CN115390090A - 一种激光雷达系统、控制方法、装置和车辆 - Google Patents

一种激光雷达系统、控制方法、装置和车辆 Download PDF

Info

Publication number
CN115390090A
CN115390090A CN202210873651.6A CN202210873651A CN115390090A CN 115390090 A CN115390090 A CN 115390090A CN 202210873651 A CN202210873651 A CN 202210873651A CN 115390090 A CN115390090 A CN 115390090A
Authority
CN
China
Prior art keywords
vehicle
laser radar
lidar
short
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210873651.6A
Other languages
English (en)
Inventor
彭旭
李文广
王小明
范伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202210873651.6A priority Critical patent/CN115390090A/zh
Publication of CN115390090A publication Critical patent/CN115390090A/zh
Priority to PCT/CN2023/106673 priority patent/WO2024017086A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请实施例提供了一种激光雷达系统、控制方法、装置和车辆,该激光雷达系统包括:第一激光雷达;第一翻转部件,用于将该第一激光雷达连接到车辆的第一侧边;其中,当该第一翻转部件翻转到第一位置时,该第一激光雷达用于对第一方向上的环境进行感知;或者,当该第一翻转部件翻转到第二位置时,该第一激光雷达用于对第二方向上的环境进行感知。本申请实施例的技术方案可以应用于智能汽车或者电动汽车,在提升车辆的安全性的同时有助于降低车辆的成本。

Description

一种激光雷达系统、控制方法、装置和车辆
技术领域
本申请实施例涉及智能驾驶领域,并且更具体地,涉及一种激光雷达系统、控制方法、装置和车辆。
背景技术
随着社会的发展和科技的进步,车辆正在逐步进入人们的日常生活。环境感知是车辆的自动驾驶和智能驾驶中至关重要的一环,也是车辆的安全性和智能性的重要保障。车辆通常通过传感器,如毫米波雷达、激光雷达(LiDAR)、超声波雷达以及摄像头等,进行环境感知和目标测量,如测量目标的位置、距离、速度等。
激光雷达具有高置信度,在自动驾驶中扮演越来越重要的角色。目前车辆的激光雷达一般布置在车辆的前侧(如前保险杠)。车辆在行驶过程中由于激光雷达造成的盲区,会影响车辆对周围环境感知,从而会对车辆的安全性造成影响。如果要提升车辆的安全性就需要在车辆上布置多个激光雷达,这又会使得车辆的成本过高。
发明内容
本申请实施例提供一种激光雷达系统、控制方法、装置和车辆,在提升车辆的安全性的同时有助于降低车辆的成本。
本申请中的车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。
第一方面,提供了一种激光雷达系统,该激光雷达系统包括:第一激光雷达;第一翻转部件,用于将该第一激光雷达连接到车辆的第一侧边;其中,当该第一翻转部件翻转到第一位置时,该第一激光雷达用于对第一方向上的环境进行感知;或者,当该第一翻转部件翻转到第二位置时,该第一激光雷达用于对第二方向上的环境进行感知。
本申请实施例中,可以在车辆的第一侧边设置第一激光雷达,这样通过车辆第一侧边的激光雷达采集的数据可以弥补车辆前侧激光雷达造成的盲区,从而有助于提升车辆的安全性能;同时,通过第一翻转部件控制第一激光雷达对第一方向或者第二方向上的环境进行感知,有助于减少车辆上激光雷达的数量,从而有助于降低车辆的成本。
在一些可能的实现方式中,该激光雷达系统还包括:设置于该车辆前侧的激光雷达。
在一些可能的实现方式中,设置于车辆前侧的激光雷达的盲区范围大于该第一激光雷达的盲区范围。
在一些可能的实现方式中,设置于车辆前侧的激光雷达的测距能力大于该第一激光雷达的测距能力。
在一些可能的实现方式中,设置于车辆前侧的激光雷达的测距精度小于该第一激光雷达的测距精度。
在一些可能的实现方式中,设置于车辆前侧的激光雷达为长距激光雷达。
在一些可能的实现方式中,该第一激光雷达为短距激光雷达。
本申请实施例中,可以在车辆的第一侧边设置短距激光雷达,这样通过第一侧边的短距激光雷达采集的数据可以对距离车辆较近的人、动物或者其他障碍物进行识别,从而有助于提升车辆的安全性能。
结合第一方面,在第一方面的某些实现方式中,该激光雷达系统还包括:第二激光雷达;第二翻转部件,用于将该第二激光雷达连接到该车辆的第二侧边;其中,当该第二翻转部件翻转到第三位置时,该第二激光雷达用于对该第一方向上的环境进行感知;或者,当该第二翻转部件翻转到第四位置时,该第二激光雷达用于对该第二方向上的环境进行感知。
本申请实施例中,可以在车辆的第二侧边设置第二激光雷达,这样通过车辆第一侧边和第二侧边的激光雷达采集的数据可以进一步弥补车辆前侧激光雷达造成的盲区,从而进一步提升车辆的安全性能;同时,通过第二翻转部件控制第二激光雷达对第一方向或者第二方向上的环境进行感知,有助于减少车辆上激光雷达的数量,从而有助于降低车辆的成本。
在一些可能的实现方式中,该第二激光雷达为短距激光雷达。
结合第一方面,在第一方面的某些实现方式中,该第一激光雷达和该第二激光雷达关于该车辆的宽度方向上的中心线对称。
本申请实施例中,第一激光雷达和第二激光雷达可以是关于车辆的宽度方向上的中心线对称的,这样可以保证车辆的美观。
结合第一方面,在第一方面的某些实现方式中,该第一激光雷达和该第二激光雷达分别设置在该第一侧边和该第二侧边的后视镜上;或者,该第一激光雷达和该第二激光雷达分别设置在该第一侧边和该第二侧边的轮眉上;或者,该第一激光雷达和该第二激光雷达分别设置在该第一侧边和该第二侧边的B柱上;或者,该第一激光雷达和该第二激光雷达分别设置在该第一侧边和该第二侧边的门把手上。
本申请实施例中,第一激光雷达和第二激光雷达可以分别设置在第一侧边和第二侧边的后视镜、轮眉、B柱或者门把手上,这样的设置可以降低在车辆侧边布置激光雷达时对车辆外观造成的影响;同时,通过第一翻转机构和第二翻转机构分别控制第一激光雷达和第二激光雷达的翻转,可以给用户带来黑科技感。
结合第一方面,在第一方面的某些实现方式中,该激光雷达系统还包括:第三激光雷达,设置在该车辆的尾部。
本申请实施例中,可以在车辆的尾部布置第三激光雷达。这样,在车辆向后行驶(例如,泊车)的过程中,通过第三激光雷达采集的数据对环境进行感知,有助于提升车辆的安全性能。
在一些可能的实现方式中,该第三激光雷达为短距激光雷达。
本申请实施例中,可以在车辆的尾部设置短距激光雷达,这样,在车辆向后行驶(例如,泊车)的过程中,通过短距激光雷达采集的数据可以对距离车辆较近的人、动物或者其他障碍物(例如,地锁、杆子等)进行识别,有助于提升车辆的安全性能。
结合第一方面,在第一方面的某些实现方式中,该激光雷达系统还包括:第四激光雷达,设置在该车辆的尾部;其中,该第三激光雷达和该第四激光雷达分别设置在该车辆的尾部车牌的两侧;或者,该第三激光雷达和该第四激光雷达设置在该车辆的尾翼;或者,该第三激光雷达和该第四激光雷达设置在该车辆的尾部车牌的上侧或者下侧。
本申请实施例中,通过在车辆的尾部分别设置第三激光雷达和第四激光雷达,通过第三激光雷达和第四激光雷达采集的点云数据可以覆盖车辆后向的整个盲区,有助于提升车辆的安全性能。
在一些可能的实现方式中,该第四激光雷达为短距激光雷达。
结合第一方面,在第一方面的某些实现方式中,该激光雷达系统还包括:控制装置,用于获取指令,该指令用于指示该第一激光雷达对该第一方向或者该第二方向上的环境进行感知;该控制装置,还用于根据该指令,控制该第一翻转部件翻转。
结合第一方面,在第一方面的某些实现方式中,该第一方向为该车辆向前行驶的方向,该第二方向为该车辆向后行驶的方向。
第二方面,提供了一种控制方法,该方法包括:获取指令;根据该指令,控制第一翻转部件翻转,该第一翻转部件将第一激光雷达连接到车辆的第一侧边;其中,当该第一翻转部件翻转到第一位置时,该第一激光雷达用于对第一方向上的环境进行感知;或者,当该第一翻转部件翻转到第二位置时,该第一激光雷达用于对第二方向上的环境进行感知。
本申请实施例中,可以在车辆的第一侧边设置第一激光雷达,这样通过车辆第一侧边的激光雷达采集的数据可以弥补车辆前侧激光雷达造成的盲区,从而有助于提升车辆的安全性能;同时,通过第一翻转部件控制第一激光雷达对第一方向或者第二方向上的环境进行感知,有助于减少车辆上激光雷达的数量,从而有助于降低车辆的成本。
在一些可能的实现方式中,该第一激光雷达为短距激光雷达。
本申请实施例中,可以在车辆的第一侧边设置短距激光雷达,这样通过第一侧边的短距激光雷达采集的数据可以对距离车辆较近的人、动物或者其他障碍物进行识别,从而有助于提升车辆的安全性能。
结合第二方面,在第二方面的某些实现方式中,该指令包括该车辆的行驶状态,该根据该指令,控制第一翻转部件翻转,包括:在该行驶状态指示该车辆向前行驶时,控制该第一翻转部件翻转到该第一位置,该第一方向为该车辆向前行驶的方向;或者,在该行驶状态指示该车辆向后行驶时,控制该第一翻转部件翻转到该第二位置,该第二方向为该车辆向后行驶的方向。
本申请实施例中,可以在车辆的第二侧边设置第二激光雷达,这样通过车辆第一侧边和第二侧边的激光雷达采集的数据可以进一步弥补车辆前侧激光雷达造成的盲区,从而进一步提升车辆的安全性能;同时,通过第二翻转部件控制第二激光雷达对第一方向或者第二方向上的环境进行感知,有助于减少车辆上激光雷达的数量,从而有助于降低车辆的成本。
在一些可能的实现方式中,该第二激光雷达为短距激光雷达。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:根据该控制指令,控制第二翻转部件翻转,该第二翻转部件将第二激光雷达连接到该车辆的第二侧边;其中,当该第二翻转部件翻转到第三位置时,该第二激光雷达用于对该第一方向上的环境进行感知;或者,当该第二翻转部件翻转到第四位置时,该第二激光雷达用于对该第二方向上的环境进行感知。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:根据该第一激光雷达采集的点云数据进行构图。
在一些可能的实现方式中,该第一激光雷达为短距激光雷达,该车辆还包括其他传感器(例如,长距激光雷达、摄像装置等),该根据该第一激光雷达采集的点云数据进行构图,包括:根据短距激光雷达采集的点云数据以及其他传感器采集的数据进行构图。
第三方面,提供了一种控制装置,该控制装置包括:获取单元,用于获取指令;控制单元,用于根据该指令,控制第一翻转部件翻转,该第一翻转部件将第一激光雷达连接到车辆的第一侧边;其中,当该第一翻转部件翻转到第一位置时,该第一激光雷达用于对第一方向上的环境进行感知;或者,当该第一翻转部件翻转到第二位置时,该第一激光雷达用于对第二方向上的环境进行感知。
在一些可能的实现方式中,该第一激光雷达为短距激光雷达。
结合第三方面,在第三方面的某些实现方式中,该指令包括该车辆的行驶状态,该控制单元具体用于:在该行驶状态指示该车辆向前行驶时,控制该第一翻转部件翻转到该第一位置,该第一方向为该车辆向前行驶的方向;或者,在该行驶状态指示该车辆向后行驶时,控制该第一翻转部件翻转到该第二位置,该第二方向为该车辆向后行驶的方向。
结合第三方面,在第三方面的某些实现方式中,该控制单元,还用于根据该控制指令,控制第二翻转部件翻转,该第二翻转部件将第二激光雷达连接到该车辆的第二侧边;其中,当该第二翻转部件翻转到第三位置时,该第二激光雷达用于对该第一方向上的环境进行感知;或者,当该第二翻转部件翻转到第四位置时,该第二激光雷达用于对该第二方向上的环境进行感知。
在一些可能的实现方式中,该第二激光雷达为短距激光雷达。
结合第三方面,在第三方面的某些实现方式中,该装置还包括:构图单元,用于根据该第一激光雷达采集的点云数据进行构图。
第四方面,提供了一种装置,该装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行第二方面中任一种可能的方法。
可选地,上述处理单元可以包括至少一个处理器,上述存储单元可以是存储器,其中存储器可以是芯片内的存储单元(例如,寄存器、缓存等),也可以是车辆内位于芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,提供了一种系统,该系统包括上述第一方面所述的激光雷达系统以及上述第三方面或者第四方面所述的装置。
第六方面,提供了一种车辆,该车辆包括上述第一方面所述的激光雷达系统,或者,该车辆包括上述第三方面或者第四方面所述的装置,或者,该车辆包括上述第五方面所述的系统。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面中任一种可能的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第八方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面中任一种可能的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第二方面任一种可能的方法。
结合第九方面,在一种可能的实现方式中,该处理器通过接口与存储器耦合。
结合第九方面,在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
附图说明
图1是本申请实施例提供的车辆的一个功能框图示意。。
图2是一种长距激光雷达的布置和盲区示意图。
图3是本申请实施例提供的一种长距激光雷达和短距激光雷达的布置以及短距激光雷达的视野示意图。
图4是本申请实施例提供的另一种长距激光雷达和短距激光雷达的布置以及短距激光雷达的另一视野示意图。
图5是本申请实施例提供的通过在后视镜上设置短距激光雷达的示意图。
图6是本申请实施例提供的通过蜗杆传动控制短距激光雷达向前翻转或者向后翻转的过程。
图7是本申请实施例提供的在车辆的B柱上布置短距激光雷达的示意图。
图8是本申请实施例提供的在车辆的轮眉上布置短距激光雷达的示意图。
图9是本申请实施例提供的在车辆的车门门把手上布置短距激光雷达的示意图。
图10是本申请实施例提供的在公交车车身侧边布置短距激光雷达的示意图。
图11是本申请实施例提供的在货车车身侧边布置短距激光雷达的示意图。
图12是本申请实施例提供的将短距激光雷达布置在车尾部车牌的两侧的示意图。
图13是本申请实施例提供的将短距激光雷达布置在车尾部车牌的上方的示意图。
图14是本申请实施例提供的将短距激光雷达布置在尾翼的示意图。
图15是本申请实施例提供的一种控制方法的示意性流程图。
图16是本申请实施例提供的直接测量飞行时间DTOF激光雷达的外部结构示意图。
图17是本申请实施例提供的DTOF激光雷达的内部结构示意图。
图18是本申请实施例提供的一种激光雷达系统的示意性框图。
图19是本申请实施例提供的应用场景的示意图。
图20是本申请实施例提供的一种控制方法的另一示意性流程图。
图21是本申请实施例提供的一种控制装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有限定作用。本申请实施例中对序数词等用于区分描述对象的前缀词的使用不对所描述对象构成限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限制。此外,在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是本申请实施例提供的车辆100的一个功能框图示意。车辆100可以包括感知系统120和计算平台150,其中,感知系统120可以包括感测关于车辆100周边的环境的信息的一种或多种传感器。例如,感知系统120可以包括定位系统,定位系统可以是全球定位系统(global positioning system,GPS),也可以是北斗系统或者其他定位系统、惯性测量单元(inertial measurement unit,IMU)。又例如,感知系统120还可以包括眼动仪、激光雷达、毫米波雷达、超声波雷达以及摄像装置中的一种或者多种。其中,激光雷达还可以分为长距激光雷达和短距激光雷达。
车辆100的部分或所有功能可以由计算平台150控制。计算平台150可包括一个或者多个处理器,例如处理器151至15n(n为正整数),处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital signal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specificintegrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如现场可编程门阵列(field programmable gate array,FPGA)。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)、张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learningprocessing unit,DPU)等。此外,计算平台150还可以包括存储器,存储器用于存储指令,处理器151至15n中的部分或全部处理器可以调用存储器中的指令,执行指令,以实现相应的功能。
图2是一种长距激光雷达的布置位置和盲区示意图。在车辆的中网中间、前保险杠两侧分别布置有3个长距激光雷达。目前市面上的长距激光雷达有0-0.6米的盲区,这样无法通过长距激光雷达采集的点云数据确定在车辆前方且与车辆距离较近的物体的位置。同时,长距激光雷达之间无法弥补本身的盲区,长距激光雷达交叉的位置处也存在盲区,盲区的大小与长距激光雷达的安装位置相关。盲区可能会导致车辆无法检测到与车辆距离较近的动物(例如,小猫、小狗)或者蹲下的人,从而可能会造成车辆的安全事故,影响车辆的安全性能。
对于图2中长距激光雷达的布置方案,在车辆进行泊车(例如,进行窄车位泊车以及立体车库泊车)时,仅依靠后视摄像头和超声波雷达采集的数据进行泊车的难度很大。盲区可能会导致车辆在泊车时无法检测到车辆两边或者车尾部有人、地锁以及其他影响泊车的障碍物,从而可能影响用户的泊车体验。
图3示出了本申请实施例提供的一种长距激光雷达和短距激光雷达的布置位置以及短距激光雷达的视野示意图。如图3所示,通过在车身侧边布置2个用于对车辆前方环境进行感知的短距激光雷达,可以弥补车辆向前行驶时的盲区。这样,有助于避免由于长距激光雷达在近距离处无法检测到物体而造成的安全事故,有助于提升车辆的安全性能。例如,可以提升车辆在泊出车位时的安全性。
一个实施例中,2个短距激光雷达也可以分别布置在后视镜上;或者,2个短距激光雷达可以分别布置在前保险杠的两侧。
以上图3以及以下的一些实施例中,以布置在车身侧边的激光雷达是短距激光雷达为例进行说明,本申请实施例并不限于此。例如,布置在车身侧边的激光雷达也可以是长距激光雷达,该长距激光雷达也可以弥补车辆前侧激光雷达的盲区。又例如,布置在车辆前侧的激光雷达的盲区范围大于布置在车辆侧边的激光雷达的盲区范围。又例如,布置在车辆前侧的激光雷达的测距能力大于布置在车辆侧边的激光雷达的测距能力。又例如,布置在车辆前侧的激光雷达的测距精度小于布置在车辆侧边的激光雷达的测距精度。
图4示出了本申请实施例提供的另一种长距激光雷达和短距激光雷达的布置位置以及短距激光雷达的视野示意图。如图4所示,通过在车身侧边以及尾部布置4个用于对车辆后方环境进行感知的短距激光雷达,可以弥补车辆向后行驶时的盲区。这样,有助于提升车辆在泊车时的安全性能,从而有助于提升用户的泊车体验。
一个实施例中,4个短距激光雷达中的其中2个可以分别布置在后视镜上,另外2个可以分别布置在车辆尾部车牌的两侧。
以上图4中是以布置4个用于对车辆后方环境进行感知的短距激光雷达为例进行说明的,本申请实施例对于短距激光雷达的数量并不限定。例如,还可以在车身侧边以及尾部布置3个用于对车辆后方环境进行感知的短距激光雷达,其中2个可以分别布置在后视镜上,另外1个可以布置在车身尾部(例如车辆尾部车牌的上侧或者下侧)。
以上通过图3所示的布置方案中介绍了在车身侧边布置2个用于对车辆前方环境进行感知的短距激光雷达以及通过图4所示的布置方案中介绍了在车身侧边以及尾部布置4个用于对车辆后方环境进行感知的短距激光雷达。图3和图4中所示的布置在车身侧边的2个短距激光雷达可以是相同的激光雷达。示例性的,可以在车身侧边设置翻转部件,该翻转部件可以控制短距激光雷达前后翻转,进而通过相同的短距激光雷达分别实现对车辆前方环境和后方环境进行感知,有助于降低车辆的成本。
下面以短距激光雷达设置在后视镜上为例进行说明。图5示出了本申请实施例提供的通过在后视镜上设置短距激光雷达的示意图。
示例性的,如图5中的(a)所示的俯视图,后视镜可以包括折叠机构510、翻转部件520以及短距激光雷达530。X轴方向为车辆纵轴所在的方向,Y轴为车辆横轴所在的方向,Z轴为车辆高度方向。其中,X轴的正向(或者,正方向)可以为车辆向前行驶的方向,X轴的负向(或者,负方向)可以为车辆向后行驶的方向。
折叠机构510用于将后视镜进行折叠,例如,用户可以通过旋转后视镜旋钮调节后视镜处于展开状态或者折叠状态。又例如,在检测到用户将车辆上锁的操作时,可以通过折叠机构510控制后视镜处于折叠状态;在检测到用户解锁车辆的操作时,可以通过折叠机构510控制后视镜处于展开状态。
翻转部件520用于控制短距激光雷达530进行前后翻转。例如,在车辆需要向后行驶时,车辆可以通过翻转部件520控制短距激光雷达530向后翻转,从而通过短距激光雷达530采集的数据对车辆后方的环境进行感知。图5中的(a)中短距激光雷达530当前处于翻转状态1,在翻转状态1下,短距激光雷达530采集的数据可以用于弥补图2中车辆向前行驶时的盲区。
以上短距激光雷达530处于翻转状态1还可以理解为短距激光雷达的水平视场角(field of view,FOV)与X轴的正向相对应。
示例性的,图5中的(b)示出了短距激光雷达处于翻转状态1时的另一视图。
示例性的,如图5中的(c)所示的侧视图,在车辆需要向前行驶时,车辆可以通过翻转部件520控制短距激光雷达530沿着Y轴方向(或者沿着XOZ平面)顺时针或者逆时针翻转180°,从而实现短距激光雷达530向后翻转。
如图5中的(d)所示的另一俯视图。通过翻转部件520控制短距激光雷达530向后翻转,从而车辆可以通过短距激光雷达530采集的数据对车辆后方的环境进行感知。
示例性的,图5中的(d)中短距激光雷达530当前处于翻转状态2。翻转状态2和翻转状态1下,短距激光雷达530的FOV可以具有对称关系。在翻转状态2下,短距激光雷达530采集的数据可以用于弥补图2中车辆向后行驶时的盲区。
以上短距激光雷达530当前处于翻转状态2还可以理解为短距激光雷达的水平视场角(field of view,FOV)与X轴的负向相对应。
示例性的,图5中的(e)示出了短距激光雷达处于翻转状态2时的另一视图。
示例性的,下面结合图6介绍通过蜗杆传动控制短距激光雷达向前翻转或者向后翻转的过程。图6示出了本申请实施例提供的通过在后视镜上设置短距激光雷达的示意图。其中,翻转部件520可以为可翻转机构602。
示例性的,如图6中的(a)所示的平面结构示意图,车辆的后视镜601上设置有可翻转机构602,可翻转机构602上设置有短距激光雷达603。其中,短距激光雷达603可以与可翻转机构602固定连接。
示例性的,图6中的(b)为图6中的(a)的B-B剖视图。上述可翻转机构602可以包括驱动电机604、减速箱组件605、旋转轴607。驱动电机604通过减速箱组件605与旋转轴607连接。减速箱组件605包括传动轴606上设置的同步传动的第一齿轮和第二齿轮(图中未示出)。驱动电机604的输出轴连接第一齿轮,第二齿轮与设置在旋转轴607外表面的外齿轮608啮合形成蜗杆传动。通过蜗杆传动可以带动可翻转机构602旋转,进而控制短距激光雷达603向前翻转或者向后翻转。
一个实施例中,可翻转机构602还可以包括轴承609和轴承610,用于支撑可翻转机构602。
以上图6中是以蜗杆传动的方式控制短距激光雷达向前或者向后翻转,本申请实施例中对此不作具体限定。还可以通过其他传动方式控制激光雷达向前或者向后翻转。
示例性的,该翻转部件520还可以是电机。通过电机控制短距激光雷达可以绕着Y轴旋转,从而实现对车辆前方环境或者后方环境进行感知。
图5和图6中是以带镜子的手动后视镜或者电动后视镜为例进行说明的,本申请实施例对于后视镜的类型并不作具体限定。例如,后视镜还可以是电子后视镜。
以上结合图5和图6介绍了将短距激光雷达布置在后视镜上的方案。本申请实施例中并不限于此,该短距激光雷达还可以布置在车辆侧边的其他位置。
图7示出了本申请实施例提供的在车辆的B柱上布置短距激光雷达的示意图。
一个实施例中,可以在车辆左侧的B柱和后侧的B柱上分别布置短距激光雷达。
一个实施例中,短距激光雷达还可以布置在车辆的A柱上,或者,短距激光雷达还可以布置在车辆的C柱上,或者,短距激光雷达还可以布置在车辆的D柱上。
图8示出了本申请实施例提供的在车辆的轮眉上布置短距激光雷达的示意图。
一个实施例中,可以在车辆前轮轮眉上布置短距激光雷达,或者,也可以在车辆后轮轮眉上布置短距激光雷达。
一个实施例中,可以在车辆左侧前轮轮眉上布置短距激光雷达且在车辆右侧前轮轮眉上布置短距激光雷达。
一个实施例中,可以在车辆左侧后轮轮眉上布置短距激光雷达且在车辆右侧后轮轮眉上布置短距激光雷达。
图9示出了本申请实施例提供的在车辆的车门门把手上布置短距激光雷达的示意图。一个实施例中,短距激光雷达可以布置在后排车门门把手上,或者,也可以布置在前排车门门把手上。
一个实施例中,可以在车辆左侧后门门把手上布置短距激光雷达且在车辆右侧后门门把手上布置短距激光雷达。
一个实施例中,可以在车辆左侧前门门把手上布置短距激光雷达且在车辆右侧前门门把手上布置短距激光雷达。
一个实施例中,短距激光雷达还可以布置在车辆的侧边的翼子板上。
以上图7至图9的布置方式中,可以通过翻转部件和短距激光雷达连接,通过翻转部件带动短距激光雷达向前或者向后翻转,从而实现对车辆前方环境或者后方环境进行感知。
以上图7至图9中是以轿车为例进行说明的,本申请实施例并不限于此。例如,本申请实施例中的短距激光雷达的布置方案还可以应用于公交车、货车或者其他类型的交通工具上。
图10示出了本申请实施例提供的在公交车车身侧边布置短距激光雷达的示意图。考虑到公交车的车身较长,此时,通过在公交车前轮轮眉和后轮轮眉上分别布置短距激光雷达,可以保证在公交车向前行驶的过程中,通过前轮轮眉和后轮轮眉上的短距激光雷达采集的点云数据可以弥补公交车向前行驶时盲区。这样,有助于避免由于长距激光雷达在近距离无法检测到物体而造成的安全事故,有助于提升公交车的安全性能。例如,可以提升公交车在泊出车位时的安全性。
在公交车向后行驶的过程中,通过前轮轮眉和后轮轮眉上的短距激光雷达采集的点云数据可以弥补公交车向后行驶时的盲区。例如,可以提升公交车泊车时的安全性能。
图11示出了本申请实施例提供的在货车车身侧边布置短距激光雷达的示意图。对于车身较长的货车(例如,货车的车身长度可以达到17米),可以在货车的后视镜上、侧边货箱的不同位置处分别布置短距激光雷达。
本申请实施例提供的短距激光雷达还可以布置在车尾部其他位置。
图12示出了本申请实施例提供的将短距激光雷达布置在车尾部车牌的两侧的示意图。
一个实施例中,车辆尾部车牌两侧的短距激光雷达关于车辆在宽度方向上的中心线对称。
图13示出了本申请实施例提供的将短距激光雷达布置在车尾部车牌的上方的示意图。
图14示出了本申请实施例提供的将短距激光雷达布置在尾翼的示意图。
以上图12至图14中分别以在车尾部布置2个短距激光雷达为例进行说明,本申请实施例对车尾部短距激光雷达的数量并不作具体限定。例如,也可以在车尾部布置1个短距激光雷达,如将1个短距激光雷达布置在尾部车牌的左侧或者右侧,或者,将1个短距激光雷达布置在尾部车牌的上侧或者下侧,或者,将1个短距激光雷达布置在尾翼上。
图15示出了本申请实施例提供的一种控制方法1500的示意性流程图。该方法1500包括:
S1501,判断车辆当前的状态。
一个实施例中,车辆当前的状态包括向前行驶或者向后行驶。
示例性的,可以通过车辆的挡位判断车辆当前的状态。在车辆检测到用户挂D挡的操作时,可以确定车辆当前的状态为向前行驶;在检测到用户挂R挡的操作时,可以确定车辆当前的状态为向后行驶。
当确定车辆向前行驶时可以执行步骤S1502-S1504;当确定车辆向后行驶时可以执行步骤S1505-S1507。
S1502,控制短距激光雷达对车辆前方环境进行感知。
示例性的,在确定车辆向前行驶时,可以通过上述翻转部件控制短距激光雷达向前翻转。例如,计算平台通过挡位传感器采集的数据确定车辆当前的状态为向前行驶时,可以控制上述驱动电机(或者,电机)工作,从而控制后视镜上的短距激光雷达向前翻转,进入上述翻转状态1。
S1503,对短距激光雷达及其他传感器采集的数据进行融合,得到融合结果。
一个实施例中,融合模块可以对短距激光雷达采集的点云数据、长距激光雷达采集的点云数据、摄像装置(例如,环视摄像头)采集的图像以及毫米波雷达或者厘米波雷达采集的点云数据进行融合,得到融合结果。
S1504,根据该融合结果,执行规控指令。
在融合模块得到融合结果后,可以将该融合结果发送给规控模块,从而由规控模块执行相应的操作。
示例性的,该规控模块包括但不限于自动紧急刹车(automatic emergencybrake,AEB)模组、自适应巡航(automatic cruise control,ACC)模组。
示例性的,根据该融合结果,执行规控指令,包括:在通过融合结果确定车身附近有物体(例如,动物或者蹲下的人)时,控制车辆刹车或者避让。
本申请实施例中,该融合结果由短距激光雷达采集的点云数据和长距激光雷达采集的点云数据确定,这样可以弥补仅通过长距激光雷达采集的点云数据带来的盲区。避免由于长距激光雷达和摄像装置无法检测到与车辆距离较近的物体或人所带来的安全事故,从而有助于提升车辆的安全性。
S1505,控制短距激光雷达对车辆后方环境进行感知。
示例性的,在确定车辆向后行驶时,可以通过上述翻转部件控制短距激光雷达向后翻转。例如,计算平台通过挡位传感器采集的数据确定车辆当前的状态为向后行驶时,可以控制上述驱动电机(或者,电机)工作,从而控制后视镜上的短距激光雷达向后翻转,进入上述翻转状态2。
S1506,对短距激光雷达及其他传感器采集的数据进行融合,得到融合结果。
一个实施例中,融合模块可以对短距激光雷达采集的点云数据、长距激光雷达采集的点云数据、摄像装置(例如,环视摄像头)采集的图像以及毫米波雷达或者厘米波雷达采集的点云数据进行融合,得到融合结果。
一个实施例中,在车辆向前行驶或者向后行驶的过程中,可以根据短距激光雷达以及其他传感器采集的数据,进行构图。
示例性的,车辆可以通过短距激光雷达、长距激光雷达采集的点云数据以及摄像装置采集的图像数据进行同步定位与地图构建(simultaneous localization andmapping,SLAM)。
S1507,根据该融合结果,执行规控指令。
示例性的,根据该融合结果,执行规控指令,包括:车辆泊车过程中,在通过融合结果确定车身附近有物体(例如,动物或者蹲下的人)、地锁或者其他障碍物(例如,杆子)时,控制车辆刹车或者避让。
本申请实施例中,通过判断车辆当前的状态,可以控制短距激光雷达对车辆前方或者车辆后方环境进行感知,有助于弥补长距激光雷达带来的盲区,提升对车辆周围环境感知的准确性,从而有助于提升车辆的安全性;同时,通过翻转部件和短距激光雷达可以实现对车辆前方或者车辆后方环境进行感知,有助于减少车辆上安装的短距激光雷达的数量,从而有助于降低车辆的成本。
下面结合附图介绍本申请实施例中的短距激光雷达。
示例性的,短距激光雷达可以为直接测量飞行时间(direct time of flight,DTOF)激光雷达。
示例性的,图16示出了本申请实施例提供的DTOF激光雷达的外部结构示意图。
DTOF激光雷达测距可以在5m~10m;测距精度可以达到3cm~5cm;水平和垂直分辨率可以根据实际场景需求确定;DTOF激光雷达的盲区在5cm-15cm以内,要小于长距激光雷达的60cm盲区;水平FOV且垂直FOV可以根据实际场景需求确定,这样可以满足如上整车布置和视野补盲的要求。示例性的,表1示出了DTOF激光雷达中的参数和对应的参数值的对应关系。
表1
参数 参数值
测距能力 5m~50m
测距精度 3cm~5cm
盲区 5cm~15cm
水平FOV 90°~180°
垂直FOV 25°~90°
以上表1中所列的参数和参数值对应关系仅仅是示意性的,本申请实施例对此不作具体限定。
图17示出了本申请实施例提供的DTOF激光雷达的内部结构示意图。如图17所示,DTOF激光雷达由垂直腔面发射激光器(vertical cavity surface emitting laser,VCSEL)、发射光机、单光子雪崩二极管(single photon avalanche diode,SPAD)、接收光机、holder支架、经过组装的印制电路板(printed circuit board assembly,PCBA)等组成。DTOF激光雷达的检测原理是通过飞行时间(time of fly,TOF)原理进行测距,其优点是测距精准、响应时间快以及多物体可同步检测。
以上是以短距激光雷达为DTOF激光雷达为例进行说明,本申请实施例中对于短距激光雷达的类型并不作具体限定。例如,短距激光雷达还可以为机械式激光雷达、光学相控阵(optical phased array,OPA)激光雷达等。
图18示出了本申请实施例提供的一种激光雷达系统1800的示意性框图。如图18所示,该激光雷达系统1800包括:第一激光雷达1810;第一翻转部件1820,用于将该第一激光雷达1810连接到车辆的第一侧边;其中,当该第一翻转部件1820翻转到第一位置时,该第一激光雷达1810用于对第一方向上的环境进行感知;或者,当该第一翻转部件1820翻转到第二位置时,该第一激光雷达1810用于对第二方向上的环境进行感知。
可选地,该第一激光雷达为长距激光雷达或者短距激光雷达。
示例性的,该第一激光雷达为长距激光雷达。这样,通过第一侧边的长距激光雷达采集的数据可以弥补车辆前侧的激光雷达造成的盲区,从而有助于提升车辆的安全性能。
示例性的,该第一激光雷达为短距激光雷达。这样,通过第一侧边的短距激光雷达采集的数据可以弥补车辆前侧的激光雷达造成的盲区。同时,通过第一侧边的短距激光雷达采集的数据可以对距离车辆较近的人、动物或者其他障碍物进行识别,从而有助于提升车辆的安全性能。
可选地,该第一侧边为车辆的左侧,该第二侧边为车辆的右侧;或者,该第一侧边为车辆的右侧,该第二侧边为车辆的左侧。
以上第一翻转部件1820和第一激光雷达1810的连接方式可以固定连接,或者,也可以是通过其他装置(或者,部件)连接在一起。
可选地,该第一方向可以为车辆向前行驶的方向(例如,X轴的正向)。这样,当该第一翻转部件1820翻转到第一位置时,该第一激光雷达1810可以对车辆向前行驶方向上的环境进行感知。
以上该第一激光雷达可以对车辆向前行驶方向上的环境进行感知还可以理解为第一激光雷达的水平FOV与X轴的正向相对应。
可选地,该第二方向可以为车辆向后行驶的方向(例如,X轴的负向)。这样,当该第一翻转部件1820翻转到第二位置时,该第一激光雷达1810可以对车辆向后行驶方向上的环境进行感知。
以上该第一激光雷达可以对车辆向后行驶方向上的环境进行感知还可以理解为第一激光雷达的水平FOV与X轴的负向相对应。
以上是以第一方向为车辆向前行驶的方向且第二方向为车辆向后行驶的方向为例进行说明的,本申请实施例并不限于此。例如,第一方向还可以是车辆沿Y轴的正向移动的方向,第二方向还可以是车辆沿Y轴的负向移动的方向。
图19示出了本申请实施例提供的应用场景的示意图。如图19所示,车辆位于可移动平面上。当可移动平面向右移动时,车辆沿着Y轴的正向移动。此时该第一翻转部件1820可以翻转到第一位置,从而实现第一激光雷达1810对车辆右侧的环境进行感知;或者,当可移动平面向左移动时,车辆沿着Y轴的负向移动。此时该第一翻转部件1820可以翻转到第二位置,从而实现第一激光雷达1810对车辆左侧的环境进行感知。
可选地,该激光雷达系统还包括:第二激光雷达;第二翻转部件,用于将该第二激光雷达连接到该车辆的第二侧边;其中,当该第二翻转部件翻转到第三位置时,该第二激光雷达用于对该第一方向上的环境进行感知;或者,当该第二翻转部件翻转到第四位置时,该第二激光雷达用于对该第二方向上的环境进行感知。
可选地,该第二激光雷达为长距激光雷达或者短距激光雷达。
示例性的,该第一激光雷达和该第二激光雷达可以为短距激光雷达。这样,当车辆向前行驶时,通过短距激光雷达采集的点云数据可以弥补长距激光雷达带来的盲区,有助于避免由于长距激光雷达在近距离无法检测到物体而造成的安全事故,有助于提升车辆的安全性能。当车辆向后行驶(例如,泊车)时,通过短距激光雷达采集的点云数据可以提升泊车时的安全性能,从而给有助于提升用户的泊车体验。
可选地,该第一激光雷达和该第二激光雷达关于该车辆的宽度方向上的中心线对称。
以上车辆的宽度方向上还可以理解为车辆的横轴所在的方向。
本申请实施例中,该第一激光雷达和该第二激光雷达关于该车辆的宽度方向上的中心线对称,这样可以保证车辆的美观。
可选地,该第一激光雷达和该第二激光雷达分别设置在该第一侧边和该第二侧边的后视镜上。
示例性的,如图5中的(b)或者(e)所示,可以分别在车辆左侧和车辆右侧的后视镜上布置第一激光雷达和第二激光雷达。
可选地,该第一激光雷达和该第二激光雷达分别设置在该第一侧边和该第二侧边的轮眉上。
示例性的,如图8所示,可以分别在车辆左侧和车辆右侧的后轮眉上布置第一激光雷达和第二激光雷达。
可选地,该第一激光雷达和该第二激光雷达分别设置在该第一侧边和该第二侧边的B柱上。
示例性的,如图7所示,可以分别在车辆左侧和车辆右侧的B柱上布置第一激光雷达和第二激光雷达。
可选地,该第一激光雷达和该第二激光雷达分别设置在该第一侧边和该第二侧边的门把手上。
示例性的,如图9所示,可以分别在车辆左侧和车辆右侧的门把手上布置第一激光雷达和第二激光雷达。
可选地,该激光雷达系统还包括:第三激光雷达,该第三激光雷达设置在该车辆的尾部。
可选地,该第三激光雷达为长距激光雷达或者短距激光雷达。
可选地,该激光雷达系统还包括:第四激光雷达,该第四激光雷达设置在该车辆的尾部;其中,该第三激光雷达和该第四激光雷达分别设置在该车辆的尾部车牌的两侧;或者,该第三激光雷达和该第四激光雷达设置在该车辆的尾翼;或者,该第三激光雷达和该第四激光雷达设置在该车辆的尾部车牌的上侧或者下侧。
可选地,该第四激光雷达为长距激光雷达或者短距激光雷达。
示例性的,如图12所示,该第三激光雷达和该第四激光雷达分别设置在该车辆的尾部车牌的两侧。
示例性的,如图13所示,该第三激光雷达和该第四激光雷达设置在该车辆的尾部车牌的上侧。
示例性的,如图14所示,该第三激光雷达和该第四激光雷达设置在该车辆的尾翼。
可选地,该激光雷达系统还包括:控制装置,用于获取指令,该指令用于控制该第一激光雷达对该第一方向或者该第二方向上的环境进行感知;该控制装置,还用于根据该指令,控制该第一翻转部件翻转。
可选地,该第一方向为该车辆向前行驶的方向,该第二方向为该车辆向后行驶的方向。
示例性的,该控制装置可以为上述计算平台150,或者,该控制装置可以为计算平台150中的片上系统(system-on-a-chip,SOC),或者,该控制装置可以为计算平台中的处理器,或者,该控制装置可以为整车控制器,或者,该控制装置可以为车辆的区控制器(zonalcontroller),或者,该控制装置可以为区控制器中的微控制器单元(micro controllerunit,MCU)。
示例性的,区控制器可以包括车辆集成单元(vehicle integration unit,VIU)。
图20示出了本申请实施例提供的一种控制方法2000的示意性流程图。该控制方法2000可以由上述车辆执行,或者,该控制方法可以由上述计算平台150执行,或者,该控制方法2000可以由计算平台中的SOC执行,或者,该控制方法2000可以由计算平台中的处理器执行,或者,该控制方法2000可以由整车控制器执行,或者,该控制方法2000可以由车辆的区控制器执行,或者,该控制方法2000可以由区控制器中的MCU执行。如图20所示,该方法2000包括:
S2001,获取指令。
可选地,该指令包括车辆的行驶状态。示例性的,可以通过挡位传感器采集的数据获取该车辆的行驶状态。
可选地,该指令包括第一翻转部件的翻转角度。示例性的,该指令用于指示第一翻转部件沿着如图5中的(c)所示的XOZ平面顺时针旋转180°或者逆时针旋转180°。
S2002,根据该指令,控制第一翻转部件翻转,该第一翻转部件将第一激光雷达连接到车辆的第一侧边;其中,当该第一翻转部件翻转到第一位置时,该第一激光雷达用于对第一方向上的环境进行感知;或者,当该第一翻转部件翻转到第二位置时,该第一激光雷达用于对第二方向上的环境进行感知。
可选地,该第一激光雷达为长距激光雷达或者短距激光雷达。
以上关于第一方向和第二方向的描述可以参考上述实施例中的描述,此处不再赘述。
示例性的,当车辆检测到用户挂R挡的操作时,可以控制第一翻转部件翻转到第二位置,从而对车辆向后行驶方向(或者,泊车方向)上的环境进行感知。当车辆下电时,可以保持该第一翻转部件位于该第二位置。当车辆上电且检测到用户挂D挡的操作时,可以控制第一翻转部件翻转到第一位置,从而对车辆向前行驶方向上的环境进行感知。
可选地,该指令包括该车辆的行驶状态,该根据该指令,控制第一翻转部件翻转,包括:在该行驶状态指示该车辆向前行驶时,控制该第一翻转部件翻转到该第一位置,该第一方向为该车辆向前行驶的方向;或者,在该行驶状态指示该车辆向后行驶时,控制该第一翻转部件翻转到该第二位置,该第二方向为该车辆向后行驶的方向。
示例性的,计算平台可以获取挡位传感器采集的信号,从而确定车辆当前的挡位信息。当计算平台确定车辆当前的挡位为D挡时,计算平台可以控制第一翻转机构翻转到该第一位置,从而使得第一激光雷达对车辆向前行驶方向上的环境进行感知;或者,当计算平台确定车辆当前的挡位为R挡时,计算平台可以控制第一翻转机构翻转到该第二位置,从而使得第一激光雷达对车辆向后行驶方向上的环境进行感知。
可选地,该方法2000还包括:根据该控制指令,控制第二翻转部件翻转,该第二翻转部件将第二激光雷达连接到该车辆的第二侧边;其中,当该第二翻转部件翻转到第三位置时,该第二激光雷达用于对该第一方向上的环境进行感知;或者,当该第二翻转部件翻转到第四位置时,该第二激光雷达用于对该第二方向上的环境进行感知
可选地,该第二激光雷达为长距激光雷达或者短距激光雷达。
可选地,该方法2000还包括:根据该第一激光雷达采集的点云数据进行构图。
可选地,该根据该第一激光雷达采集的点云数据进行构图,包括:根据该第一激光雷达采集的点云数据和其他传感器采集的数据进行构图。
示例性的,其他传感器采集的数据包括但不限于:长距激光雷达采集的点云数据、毫米波雷达采集的点云数据或者摄像头采集的图像数据。
本申请实施例提供用于实现以上任一种方法的控制装置,例如,提供一种控制装置包括用以实现以上任一种方法中车辆所执行的各步骤的单元(或手段)。
图21示出了本申请实施例提供的一种控制装置2100的示意性框图。如图21所示,该控制装置2100包括:获取单元2110,用于获取指令;控制单元2120,用于根据该指令,控制第一翻转部件翻转,该第一翻转部件将第一激光雷达连接到车辆的第一侧边;其中,当该第一翻转部件翻转到第一位置时,该第一激光雷达用于对第一方向上的环境进行感知;或者,当该第一翻转部件翻转到第二位置时,该第一激光雷达用于对第二方向上的环境进行感知。
可选地,该第一激光雷达为长距激光雷达或者短距激光雷达。
可选地,该指令包括该车辆的行驶状态,该控制单元2120具体用于:在该行驶状态指示该车辆向前行驶时,控制该第一翻转部件翻转到该第一位置,该第一激光雷达用于对该车辆向前行驶方向上的环境进行感知;或者,在该行驶状态指示该车辆向后行驶时,控制该第一翻转部件翻转到该第二位置,该第一激光雷达用于对该车辆向后行驶方向上的环境进行感知。
可选地,该第二激光雷达为长距激光雷达或者短距激光雷达。
可选地,该控制单元2120,还用于根据该控制指令,控制第二翻转部件翻转,该第二翻转部件将第二激光雷达连接到该车辆的第二侧边;其中,当该第二翻转部件翻转到第三位置时,该第二激光雷达用于对该第一方向上的环境进行感知;或者,当该第二翻转部件翻转到第四位置时,该第二激光雷达用于对该第二方向上的环境进行感知。
可选地,该装置还包括:构图单元,用于根据该第一激光雷达采集的点云数据进行构图。
示例性的,该获取单元2110可以由计算平台中的处理器151实现。处理器151可以获取挡位传感器采集的挡位信息。
示例性的,该控制单元2120可以由计算平台中的处理器152实现。在该挡位信息指示当前车辆为D挡时,处理器152可以控制第一翻转部件翻转至第一位置,从而使得第一激光雷达的水平FOV与车辆向前行驶的方向相对应。该处理器152还可以控制第二翻转部件翻转至第三位置,从而使得第二激光雷达的水平FOV与车辆向前行驶的方向相对应。
以上,获取单元2110和控制单元2120所实现的功能可以分别由计算平台中不同的处理器实现,或者,也可以由计算平台中相同的处理器实现,本申请实施例对比不作限定。
应理解以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如CPU或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为ASIC,通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过PLD实现,以FPGA为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如CPU、微处理器、GPU、或DSP等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为ASIC或PLD实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如NPU、TPU、DPU等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。该SOC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人工智能处理器,CPU和GPU等。
本申请实施例还提供了一种装置,该装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行上述实施例执行的方法或者步骤。
可选地,若该装置位于车辆中,上述处理单元可以是图1所示的处理器151-15n。
本申请实施例还提供了一种车辆,该车辆可以包括上述激光雷达系统1800和/或控制装置2100。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述方法。
本申请实施例还提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述方法。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者上电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-onlymemory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖。在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种激光雷达系统,其特征在于,包括:
第一激光雷达;
第一翻转部件,用于将所述第一激光雷达连接到车辆的第一侧边;
其中,当所述第一翻转部件翻转到第一位置时,所述第一激光雷达用于对第一方向上的环境进行感知;或者,
当所述第一翻转部件翻转到第二位置时,所述第一激光雷达用于对第二方向上的环境进行感知。
2.根据权利要求1所述的激光雷达系统,其特征在于,所述激光雷达系统还包括:
第二激光雷达;
第二翻转部件,用于将所述第二激光雷达连接到所述车辆的第二侧边;
其中,当所述第二翻转部件翻转到第三位置时,所述第二激光雷达用于对所述第一方向上的环境进行感知;或者,
当所述第二翻转部件翻转到第四位置时,所述第二激光雷达用于对所述第二方向上的环境进行感知。
3.根据权利要求2所述的激光雷达系统,其特征在于,所述第一激光雷达和所述第二激光雷达关于所述车辆的宽度方向上的中心线对称。
4.根据权利要求2或3所述的激光雷达系统,其特征在于,
所述第一激光雷达和所述第二激光雷达分别设置在所述第一侧边和所述第二侧边的后视镜上;或者,
所述第一激光雷达和所述第二激光雷达分别设置在所述第一侧边和所述第二侧边的轮眉上;或者,
所述第一激光雷达和所述第二激光雷达分别设置在所述第一侧边和所述第二侧边的B柱上;或者,
所述第一激光雷达和所述第二激光雷达分别设置在所述第一侧边和所述第二侧边的门把手上。
5.根据权利要求1至4中任一项所述的激光雷达系统,其特征在于,所述激光雷达系统还包括:
第三激光雷达,设置在所述车辆的尾部。
6.根据权利要求5所述的激光雷达系统,其特征在于,所述激光雷达系统还包括:
第四激光雷达,设置在所述车辆的尾部;
其中,所述第三激光雷达和所述第四激光雷达分别设置在所述车辆的尾部车牌的两侧;或者,
所述第三激光雷达和所述第四激光雷达设置在所述车辆的尾翼;或者,
所述第三激光雷达和所述第四激光雷达设置在所述车辆的尾部车牌的上侧或者下侧。
7.根据权利要求1至6中任一项所述的激光雷达系统,其特征在于,所述激光雷达系统还包括:
控制装置,用于获取指令,所述指令用于指示所述第一激光雷达对所述第一方向或者所述第二方向上的环境进行感知;
所述控制装置,还用于根据所述指令,控制所述第一翻转部件翻转。
8.根据权利要求1至7中任一项所述的激光雷达系统,其特征在于,所述第一方向为所述车辆向前行驶的方向,所述第二方向为所述车辆向后行驶的方向。
9.根据权利要求1至8中任一项所述的激光雷达系统,其特征在于,所述第一激光雷达为短距激光雷达。
10.一种车辆,其特征在于,包括如权利要求1-9中任一所述的激光雷达系统。
CN202210873651.6A 2022-07-21 2022-07-21 一种激光雷达系统、控制方法、装置和车辆 Pending CN115390090A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210873651.6A CN115390090A (zh) 2022-07-21 2022-07-21 一种激光雷达系统、控制方法、装置和车辆
PCT/CN2023/106673 WO2024017086A1 (zh) 2022-07-21 2023-07-11 一种激光雷达系统、控制方法、装置和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210873651.6A CN115390090A (zh) 2022-07-21 2022-07-21 一种激光雷达系统、控制方法、装置和车辆

Publications (1)

Publication Number Publication Date
CN115390090A true CN115390090A (zh) 2022-11-25

Family

ID=84116026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210873651.6A Pending CN115390090A (zh) 2022-07-21 2022-07-21 一种激光雷达系统、控制方法、装置和车辆

Country Status (2)

Country Link
CN (1) CN115390090A (zh)
WO (1) WO2024017086A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017086A1 (zh) * 2022-07-21 2024-01-25 华为技术有限公司 一种激光雷达系统、控制方法、装置和车辆
CN118033598A (zh) * 2024-04-15 2024-05-14 深圳市速腾聚创科技有限公司 激光雷达控制方法、装置和计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625582B2 (en) * 2015-03-25 2017-04-18 Google Inc. Vehicle with multiple light detection and ranging devices (LIDARs)
CN109375635A (zh) * 2018-12-20 2019-02-22 安徽江淮汽车集团股份有限公司 一种自动驾驶汽车道路环境感知系统及方法
CN111736153A (zh) * 2019-03-21 2020-10-02 北京京东尚科信息技术有限公司 用于无人驾驶车辆的环境检测系统、方法、设备和介质
CN113366341B (zh) * 2020-01-06 2024-04-26 深圳市速腾聚创科技有限公司 点云数据的处理方法、装置、存储介质及激光雷达系统
CN115390090A (zh) * 2022-07-21 2022-11-25 华为技术有限公司 一种激光雷达系统、控制方法、装置和车辆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017086A1 (zh) * 2022-07-21 2024-01-25 华为技术有限公司 一种激光雷达系统、控制方法、装置和车辆
CN118033598A (zh) * 2024-04-15 2024-05-14 深圳市速腾聚创科技有限公司 激光雷达控制方法、装置和计算机可读存储介质

Also Published As

Publication number Publication date
WO2024017086A1 (zh) 2024-01-25

Similar Documents

Publication Publication Date Title
EP3867118B1 (en) Lidar-based trailer tracking
CN108528460B (zh) 车辆及车辆控制方法
US10514703B2 (en) Vehicle control system, vehicle control method, and vehicle control program
CN115390090A (zh) 一种激光雷达系统、控制方法、装置和车辆
US10114371B2 (en) Vehicle control system, vehicle control method, and vehicle control program
KR20220104244A (ko) 주변 센서 하우징
KR102665624B1 (ko) 근접 감지 카메라 시스템
EP2958783A1 (en) A method to detect nearby aggressive drivers and adjust driving modes
US20210018617A1 (en) Obstacle Detection System for Work Vehicle
JP2020147139A (ja) 車両制御装置、車両制御方法、およびプログラム
CN112020661A (zh) 车底雷达单元
JP2020163903A (ja) 表示制御装置、表示制御方法、及びプログラム
DE112020004690T5 (de) Abstandsmesssensor, signalverarbeitungsverfahren und abstandsmessmodul
US20240106987A1 (en) Multi-Sensor Assembly with Improved Backward View of a Vehicle
JP6648384B2 (ja) 車両制御装置、車両制御方法、およびプログラム
US20220306153A1 (en) Driving assistance apparatus
JP2019175050A (ja) 協調作業システム
CN114348018A (zh) 商用车辆的自动驾驶系统及方法
US11719810B2 (en) Automotive synthetic aperture radar with radon transform
CN113454418A (zh) 车辆用传感系统及车辆
CN111688712A (zh) 车辆控制装置、车辆控制方法及存储介质
US20240116497A1 (en) Trailer monitoring system
CN217227441U (zh) 一种传感器系统和自动驾驶车辆
US20240051523A1 (en) Obstacle avoidance for vehicle
US20230022104A1 (en) Object detection device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination