、网侧无功功率、电网电压、定子电压、电网有功和电网无功;
步骤6、将所述当前实时的运行状态信息和设备信息输入优化好的决策树模型,输出故障分类;所述故障分类包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障、网侧接触器故障和设备正常;
步骤7、根据当前输出的故障分类,预测风电的变流器的故障状态。
在具体实施中,根据不同风场不同的平均温湿度、不同最大风力、不同的工作强度,分为不同的场景,并给场景分类做编号。收集各场景真实的历史故障数据,作为训练集,对数据进行初步整理后进行建模。通过检查,准确率并不高,如表1所示。
表1
算法 采样数据(条) 准确率(%)
Decision Tree 15327 37.3219666
对设备的投入运行时间及故障时间进行处理,时间精确到月。并添加了训练集的数量。通过检查,准确率较高,经一年生产环境运行,符合设计标准,达成故障预测的设计目标,如表2所示。
表2
算法 采样数据(条) 准确率(%)
Decision Tree 156764 98.2049397
综上,本发明提出的方案能够提高了故障预测的准确性,提前进行风机维护准备工作,减少了风机待机时间,提高了设备利用率,提高了生产的安全性及生产效率。
本发明第二方面公开了一种基于决策树的变流器故障预测系统。图3为根据本发明实施例的一种基于决策树的变流器故障预测系统的结构图;如图3所示,所述系统100包括:
第一处理模块101,被配置为,收集风电的变流器的设备信息,所述设备信息包括:设备分类、投入运行时间、使用场景和环境温度;
第二处理模块102,被配置为,收集风电的变流器的故障日志信息,所述故障日志信息包括:故障时间、故障源、故障类型和故障代码;
第三处理模块103,被配置为,收集风电的变流器的历史的运行状态信息;
第四处理模块104,被配置为,将所述设备信息、故障日志信息和历史运行状态信息输入决策树模型,并通过所述设备信息、故障日志信息和历史运行状态信息对所述决策树模型进行优化,得到输出故障分类的决策树模型;
第五处理模块105,被配置为,采集风电的变流器的当前实时的运行状态信息和设备信息;
第六处理模块106,被配置为,将所述当前实时的运行状态信息和设备信息输入优化好的决策树模型,输出故障分类;
第七处理模块107,被配置为,根据当前输出的故障分类,预测风电的变流器的故障状态。
根据本发明第二方面的系统,所述第一处理模块101,被配置为,所述使用场景包括:陆上风电场、潮间带和潮下带滩涂风电场、近海风电场和深海风电场。
根据本发明第二方面的系统,所述第一处理模块101,被配置为,所述陆上风电场的区域包括:华东地区、华南地区、华中地区、华北地区、西北地区、西南地区和东北地区。
根据本发明第二方面的系统,所述第二处理模块102,被配置为,所述故障源分为风电的变流器的机侧和网侧。
根据本发明第二方面的系统,所述第二处理模块102,被配置为,所述故障类型包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障和网侧接触器故障。
根据本发明第二方面的方法,所述第三处理模块103,被配置为,所述历史的运行状态信息包括:机侧电流、机侧直流母线电压、发电机转子有功功率、定子无功功率、定子有功功率、定子电流、发电机转速、机侧温度、网侧温度、网侧有功功率、网侧无功功率、电网电压、定子电压、电网有功功率和电网无功功率。
根据本发明第二方面的方法,所述第四处理模块104,被配置为,所述故障分类包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障、网侧接触器故障和设备正常。
本发明第三方面公开了一种电子设备。电子设备包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时,实现本发明公开第一方面中任一项的一种基于决策树的变流器故障预测方法中的步骤。
图4为根据本发明实施例的一种电子设备的结构图,如图4所示,电子设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、近场通信(NFC)或其他技术实现。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图4中示出的结构,仅仅是与本公开的技术方案相关的部分的结构图,并不构成对本申请方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本发明第四方面公开了一种计算机可读存储介质。计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时,实现本发明公开第一方面中任一项的一种基于决策树的变流器故障预测方法中的步骤中的步骤。
请注意,以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种基于决策树的变流器故障预测方法,其特征在于,所述方法包括:
步骤S1、收集风电的变流器的设备信息,所述设备信息包括:设备分类、投入运行时间、使用场景和环境温度;
步骤S2、收集风电的变流器的故障日志信息,所述故障日志信息包括:故障时间、故障源、故障类型和故障代码;
步骤S3、收集风电的变流器的历史的运行状态信息;
步骤S4、将所述设备信息、故障日志信息和历史运行状态信息输入决策树模型,并通过所述设备信息、故障日志信息和历史运行状态信息对所述决策树模型进行优化,得到输出故障分类的决策树模型;
步骤S5、采集风电的变流器的当前实时的运行状态信息和设备信息;
步骤S6、将所述当前实时的运行状态信息和设备信息输入优化好的决策树模型,输出故障分类;
步骤S7、根据当前输出的故障分类,预测风电的变流器的故障状态。
2.根据权利要求1所述的一种基于决策树的变流器故障预测方法,其特征在于,在所述步骤S1中,所述使用场景包括:陆上风电场、潮间带和潮下带滩涂风电场、近海风电场和深海风电场。
3.根据权利要求2所述的一种基于决策树的变流器故障预测方法,其特征在于,在所述步骤S1中,所述陆上风电场的区域包括:华东地区、华南地区、华中地区、华北地区、西北地区、西南地区和东北地区。
4.根据权利要求1所述的一种基于决策树的变流器故障预测方法,其特征在于,在所述步骤S2中,所述故障源分为风电的变流器的机侧和网侧。
5.根据权利要求4所述的一种基于决策树的变流器故障预测方法,其特征在于,在所述步骤S2中,所述故障类型包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障和网侧接触器故障。
6.根据权利要求1所述的一种基于决策树的变流器故障预测方法,其特征在于,在所述步骤S3中,所述历史的运行状态信息包括:机侧电流、机侧直流母线电压、发电机转子有功功率、定子无功功率、定子有功功率、定子电流、发电机转速、机侧温度、网侧温度、网侧有功功率、网侧无功功率、电网电压、定子电压、电网有功功率和电网无功功率。
7.根据权利要求1所述的一种基于决策树的变流器故障预测方法,其特征在于,在所述步骤S4中,所述故障分类包括:机侧故障、网侧故障、同步故障、外部故障、控制板间通讯故障、网侧接触器故障和设备正常。
8.一种用于基于决策树的变流器故障预测系统,其特征在于,所述系统包括:
第一处理模块,被配置为,收集风电的变流器的设备信息,所述设备信息包括:设备分类、投入运行时间、使用场景和环境温度;
第二处理模块,被配置为,收集风电的变流器的故障日志信息,所述故障日志信息包括:故障时间、故障源、故障类型和故障代码;
第三处理模块,被配置为,收集风电的变流器的历史的运行状态信息;
第四处理模块,被配置为,将所述设备信息、故障日志信息和历史运行状态信息输入决策树模型,并通过所述设备信息、故障日志信息和历史运行状态信息对所述决策树模型进行优化,得到输出故障分类的决策树模型;
第五处理模块,被配置为,采集风电的变流器的当前实时的运行状态信息和设备信息;
第六处理模块,被配置为,将所述当前实时的运行状态信息和设备信息输入优化好的决策树模型,输出故障分类;
第七处理模块,被配置为,根据当前输出的故障分类,预测风电的变流器的故障状态。
9.一种电子设备,其特征在于,所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时,实现权利要求1至7中任一项所述的一种基于决策树的变流器故障预测方法中的步骤。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1至7中任一项所述的一种基于决策树的变流器故障预测方法中的步骤。
CN202211014223.4A 2022-08-23 2022-08-23 一种基于决策树的变流器故障预测方法和系统 Pending CN115392560A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211014223.4A CN115392560A (zh) 2022-08-23 2022-08-23 一种基于决策树的变流器故障预测方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211014223.4A CN115392560A (zh) 2022-08-23 2022-08-23 一种基于决策树的变流器故障预测方法和系统

Publications (1)

Publication Number Publication Date
CN115392560A true CN115392560A (zh) 2022-11-25

Family

ID=84120859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211014223.4A Pending CN115392560A (zh) 2022-08-23 2022-08-23 一种基于决策树的变流器故障预测方法和系统

Country Status (1)

Country Link
CN (1) CN115392560A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116662890A (zh) * 2023-07-27 2023-08-29 南京汤峰机电有限公司 一种基于历史数据库模型分析的电动钉枪故障识别方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116662890A (zh) * 2023-07-27 2023-08-29 南京汤峰机电有限公司 一种基于历史数据库模型分析的电动钉枪故障识别方法

Similar Documents

Publication Publication Date Title
Shi et al. Hybrid forecasting model for very-short term wind power forecasting based on grey relational analysis and wind speed distribution features
Dong et al. Wind power day-ahead prediction with cluster analysis of NWP
Kang et al. Big data analytics in China's electric power industry: modern information, communication technologies, and millions of smart meters
CN107730111A (zh) 一种考虑用户负荷和新能源接入的配网电压风险评估模型
CN113937763A (zh) 风电功率预测方法、装置、设备及存储介质
CN105930424A (zh) 一种实现配电网数据在线异步采集智能挖掘的方法
CN115456304A (zh) 考虑台风影响的海上风电场可靠性指标计算方法及装置
Chen et al. Research on wind power prediction method based on convolutional neural network and genetic algorithm
CN115392560A (zh) 一种基于决策树的变流器故障预测方法和系统
CN109802634B (zh) 一种基于大数据的光伏电站的智能运维方法及运维系统
CN105262146A (zh) 含风电的电力系统备用容量计算方法和系统
CN104951654A (zh) 基于控制变量抽样的大规模风电场可靠性评估方法
CN105354761B (zh) 一种风电接入电网的安全与效能评估方法及系统
CN111079982A (zh) 风电场的电缆路径的规划方法、系统、介质及电子设备
CN115965134A (zh) 一种区域电网风力发电功率预测优化方法
CN116050072A (zh) 一种基于随机采样一致性的风电机组理论功率曲线识别方法和装置
CN115345519A (zh) 海上风电风险评估方法、装置、设备及存储介质
CN108364071A (zh) 一种基于遗传规划法的自适应建模风功率预测方法
CN115034472A (zh) 一种分布式光伏运行智能预测管理系统
CN113610285A (zh) 一种分散式风电的功率预测方法
Xu et al. A new approach for fast reliability evaluation of composite power system considering wind farm
CN106022543A (zh) 一种风功率及电量诊断系统
Miao et al. Energy Availability Analysis of Offshore Wind Farms Considering the Correlation between Wind Speed Cloud Model and Parameters
Shuang et al. Wind power prediction based on multipositon NWP with rough set theory
CN116050306B (zh) 考虑海上风电分频接入的工频电网可靠性评估方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination