CN115390608B - 残气分析质谱用电源控制电路及控制方法 - Google Patents

残气分析质谱用电源控制电路及控制方法 Download PDF

Info

Publication number
CN115390608B
CN115390608B CN202210867761.1A CN202210867761A CN115390608B CN 115390608 B CN115390608 B CN 115390608B CN 202210867761 A CN202210867761 A CN 202210867761A CN 115390608 B CN115390608 B CN 115390608B
Authority
CN
China
Prior art keywords
resistor
operational amplifier
voltage
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210867761.1A
Other languages
English (en)
Other versions
CN115390608A (zh
Inventor
唐朝阳
侍尉
于佳佳
景加荣
陈延龙
沈辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI YUDA INDUSTRIAL CO LTD
Original Assignee
SHANGHAI YUDA INDUSTRIAL CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI YUDA INDUSTRIAL CO LTD filed Critical SHANGHAI YUDA INDUSTRIAL CO LTD
Priority to CN202210867761.1A priority Critical patent/CN115390608B/zh
Publication of CN115390608A publication Critical patent/CN115390608A/zh
Application granted granted Critical
Publication of CN115390608B publication Critical patent/CN115390608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Abstract

本发明提供了一种残气分析质谱用电源控制电路及控制方法,包括:对输出电压分压采样的第一运算放大电路、对输出第一运算放大电路电压采样和输出电流采样运算放大的第二放大电路、恒压比较电路及过流比较电路;恒压比较电路的反相输入端连接外设的恒压基准电压,同相输入端连接第一放大电路的输出;过流比较电路的反相输入端连接外部的过流基准电压,同相输入端连接第二放大电路的输出;恒压比较电路和过流比较电路的输出端分别串接二极管D1和二极管D2的阳极。本发明通过反馈电压与VREF电压的对比产生控制信号改变方波发生器的占空比来调整输出电压,使得输出电压可调,增加了仪器参数的调整灵活性。

Description

残气分析质谱用电源控制电路及控制方法
技术领域
本发明涉及质谱装置设计的技术领域,具体地,涉及残气分析质谱用电源控制电路及控制方法,尤其涉及一种残气分析质谱用高精度电源控制电路及控制方法。
背景技术
残气分析质谱仪是一个小体积的质谱仪,可直接连接在真空系统上,所有分析质谱仪的工作原理都是一样的:一小部分的气体分子被离子化(阳离子),继而根据质量数的不同被分离,检测。残气分析仪广泛应用于残气环境中不同气体分子的快速鉴定,通过适当的校准,可用于测定不同气体浓度或者每个气体组分的绝对分压。真空系统中的离子加速电场稳定性对检测的灵敏度及分辨率对有较大影响,电场驱动高压的带载能力与纹波大小和温度系数影响了加速电场的稳定与否。目前国内外在残气分析质谱仪电源技术发展中,供电电源主要为恒压源DC/DC变换器恒压输出值不可调。
在公告号为CN109428580B的专利文献中公开了电源控制电路以及具备电源控制电路的逻辑电路装置,本发明的电源控制电路用于逻辑电路,该逻辑电路对来自存储部件的多个输入信号进行规定的逻辑运算,并输出逻辑运算后的多个输出信号。电源控制电路包括:开关部件,切换是否将电源电压供给至逻辑电路;多个检测器电路,分别检测多个输入信号的信号电平的变化,当检测出信号电平的变化时,分别输出检测信号;以及控制电路,基于来自多个检测器电路的至少一个检测信号来控制开关部件对逻辑电路供给电源电压,另一方面,在未从多个检测器电路输出检测信号时,控制开关部件不对逻辑电路供给电源电压。
因此,需要提出一种新的技术方案以改善上述技术问题。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种残气分析质谱用电源控制电路及控制方法。
根据本发明提供的一种残气分析质谱用电源控制电路,包括:对输出电压分压采样的第一运算放大电路、对输出第一运算放大电路电压采样和输出电流采样运算放大的第二放大电路、恒压比较电路及过流比较电路;
所述恒压比较电路的反相输入端连接外设的恒压基准电压,同相输入端连接第一放大电路的输出;
所述过流比较电路的反相输入端连接外部的过流基准电压,同相输入端连接第二放大电路的输出;
所述恒压比较电路和过流比较电路的输出端分别串接二极管D1和二极管D2的阳极,所述二极管D1和二极管D2的阴极连接控制电源输出占空比的PWM控制器的控制信号输入端;
所述恒压比较电路和过流比较电路输出高电平有效。
优选地,所述第一运算放大电路包括运算放大器U4、电阻R13、电阻R14、电阻R16及电容C4;
电源输出电压V3正端与电阻R14的第一端相连,电阻R14的第二端与电阻R13和R16的第一端相接,电阻R16的第二端接地,电阻R13的第二端与第一运算放大器U4的同相输入端及电容C4的第一端相连,电容C4的第二端接地,第一运算放大器U4的反相输入端与其的输出端相接。
优选地,所述第二放大电路包括第一运算放大器U2、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R9及电容C1;
电流采样电压高电压端V2与电阻R1第一端相接,电阻R1的第二端与R3、电阻R4第一端及第一运算放大器U2的反相输入端相接,电阻R4的第二端与电阻R5和电阻R6第一端相接,电阻R5第二端接地,电阻R6第二端与运算放大器U4的输出端相接,电阻R3的第二端与电阻R2第一端及第一运算放大器U2的输出端相接,电阻R2的第二端与电容C1的第一端相接,电容C1的第二端接地,第一运算放大器U2的电源端与供电端正极相连,接地端与供电端负极相连。
优选地,所述恒压比较电路包括电阻R11、电阻R12、电阻R15、电阻R18、电容C6、二极管D2及运算放大器U3;
所述电阻R12和电阻R15的第一端连接运算放大器U3的同相输入端,电阻R15的第一端接地,电阻R12的第一端连接第一运算放大电路的输出端,电容C6与电阻R11及运算放大器U3的反相输入端相接,电阻R11的第二端连接基准参考电压VREF,电容C6的第二端与电阻R18第一端相接,电阻R18的第二端与二极管D2阳极及运算放大器U3的输出端相接。
优选地,所述过流比较电路包括第二运算放大器U1、电阻R7、电阻R8、电阻R17、电容C5及二极管D1;
所述第二运算放大器U1的反相输入端连接电阻R7和电容C5的第一端,电阻R7的第二端连接过流基准电压VREF,电容C5的第二端连接电阻R17的第一端,电阻R17的第二端与二极管D1的阳极及第二运算放大器U1的输出端相接,第二运算放大器U1同相输入端连接电阻R8的第一端,电阻R8的第二端与第二放大电路输出端相连接,第二运算放大器U1的电源端与供电端正极相连,接地端与供电端负极相连。
本发明还提供一种残气分析质谱用电源控制电路的控制方法,所述方法应用上述中的残气分析质谱用电源控制电路,所述电源输出电压V3为直流电源输出电压,电阻R14、R16组成电压反馈的采样电路,其控制第一运算放大电路的同相输入端电压:
V(U4.5)=R16*(V3/(R14+R16))
电阻R13和电容C4组成低通滤波器;根据运算放大器虚短虚断的概念第一运算放大电路的反相输入端电压V(U4.6)=V(U4.5),运算放大器U4的反相输入端与其输出端直接相接,故V(U4.7)=V(U4.6)=V(U4.5),第一运算放大电路输出端电压V(U4.7)随着其同相输入端电压变化而做相同变化,第一运算放大电路为运放电压跟随电路。
优选地,所述第二放大电路的反相输入端有两路输入电流采样电压高电压端V2与第一运算放大电路的输出电压,电流采样电压高电压端V2由电流采样电阻得到;第一运算放大器U2的反相输入端输入电压为:
V(U2.2)=R5*(V(U4.7)/(R5+R6))+V2
第一运算放大器U2同相输入端电压通过电阻R9接地,故V(U2.3)=0;第一运算放大器U2输出端经过电阻R3与其输入端相接,根据运算放大器虚短虚断的概念得到:
V(U2.1)=R3*(V2/R1+V(U2.2)/R4)
其构成比例加法电路,此电路对输出电流的变化进行检测放大。
优选地,所述恒压比较电路的运算放大器U3的反相输入端通过R11连接基准电压VREF,运算放大器U3的同相输入端通过电阻R12和R15分压连接第一运算放大电路的输出端;当恒压比较电路的运算放大器U3的同相输入端电压高于其反相输入端电压VREF时,运算放大器U3的输出端输出高电压VCC,即当V(U3.5)>VREF时,V(U3.7)=VCC,否则V(U3.5)>VREF,V(U3.7)=0V;电阻R18和电容C6为补偿电路对输出电压的相同角和频率进行补偿。
优选地,所述过流保护电路的第二运算放大器U1的反相输入端通过电阻R7连接基准电压VREF,第二运算放大器U1的同相输入端通过电阻R8连接第二运算放大电路的输出端;当恒压比较电路的运算放大器U3的同相输入端电压高于其反相输入端电压VREF时,第二运算放大器U1的输出端输出高电压VCC,即当V(U1.3)>VREF时,V(U1.2)=VCC,否则V(U1.1)>VREF,V(U1.1)=0V;电阻R17和电容C5为补偿电路对输出电压的相同角和频率进行补偿。
优选地,所述恒压比较电路与过流保护电路通过二极管D1和二极管D2输出,高电平有效;其输出电压V1引入PWM控制器调节占空比,电源输出电压V3与恒压基准电压VREF之间保持比例关系,电源工作在恒压模式。
与现有技术相比,本发明具有如下的有益效果:
1、本发明通过反馈电压与VREF电压的对比产生控制信号改变方波发生器的占空比来调整输出电压,使得输出电压可调,增加了仪器参数的调整灵活性;
2、本发明采用高精度基准电压芯片提供VREF电压来提高输出电压的精度,减小纹波,可以提高残气分析质谱仪加速电场供电系统的稳定性,从而增加残气分析质谱仪的灵敏度及分辨率;
3、本发明应用于开关电源的闭环反馈控制中,用来对电源输出电流和输出电压采样,采样电压经过运算放大器放大、处理,再与基准电压进行误差放大并产生控制信号;
4、本发明通过调节设置过流基准电压或恒压基准电压,电源将工作在恒压模式,并可对最大电流进行限制;
5、当输出电流超过限定值时电压反馈环路被切断,输出电压下降,进一步引起输出电流减小从而保护用电系统的安全,当电源电流小于限定值时,电源工作在恒压模式时,电源闭环反馈控制电路对电源输出电压进行控制,保证电源输出电压恒定,电源输出电压的大小由恒压基准电压的大小决定,此时电流环不工作,仅电压环起作用;
6、在本反馈控制电路设计中,采用了低通滤波器滤除了高频干扰,运放电压跟随电路减低了后级电压变化对采样电路的干扰并提高采样电路带载能力,同时采样电阻采用高精度元件提高采样精度减小采样误差,从而提高了反馈精度,并通过电流采样放大比较电路对整个电路进行保护;
7、与常规的恒压源电路相比,本方法有效地提高了反馈精度,并且电路简单减小了系统体积,提高了电源的实用性和多功能性,设计简洁,结构简单灵活,成本低廉,工作可靠,相对现有技术,电源输出.0.0精度有了较大程度的提高,具有显著的经济效应。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明的电路原理图;
图2为本发明实施在恒压源的电路原理框图;
图3为应用本发明电路检测的质谱图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1:
根据本发明提供的一种残气分析质谱用电源控制电路,包括:对输出电压分压采样的第一运算放大电路、对输出第一运算放大电路电压采样和输出电流采样运算放大的第二放大电路、恒压比较电路及过流比较电路;恒压比较电路的反相输入端连接外设的恒压基准电压,同相输入端连接第一放大电路的输出;过流比较电路的反相输入端连接外部的过流基准电压,同相输入端连接第二放大电路的输出;恒压比较电路和过流比较电路的输出端分别串接二极管D1和二极管D2的阳极,二极管D1和二极管D2的阴极连接控制电源输出占空比的PWM控制器的控制信号输入端;恒压比较电路和过流比较电路输出高电平有效。
第一运算放大电路包括运算放大器U4、电阻R13、电阻R14、电阻R16及电容C4;电源输出电压V3正端与电阻R14的第一端相连,电阻R14的第二端与电阻R13和R16的第一端相接,电阻R16的第二端接地,电阻R13的第二端与第一运算放大器U4的同相输入端及电容C4的第一端相连,电容C4的第二端接地,第一运算放大器U4的反相输入端与其的输出端相接。
第二放大电路包括第一运算放大器U2、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R9及电容C1;电流采样电压高电压端V2与电阻R1第一端相接,电阻R1的第二端与R3、电阻R4第一端及第一运算放大器U2的反相输入端相接,电阻R4的第二端与电阻R5和电阻R6第一端相接,电阻R5第二端接地,电阻R6第二端与运算放大器U4的输出端相接,电阻R3的第二端与电阻R2第一端及第一运算放大器U2的输出端相接,电阻R2的第二端与电容C1的第一端相接,电容C1的第二端接地,第一运算放大器U2的电源端与供电端正极相连,接地端与供电端负极相连。
恒压比较电路包括电阻R11、电阻R12、电阻R15、电阻R18、电容C6、二极管D2及运算放大器U3;电阻R12和电阻R15的第一端连接运算放大器U3的同相输入端,电阻R15的第一端接地,电阻R12的第一端连接第一运算放大电路的输出端,电容C6与电阻R11及运算放大器U3的反相输入端相接,电阻R11的第二端连接基准参考电压VREF,电容C6的第二端与电阻R18第一端相接,电阻R18的第二端与二极管D2阳极及运算放大器U3的输出端相接。
过流比较电路包括第二运算放大器U1、电阻R7、电阻R8、电阻R17、电容C5及二极管D1;第二运算放大器U1的反相输入端连接电阻R7和电容C5的第一端,电阻R7的第二端连接过流基准电压VREF,电容C5的第二端连接电阻R17的第一端,电阻R17的第二端与二极管D1的阳极及第二运算放大器U1的输出端相接,第二运算放大器U1同相输入端连接电阻R8的第一端,电阻R8的第二端与第二放大电路输出端相连接,第二运算放大器U1的电源端与供电端正极相连,接地端与供电端负极相连。
本发明还提供一种残气分析质谱用电源控制电路的控制方法,方法应用上述中的残气分析质谱用电源控制电路,电源输出电压V3为直流电源输出电压,电阻R14、R16组成电压反馈的采样电路,其控制第一运算放大电路的同相输入端电压:
V(U4.5)=R16*(V3/(R14+R16))
电阻R13和电容C4组成低通滤波器;根据运算放大器虚短虚断的概念第一运算放大电路的反相输入端电压V(U4.6)=V(U4.5),运算放大器U4的反相输入端与其输出端直接相接,故V(U4.7)=V(U4.6)=V(U4.5),第一运算放大电路输出端电压V(U4.7)随着其同相输入端电压变化而做相同变化,第一运算放大电路为运放电压跟随电路。
第二放大电路的反相输入端有两路输入电流采样电压高电压端V2与第一运算放大电路的输出电压,电流采样电压高电压端V2由电流采样电阻得到;第一运算放大器U2的反相输入端输入电压为:
V(U2.2)=R5*(V(U4.7)/(R5+R6))+V2
第一运算放大器U2同相输入端电压通过电阻R9接地,故V(U2.3)=0;第一运算放大器U2输出端经过电阻R3与其输入端相接,根据运算放大器虚短虚断的概念得到:
V(U2.1)=R3*(V2/R1+V(U2.2)/R4)
其构成比例加法电路,此电路对输出电流的变化进行检测放大。
恒压比较电路的运算放大器U3的反相输入端通过R11连接基准电压VREF,运算放大器U3的同相输入端通过电阻R12和R15分压连接第一运算放大电路的输出端;当恒压比较电路的运算放大器U3的同相输入端电压高于其反相输入端电压VREF时,运算放大器U3的输出端输出高电压VCC,即当V(U3.5)>VREF时,V(U3.7)=VCC,否则V(U3.5)>VREF,V(U3.7)=0V;电阻R18和电容C6为补偿电路对输出电压的相同角和频率进行补偿。
过流保护电路的第二运算放大器U1的反相输入端通过电阻R7连接基准电压VREF,第二运算放大器U1的同相输入端通过电阻R8连接第二运算放大电路的输出端;当恒压比较电路的运算放大器U3的同相输入端电压高于其反相输入端电压VREF时,第二运算放大器U1的输出端输出高电压VCC,即当V(U1.3)>VREF时,V(U1.2)=VCC,否则V(U1.1)>VREF,V(U1.1)=0V;电阻R17和电容C5为补偿电路对输出电压的相同角和频率进行补偿。
恒压比较电路与过流保护电路通过二极管D1和二极管D2输出,高电平有效;其输出电压V1引入PWM控制器调节占空比,电源输出电压V3与恒压基准电压VREF之间保持比例关系,电源工作在恒压模式。
实施例2:
实施例2为实施例1的优选例,以更为具体地对本发明进行说明。
本发明提出了一种具有过流保护和恒压双功能的电源控制电路,可以应用于高精度电源模块的反馈控制中,用来对电源模块的输出电流和电压进行误差放大并产生反馈控制信号;通过控制端设置,电源模块可工作在恒压模式,控制电路对电源模块输出电压进行控制,保证输出电压恒定。
本发明的目的在于提供一种残气分析质谱用电源控制电路及控制方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种电源闭环反馈控制电路,包括对输出电压分压采样的第一运算放大电路以及对输出第一运算放大电路电压采样和输出电流采样运算放大的第二放大电路,还包括恒压比较电路及过流比较电路;恒压比较电路的反相输入端连接外设的恒压基准电压,同相输入端连接第一放大电路的输出;过流比较电路的反相输入端连接外部的过流基准电压,同相输入端连接第二放大电路的输出;恒压比较电路、过流比较电路的输出端分别串接二极管D1、D2的阳极,二极管D1、D2的阴极一起连接控制电源输出占空比的PWM控制器的控制信号输入端。恒压比较电路、过流比较电路输出高电平有效。
本发明所述第一运算放大电路包括运算放大器U4、电阻R13、R14、R16电容C4;电源输出电压V3正端与电阻R14的第一端相连,电阻R14的第二端与电阻R13,R16的第一端相接,电阻R16的第二端接地,电阻R13的第二端与第一运算放大器U4的同相输入端及电容C4的第一端相连,电容C4的第二端接地,第一运算放大器U4的反相端与其的输出端相接。
本发明所述第二放大电路包括第一运算放大器U2、电阻R1、R2、R3、R4、R5、R6、R9电容C1;电流采样电压高电压端V2与电阻R1第一端相接,电阻R1的第二端与R3、R4第一端及U2的反相端相接,R4的第二端与R5、R6第一端相接,R5第二端接地,R6第二端与U4的输出端相接,元件R3的第二端与电阻R2第一端及U2的输出端相接,R2的第二端与C1的第一端相接,C1的第二端接地,第一运算放大器U2的电源端与供电端正极相连,接地端与供电端负极相连。
本发明所述恒压比较电路包括电阻R11、R12、R15、R18电容C6二极管D2及运算放大器U3,所述电阻R12、R15的第一端接运算放大器的同相输入端,R15的第一端接地,电阻R12的第一端接第一运算放大电路的输出端,电容C6与电阻R11及运算放大器的反相输入端相接,R11的第二端接基准参考电压VREF,电容C6的第二端与电阻R18第一端相接,电阻R18的第二端与D2阳极及运算放大器U3的输出端相接。
本发明所述过流比较电路包括第二运算放大器U1、电阻R7、R8、R17电容C5及二极管D1,所述第二运算放大器U1的反相输入端连接电阻R7电容C5的第一端,电阻R7的第二端接过流基准电压VREF,电容C5的第二端接电阻R17的第一端,电阻R17的第二端与二极管D1的阳极及接第二运算放大器U1的输出端相接,U1同相输入端连接所述电阻R8的第一端,电阻R8的第二端与第二放大电路输出端相接,第二运算放大器U1的电源端与供电端正极相连,接地端与供电端负极相连。
反馈控制电路的控制方法,方法包括:
电压V3为直流电源输出电压,电阻R14、R16组成电压反馈的采样电路,此两元件采用高精度电阻以提高采样精度,其控制第一运算放大电路的同相输入端电压:V(U4.5)=R16*(V3/(R14+R16)),元件R13、C4组成低通滤波器,适当调整其参数可滤除高频干扰,提高反馈回路稳定性和精度。根据运算放大器虚短虚断的概念第一运算放大电路的反相输入端电压V(U4.6)=V(U4.5),运算放大器U4的反相输入端与其输出端直接相接,故V(U4.7)=V(U4.6)=V(U4.5),第一运算放大电路输出端电压V(U4.7)随着其同相输入端电压变化而做相同变化,由此可得第一运算放大电路为运放电压跟随电路。运放电压跟随电路有输入阻抗高,而输出阻抗低的特性,一般来说,输入阻抗可以达到几兆欧姆,而输出阻抗低,通常只有几欧姆,甚至更低。在电路中,电压跟随器一般做缓冲级(buffer)及隔离级。因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。在这个时候,就需要电压跟随器进行缓冲。起到承上启下的作用。
第二放大电路的反相输入端有两路输入V2与第一运算放大电路的输出电压,V2可由电流采样电阻得到。故U2的反相输入端输入电压为:V(U2.2)=R5*(V(U4.7)/(R5+R6))+V2,U2同相输入端电压通过R9接地故V(U2.3)=0。又U2输出端经过R3与其输入端相接,根据运算放大器虚短虚断的概念可得:V(U2.1)=R3*(V2/R1+V(U2.2)/R4),其构成比例加法电路,此电路对输出电流的变化起到检测放大作用。
恒压比较电路的运算放大器U3的反相输入端通过R11接基准电压VREF,运算放大器的同相输入端通过电阻R12、R15分压连接第一运算放大电路的输出端。当恒压比较电路的运算放大器U3的同相输入端电压高于其反相输入端电压VREF时,U3的输出端输出高电压VCC,即当:V(U3.5)>VREF,V(U3.7)=VCC,否则V(U3.5)>VREF,V(U3.7)=0V。元件R18、C6为补偿电路对输出电压的相同角和频率进行补偿。
过流保护电路的第二运算放大器U1的反相输入端通过R7接基准电压VREF,运算放大器的同相输入端通过电阻R8连接第二运算放大电路的输出端。当恒压比较电路的运算放大器U3的同相输入端电压高于其反相输入端电压VREF时,U1的输出端输出高电压VCC,即当:V(U1.3)>VREF,V(U1.2)=VCC,否则V(U1.1)>VREF,V(U1.1)=0V。元件R17、C5为补偿电路对输出电压的相同角和频率进行补偿。
恒压比较电路与过流保护电路通过两二极管输出,高电平有效。其输出电压V1引入PWM控制器调节占空比使电源输出电压V3与恒压基准电压VREF之间保持稳定的比例关系,电源工作在恒压模式,明显提高基准电压VREF的稳定性可以提高输出电压的稳定性。
本发明可应用于不同输入电压范围的恒压电源中,通过对此电源闭环反馈控制电路闭环参数设置,可以实现不同的基准控制电压对应的不同恒压和恒流输出。
本领域技术人员可以将本实施例理解为实施例1的更为具体的说明。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (8)

1.一种残气分析质谱用电源控制电路,其特征在于,包括:对输出电压分压采样的第一运算放大电路、对输出第一运算放大电路电压采样和输出电流采样运算放大的第二放大电路、恒压比较电路及过流比较电路;
所述恒压比较电路的反相输入端连接外设的恒压基准电压,同相输入端连接第一放大电路的输出;
所述过流比较电路的反相输入端连接外部的过流基准电压,同相输入端连接第二放大电路的输出;
所述恒压比较电路和过流比较电路的输出端分别串接二极管D1和二极管D2的阳极,所述二极管D1和二极管D2的阴极连接控制电源输出占空比的PWM控制器的控制信号输入端;
所述恒压比较电路和过流比较电路输出高电平有效;
所述恒压比较电路包括电阻R11、电阻R12、电阻R15、电阻R18、电容C6、二极管D2及运算放大器U3;
所述电阻R12和电阻R15的第一端连接运算放大器U3的同相输入端,电阻R15的第一端接地,电阻R12的第一端连接第一运算放大电路的输出端,电容C6与电阻R11及运算放大器U3的反相输入端相接,电阻R11的第二端连接基准参考电压VREF,电容C6的第二端与电阻R18第一端相接,电阻R18的第二端与二极管D2阳极及运算放大器U3的输出端相接;
所述过流比较电路包括运算放大器U1、电阻R7、电阻R8、电阻R17、电容C5及二极管D1;
所述运算放大器U1的反相输入端连接电阻R7和电容C5的第一端,电阻R7的第二端连接过流基准电压VREF,电容C5的第二端连接电阻R17的第一端,电阻R17的第二端与二极管D1的阳极及运算放大器U1的输出端相接,运算放大器U1同相输入端连接电阻R8的第一端,电阻R8的第二端与第二放大电路输出端相连接,运算放大器U1的电源端与供电端正极相连,接地端与供电端负极相连。
2.根据权利要求1所述的残气分析质谱用电源控制电路,其特征在于,所述第一运算放大电路包括运算放大器U4、电阻R13、电阻R14、电阻R16及电容C4;
电源输出电压V3正端与电阻R14的第一端相连,电阻R14的第二端与电阻R13和电阻R16的第一端相接,电阻R16的第二端接地,电阻R13的第二端与运算放大器U4的同相输入端及电容C4的第一端相连,电容C4的第二端接地,运算放大器U4的反相输入端与其的输出端相接。
3.根据权利要求1所述的残气分析质谱用电源控制电路,其特征在于,所述第二放大电路包括运算放大器U2、电阻R1、电阻R2、电阻R3、电阻R4、电阻R5、电阻R6、电阻R9及电容C1;
电流采样电压高电压端V2与电阻R1第一端相接,电阻R1的第二端与电阻R3、电阻R4第一端及运算放大器U2的反相输入端相接,电阻R4的第二端与电阻R5和电阻R6第一端相接,电阻R5第二端接地,电阻R6第二端与运算放大器U4的输出端相接,电阻R3的第二端与电阻R2第一端及运算放大器U2的输出端相接,电阻R2的第二端与电容C1的第一端相接,电容C1的第二端接地,运算放大器U2的电源端与供电端正极相连,接地端与供电端负极相连。
4.一种残气分析质谱用电源控制电路的控制方法,其特征在于,所述方法应用如权利要求1-3任一项所述的残气分析质谱用电源控制电路,所述电源输出电压V3为直流电源输出电压,电阻R14、电阻R16组成电压反馈的采样电路,其控制第一运算放大电路的同相输入端电压:
V(U4.5)=R16*(V3/(R14+R16))
电阻R13和电容C4组成低通滤波器;根据运算放大器虚短虚断的概念第一运算放大电路的反相输入端电压V(U4.6)=V(U4.5),运算放大器U4的反相输入端与其输出端直接相接,故V(U4.7)=V(U4.6)=V(U4.5),第一运算放大电路输出端电压V(U4.7)随着其同相输入端电压变化而做相同变化,第一运算放大电路为运放电压跟随电路。
5.根据权利要求4所述的残气分析质谱用电源控制电路的控制方法,其特征在于,所述第二放大电路的反相输入端有两路输入电流采样电压高电压端V2与第一运算放大电路的输出电压,电流采样电压高电压端V2由电流采样电阻得到;运算放大器U2的反相输入端输入电压为:
V(U2.2)=R5*(V(U4.7)/(R5+R6))+V2
运算放大器U2同相输入端电压通过电阻R9接地,故V(U2.3)=0;运算放大器U2
输出端经过电阻R3与其输入端相接,根据运算放大器虚短虚断的概念得到:
V(U2.1)=R3*(V2/R1+V(U2.2)/R4)
其构成比例加法电路,此电路对输出电流的变化进行检测放大。
6.根据权利要求4所述的残气分析质谱用电源控制电路的控制方法,其特征在于,所述恒压比较电路的运算放大器U3的反相输入端通过电阻R11连接基准电压VREF,运算放大器U3的同相输入端通过电阻R12和电阻R15分压连接第一运算放大电路的输出端;当恒压比较电路的运算放大器U3的同相输入端电压高于其反相输入端电压VREF时,运算放大器U3的输出端输出高电压VCC,即当V(U3.5)>VREF时,V(U3.7)=VCC,否则V(U3.5)>VREF,V(U3.7)=0V;电阻R18和电容C6为补偿电路对输出电压的相同角和频率进行补偿。
7.根据权利要求4所述的残气分析质谱用电源控制电路的控制方法,其特征在于,所述过流比较电路的运算放大器U1的反相输入端通过电阻R7连接基准电压VREF,运算放大器U1的同相输入端通过电阻R8连接第二运算放大电路的输出端;当恒压比较电路的运算放大器U3的同相输入端电压高于其反相输入端电压VREF时,运算放大器U1的输出端输出高电压VCC,即当V(U1.3)>VREF时,V(U1.2)=VCC,否则V(U1.1)>VREF,V(U1.1)=0V;电阻R17和电容C5为补偿电路对输出电压的相同角和频率进行补偿。
8.根据权利要求4所述的残气分析质谱用电源控制电路的控制方法,其特征在于,所述恒压比较电路与过流比较电路通过二极管D1和二极管D2输出,高电平有效;其输出电压V1引入PWM控制器调节占空比,电源输出电压V3与恒压基准电压VREF之间保持比例关系,电源工作在恒压模式。
CN202210867761.1A 2022-07-22 2022-07-22 残气分析质谱用电源控制电路及控制方法 Active CN115390608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210867761.1A CN115390608B (zh) 2022-07-22 2022-07-22 残气分析质谱用电源控制电路及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210867761.1A CN115390608B (zh) 2022-07-22 2022-07-22 残气分析质谱用电源控制电路及控制方法

Publications (2)

Publication Number Publication Date
CN115390608A CN115390608A (zh) 2022-11-25
CN115390608B true CN115390608B (zh) 2024-04-09

Family

ID=84116644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210867761.1A Active CN115390608B (zh) 2022-07-22 2022-07-22 残气分析质谱用电源控制电路及控制方法

Country Status (1)

Country Link
CN (1) CN115390608B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164120A (ja) * 1986-01-16 1987-07-20 Origin Electric Co Ltd 定電流電源回路
JPH10225116A (ja) * 1997-02-07 1998-08-21 Sanken Electric Co Ltd 直流電源装置
JPH11215690A (ja) * 1998-01-29 1999-08-06 Canon Inc 過電流保護装置
JP2005352715A (ja) * 2004-06-10 2005-12-22 Sony Corp 定電圧電源回路
CN102651613A (zh) * 2011-02-28 2012-08-29 昂宝电子(上海)有限公司 用于反激式电源变换器中的恒压和恒流模式的系统和方法
CN202818097U (zh) * 2009-05-19 2013-03-20 罗姆股份有限公司 电源装置和提供了它的电子设备
CN104426473A (zh) * 2013-09-03 2015-03-18 深圳市金威源科技股份有限公司 一种太阳能光伏系统控制方法及控制装置
JP2017120568A (ja) * 2015-12-28 2017-07-06 ローム株式会社 電源回路およびその制御回路、制御方法、ならびにそれを用いた電子機器
CN113238604A (zh) * 2021-07-13 2021-08-10 上海芯龙半导体技术股份有限公司 一种恒压控制电路、芯片及系统
CN113809914A (zh) * 2021-08-13 2021-12-17 广州金升阳科技有限公司 一种恒压控制电路
CN114153258A (zh) * 2021-11-26 2022-03-08 中国电子科技集团公司第四十三研究所 一种电源闭环反馈控制电路及控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164120A (ja) * 1986-01-16 1987-07-20 Origin Electric Co Ltd 定電流電源回路
JPH10225116A (ja) * 1997-02-07 1998-08-21 Sanken Electric Co Ltd 直流電源装置
JPH11215690A (ja) * 1998-01-29 1999-08-06 Canon Inc 過電流保護装置
JP2005352715A (ja) * 2004-06-10 2005-12-22 Sony Corp 定電圧電源回路
CN202818097U (zh) * 2009-05-19 2013-03-20 罗姆股份有限公司 电源装置和提供了它的电子设备
CN102651613A (zh) * 2011-02-28 2012-08-29 昂宝电子(上海)有限公司 用于反激式电源变换器中的恒压和恒流模式的系统和方法
CN104426473A (zh) * 2013-09-03 2015-03-18 深圳市金威源科技股份有限公司 一种太阳能光伏系统控制方法及控制装置
JP2017120568A (ja) * 2015-12-28 2017-07-06 ローム株式会社 電源回路およびその制御回路、制御方法、ならびにそれを用いた電子機器
CN113238604A (zh) * 2021-07-13 2021-08-10 上海芯龙半导体技术股份有限公司 一种恒压控制电路、芯片及系统
CN113809914A (zh) * 2021-08-13 2021-12-17 广州金升阳科技有限公司 一种恒压控制电路
CN114153258A (zh) * 2021-11-26 2022-03-08 中国电子科技集团公司第四十三研究所 一种电源闭环反馈控制电路及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
反激式LED驱动恒流控制电路设计;蒯震华;;数字技术与应用;20160115(第01期);全文 *

Also Published As

Publication number Publication date
CN115390608A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN2783334Y (zh) 一种过流检测装置
US9158315B2 (en) Load transient of a cot mode power supply
CN103607209A (zh) 直流失调校准系统及直流失调校准方法
CN101887073A (zh) 氧化锌避雷器直流特性试验用高压电源
EP3889996A1 (en) Analyzer apparatus and control method
CN114355027A (zh) 一种检测电路及芯片
CN115390608B (zh) 残气分析质谱用电源控制电路及控制方法
CN114113967A (zh) 一种源测量单元测试系统及测试方法
CN111211740B (zh) 一种基于区块链的桥梁施工监控系统
CN107425815A (zh) 一种功率控制电路及功率放大电路
CN112859985B (zh) 一种高压大电流线性稳压器的限流电路及实现方法
CN212321726U (zh) 芯片电阻检测装置和芯片器件
CN110581651B (zh) 高度集成的开关电源及控制电路
CN214591154U (zh) 一种偏置电压电路、光电探测模块及氧分压传感器
WO2015155033A1 (en) Driver arrangement and method for providing an analog output signal
CN108303178A (zh) 一种用于星上辐射定标的卤钨灯电源
CN211296179U (zh) 一种电压钳位电路及功放保护装置
CN103134981B (zh) 功率检测方法与装置
US7738271B1 (en) Controlled resonant charge transfer device
CN220022618U (zh) 一种程控电源
CN220474022U (zh) 用于离子阱的稳磁装置及量子计算设备
CN220271788U (zh) 稳压电路及电子设备
CN220605557U (zh) 一种机载28v直流过压浪涌抑制电路
CN111209712A (zh) 一种获取晶体振荡器工作电压的系统、方法、芯片
CN215343893U (zh) 一种输出过压保护电路及隔离电源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant