CN115388891A - 一种大视场运动目标的空间定位方法及系统 - Google Patents

一种大视场运动目标的空间定位方法及系统 Download PDF

Info

Publication number
CN115388891A
CN115388891A CN202210938252.3A CN202210938252A CN115388891A CN 115388891 A CN115388891 A CN 115388891A CN 202210938252 A CN202210938252 A CN 202210938252A CN 115388891 A CN115388891 A CN 115388891A
Authority
CN
China
Prior art keywords
sensor array
sensor
moving target
azimuth angle
pulse sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210938252.3A
Other languages
English (en)
Inventor
张伟
田永鸿
周晖晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peng Cheng Laboratory
Original Assignee
Peng Cheng Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peng Cheng Laboratory filed Critical Peng Cheng Laboratory
Priority to CN202210938252.3A priority Critical patent/CN115388891A/zh
Publication of CN115388891A publication Critical patent/CN115388891A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Abstract

本发明所提供的一种大视场运动目标的空间定位方法及系统,系统包括:第一传感器阵列,第二传感器阵列,与第一传感器阵列和第二传感器阵列连接的同步采集模块,与同步采集模块连接的终端;第一传感器阵列和第二传感器阵列均为动态视觉传感器阵列,方法包括:预先对第一传感器阵列和第二传感器阵列进行标定,得到标定信息;同步采集模块采集第一传感器阵列和第二传感器阵列检测到运动目标时产生的脉冲序列;终端获得脉冲序列,根据标定信息和脉冲序列得到运动目标的空间三维坐标。本发明通过两个动态视觉传感器阵列拼接形成大视场,在检测运动目标时,根据采集到的脉冲序列得到运动目标的空间三维坐标,满足了大视场运动目标的空间定位的需求。

Description

一种大视场运动目标的空间定位方法及系统
技术领域
本发明涉及计算视觉测量技术领域,尤其涉及的是一种大视场运动目标的空间定位方法及系统。
背景技术
实现高速运动目标三维空间定位可以为昆虫运动轨迹分析、高速飞行器轨迹分析、弹道分析、监视预警等领域提供重要的观测手段。对于自由运动的高速目标而言,其运动范围往往较大,如何适应高速、大范围是实现高速目标空间定位需要解决的难题。
常规的光电跟踪测量仪采用“帧”相机对目标进行成像检测跟踪,对于高速目标而言,不仅成像模糊,也容易丢失跟踪目标。动态视觉传感器是一种新型的仿生视觉传感器,传感器仅对场景光强变化的地方输出脉冲数据流,具有大动态范围、高时间分辨率、无动态模糊等优点,是实现高速目标感知的理想传感器。采用双目动态视觉传感器可以实现高速目标深度的测量,其主要原理是通过双目匹配计算视差实现深度测量,但是其观测视场小,难以满足大视场高速目标空间定位的需求。
因此,现有技术存在缺陷,有待改进与发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种大视场运动目标的空间定位方法及系统,旨在解决现有技术中常规的光电跟踪测量仪和双目动态视觉传感器难以满足大视场高速目标空间定位需求的问题。
本发明解决技术问题所采用的技术方案如下:
一种大视场运动目标的空间定位方法,所述大视场运动目标的空间定位方法基于大视场运动目标的空间定位系统实现,所述大视场运动目标的空间定位系统包括:第一传感器阵列,第二传感器阵列,与所述第一传感器阵列和第二传感器阵列连接的同步采集模块,与所述同步采集模块连接的终端;所述第一传感器阵列和所述第二传感器阵列均为动态视觉传感器阵列;
所述运动目标的空间定位方法包括:
预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息;
所述同步采集模块采集所述第一传感器阵列和所述第二传感器阵列检测到运动目标时产生的脉冲序列;
所述终端获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标。
在一种实现方式中,所述预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息,包括:
获取标定图像,根据所述标定图像对所述第一传感器阵列和所述第二传感器阵列中的每个传感器进行内参数标定,得到标定后的内参数信息;
通过旋转台和标记点对每个传感器的安装方位角进行标定,得到标定后的安装方位角信息;
通过测距尺或测距仪对所述第一传感器阵列和所述第二传感器阵列之间的中心间距进行测量,得到中心间距。
在一种实现方式中,所述获取标定图像,根据所述标定图像对所述第一传感器阵列和所述第二传感器阵列中的每个传感器进行内参数标定,得到标定后的内参数信息,包括:
对所述第一传感器阵列和所述第二传感器阵列中的每个传感器从不同角度拍摄采集多张棋盘格图像,并将所述棋盘格图像作为标定图像;
根据所述标定图像采用张氏标定法对每个传感器进行内参数标定,得到标定后的内参数信息。
在一种实现方式中,所述通过旋转台和标记点对每个传感器的安装方位角进行标定,得到标定后的安装方位角信息,包括:
预先将所述第一传感器阵列和所述第二传感器阵列安装在转台上,利用所述转台将各个传感器的画面中心依次对准预设标记点;
记录对准预设标记点时所述转台的转动方位角,根据所述转动方位角分别标定各个传感器相对各自阵列中心的安装方位角,得到标定后的安装方位角信息。
在一种实现方式中,所述终端获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标,包括:
所述终端获得所述脉冲序列,利用所述内参数信息对所述脉冲序列的图像畸变进行矫正;
根据矫正后的所述脉冲序列确定所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标;
根据所述第一质心坐标、第二质心坐标和所述安装方位角信息,确定所述运动目标相对第一传感器阵列中心的第一方位角,以及相对第二传感器阵列中心的第二方位角;
根据所述第一方位角、所述第二方位角以及所述中心间距计算得到所述运动目标的空间三维坐标。
在一种实现方式中,所述根据矫正后的所述脉冲序列确定所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标,包括:
按照预设时间窗口对所述脉冲序列分段,并重建所述运动目标的图像;
将重建后的图像进行二值化处理,得到目标图像;
根据所述目标图像计算得到所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标。
在一种实现方式中,所述第一传感器阵列与所述第二传感器阵列结构相同,具有相同的大视场。
在一种实现方式中,所述运动目标相对第一传感器阵列中心的第一方位角的计算公式为:
Figure BDA0003784535190000041
所述运动目标相对第二传感器阵列中心的第二方位角的计算公式为:
Figure BDA0003784535190000042
其中,
Figure BDA0003784535190000043
为第一质心坐标;
Figure BDA0003784535190000044
为第二质心坐标;(w,h)表示传感器阵列的横向与纵向分辨率;(W,H)表示对应传感器的水平和垂直视场;
Figure BDA0003784535190000045
表示第一传感器阵列中对应传感器标定的安装方位角;
Figure BDA0003784535190000046
表示第二传感器阵列中对应传感器标定的安装方位角。
在一种实现方式中,根据所述第一方位角、所述第二方位角以及所述中心间距计算得到所述运动目标的空间三维坐标,包括:
获取所述第一传感器阵列的中心点到所述运动目标的第一直线,及所述第二传感器阵列的中心点到所述运动目标的第二直线;
计算所述第一直线和第二直线的中垂线中点,获得所述运动目标的空间三维坐标。
在一种实现方式中,所述运动目标的空间三维坐标的计算公式为:
Figure BDA0003784535190000047
其中,
Figure BDA0003784535190000048
Figure BDA0003784535190000049
Figure BDA0003784535190000051
Figure BDA0003784535190000052
Figure BDA0003784535190000053
P(x,y,z)为所述运动目标的空间三维坐标;所述OL为第一传感器阵列的中心点,所述OR为第二传感器阵列的中心点;所述B为OL与OR的中心间距。
本发明还公开了一种大视场运动目标的空间定位系统,包括:
第一传感器阵列和第二传感器阵列,用于同时检测运动目标,并在检测到运动目标时产生脉冲序列,;
同步采集模块,所述同步采集模块与所述第一传感器阵列和第二传感器阵列连接,用于采集所述第一传感器阵列和所述第二传感器阵列检测到运动目标时产生的脉冲序列;
终端,所述终端与所述同步采集模块连接,用于预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息,以及获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标;
所述第一传感器阵列和所述第二传感器阵列均为动态视觉传感器阵列。
本发明所提供的一种大视场运动目标的空间定位方法及系统,所述大视场运动目标的空间定位方法基于大视场运动目标的空间定位系统实现,所述运动目标的空间定位系统包括:第一传感器阵列,第二传感器阵列,与所述第一传感器阵列和第二传感器阵列连接的同步采集模块,与所述同步采集模块连接的终端;第一传感器阵列和第二传感器阵列均为动态视觉传感器阵列;所述大视场运动目标的空间定位方法包括:预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息;所述同步采集模块采集所述第一传感器阵列和所述第二传感器阵列检测到运动目标时产生的脉冲序列;所述终端获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标。本发明通过两个传感器阵列拼接形成大视场,视场大小与阵列结构可以根据具体应用需求而设计,通过标定传感器阵列,进而在检测运动目标时,根据采集到的脉冲序列得到运动目标的空间三维坐标,满足了大视场高速目标空间定位的需求。
附图说明
图1是本发明中大视场运动目标的空间定位方法较佳实施例的流程图。
图2是本发明中大视场运动目标的空间定位方法较佳实施例中的原理框图。
图3是本发明中大视场运动目标的空间定位方法较佳实施例中步骤S100的具体流程图。
图4是本发明中大视场运动目标的空间定位方法较佳实施例中步骤S300的具体流程图。
图5是本发明中大视场运动目标的空间定位方法较佳实施例中步骤S320的具体流程图。
图6是本发明中大视场运动目标的空间定位方法较佳实施例中步骤S340的具体流程图。
图7是本发明中大视场运动目标的空间定位方法较佳实施例中基于方位角观测的三维坐标计算原理图。
图8是本发明中大视场运动目标的空间定位系统的较佳实施例的功能原理框图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为解决大视场高速目标空间定位的难题,本发明提供一种大视场高速目标空间定位的方法和系统,系统采用两组动态视觉传感器阵列形成覆盖范围相同的大观测视场,通过观测目标方位角的方法实现快速的空间三维坐标计算。
本发明的大视场运动目标的空间定位方法基于大视场运动目标的空间定位系统实现,所述大视场运动目标的空间定位系统包括:第一传感器阵列,第二传感器阵列,与所述第一传感器阵列和第二传感器阵列连接的同步采集模块,与所述同步采集模块连接的终端。所述第一传感器阵列和所述第二传感器阵列均为动态视觉传感器阵列,所述终端可以为计算机。
请参见图1,图1是本发明中大视场运动目标的空间定位方法的流程图。如图1所示,本发明实施例所述的大视场运动目标的空间定位方法包括以下步骤:
步骤S100、预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息。
具体地,如图2所示,本发明包括定位系统标定和目标定位测量两大步骤。本发明采用动态视觉传感器,分为左侧传感器阵列和右侧传感器阵列;定位系统标定是通过标定图像实现对每个动态视觉传感器的内参数标定,通过旋转台和标记点对每个动态视觉传感器的安装方位角进行标定,通过测距尺或测距仪对传感器阵列中心间距进行标定。目标定位测量则是先利用传感器内参数对脉冲序列畸变进行矫正;然后利用矫正后的脉冲序列进行目标图像重建、重建图像二值化处理,并计算目标质心坐标;接着通过目标质心坐标及标定的传感器的安装方位角确定运动目标相对左右传感器阵列中心的方位角;最后利用目标方位角及标定的传感器阵列中心间距计算出高速运动目标的空间三维坐标。
在一种实施例中,所述第一传感器阵列和所述第二传感器阵列结构相同,两个传感器阵列拼接形成大视场,视场大小与阵列结构(如环形结构,半球形结构)可以根据具体应用需求而设计,两个传感器阵列之间相距一定距离。
在一种实现方式中,所述标定信息包括:内参数信息、安装方位角信息以及第一传感器阵列和第二传感器阵列之间的中心间距。如图3所示,所述步骤S100具体包括:
步骤S110、获取标定图像,根据所述标定图像对所述第一传感器阵列和所述第二传感器阵列中的每个传感器进行内参数标定,得到标定后的内参数信息。
在一种实施例中,所述步骤S110具体包括:对所述第一传感器阵列和所述第二传感器阵列中的每个传感器从不同角度拍摄采集多张棋盘格图像,并将所述棋盘格图像作为标定图像;根据所述标定图像采用张氏标定法对每个传感器进行内参数标定,得到标定后的内参数信息。也就是说,动态视觉传感器的内参数采用张氏标定方法进行标定,针对每个动态视觉传感器,从不同角度拍摄采集多张棋盘格图像进行标定。如果动态视觉传感器有灰度图输出时,可以直接采集灰度图进行标定;如果动态视觉传感器仅输出异步脉冲,可以采用LCD屏幕展示棋盘格的方式进行图像采集标定。其中,标定过程是在终端上进行处理的。
所述步骤S110之后为:步骤S120、通过旋转台和标记点对每个传感器的安装方位角进行标定,得到标定后的安装方位角信息。
在一种实施例中,所述步骤S120具体包括:预先将所述第一传感器阵列和所述第二传感器阵列安装在转台上,利用所述转台将各个传感器的画面中心依次对准预设标记点;记录对准预设标记点时所述转台的转动方位角,根据所述转动方位角分别标定各个传感器相对各自阵列中心的安装方位角,得到标定后的安装方位角信息。
也就是说,用户手动将传感器阵列安装在精密转台上,并利用转台将各个传感器画面中心依次对准预设标记点,例如棋盘格的角点,通过记录转台转动方位角的方式分别标定出各个传感器相对各自阵列中心的安装方位角
Figure BDA0003784535190000091
Figure BDA0003784535190000092
所述步骤S120之后为:步骤S130、通过测距尺或测距仪对所述第一传感器阵列和所述第二传感器阵列之间的中心间距进行测量,得到中心间距。也就是说,第一传感器阵列和第二传感器阵列之间的中心间距B采用测距尺或测距仪进行准确测量。
所述步骤S100之后为:步骤S200、所述同步采集模块采集所述第一传感器阵列和所述第二传感器阵列检测到运动目标时产生的脉冲序列。也就是说,同步采集模块实现了两组传感器阵列数据的同步触发采集。
所述步骤S200之后为:步骤S300、所述终端获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标。也就是说,采集的数据送入终端(如计算机)实现高速运动目标空间三维坐标的计算。
在一种实现方式中,如图4所示,所述步骤S300具体包括:
步骤S310、所述终端获得所述脉冲序列,利用所述内参数信息对所述脉冲序列的图像畸变进行矫正;
步骤S320、根据矫正后的所述脉冲序列确定所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标;
步骤S330、根据所述第一质心坐标、第二质心坐标和所述安装方位角信息,确定所述运动目标相对第一传感器阵列中心的第一方位角,以及相对第二传感器阵列中心的第二方位角;
步骤S340、根据所述第一方位角、所述第二方位角以及所述中心间距计算得到所述运动目标的空间三维坐标。
具体地,在采集获得左右传感器阵列同步脉冲序列之后,利用标定获得的传感器内参数,对脉冲序列的图像畸变进行矫正;根据矫正后的所述脉冲序列,以及标定的安装方位角信息、中心间距,最终计算得到运动目标的空间三维坐标。
在一种实施例中,如图5所示,所述步骤S320具体包括:
步骤S321、按照预设时间窗口对所述脉冲序列分段,并重建所述运动目标的图像;
步骤S322、将重建后的图像进行二值化处理,得到目标图像;
步骤S323、根据所述目标图像计算得到所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标。
具体地,按照时间窗口T对脉冲序列分段并重建出动态目标的图像I(u,v)。其中,图像重建方法可以选择事件累计法、重建网络法等方法实现。事件累积法是把时间段T内每个像素对应的脉冲个数求和,从而形成图像;重建网络法是采用训练好的神经网络,神经网络的输入为脉冲序列,输出为重建的图像。接着对重建图像进行二值化处理获得图像Ib(u,v);最后利用Ib(u,v)计算出运动目标在第一传感器阵列中的第一质心坐标
Figure BDA0003784535190000101
以及在第二传感器阵列中的第二质心坐标
Figure BDA0003784535190000102
在一种实现方式中,所述第一传感器阵列与所述第二传感器阵列均为动态视觉传感器阵列,且所述第一传感器阵列与所述第二传感器阵列的视场大小与阵列结构均相同。动态视觉传感器是一种新型的仿生视觉传感器,传感器仅对场景光强变化的地方输出脉冲数据流,具有大动态范围、高时间分辨率、无动态模糊等优点,是实现高速目标感知的理想传感器。
在所述步骤S330中,所述运动目标相对第一传感器阵列中心的第一方位角的计算公式为:
Figure BDA0003784535190000103
所述运动目标相对第二传感器阵列中心的第二方位角的计算公式为:
Figure BDA0003784535190000111
其中,
Figure BDA0003784535190000112
为第一质心坐标;
Figure BDA0003784535190000113
为第二质心坐标;(w,h)表示传感器阵列的横向与纵向分辨率;(W,H)表示对应传感器的水平和垂直视场;
Figure BDA0003784535190000114
表示第一传感器阵列中对应传感器标定的安装方位角;
Figure BDA0003784535190000115
表示第二传感器阵列中对应传感器标定的安装方位角。
在一种实现方式中,如图6所示,所述步骤S340具体包括:
步骤S341、获取所述第一传感器阵列的中心点到所述运动目标的第一直线,及所述第二传感器阵列的中心点到所述运动目标的第二直线;
步骤S342、计算所述第一直线和第二直线的中垂线中点,获得所述运动目标的空间三维坐标。
请参阅图7,假设所述第一传感器阵列和所述第二传感器阵列的中心点分别为OL和OR,以OLOR连线的中点O为世界坐标系原点,OLOR相距长度为B,高速运动目标的空间位置为P(x,y,z),左右传感器阵列观测获得P的方位角分别为(φLL)和(φRR);根据空间几何关系,通过计算直线
Figure BDA0003784535190000116
Figure BDA0003784535190000117
中垂线中点的方法估算出动态目标P的空间三维坐标。
在一种实施例中,所述运动目标的空间三维坐标的计算公式为:
Figure BDA0003784535190000118
其中,
Figure BDA0003784535190000119
Figure BDA00037845351900001110
Figure BDA00037845351900001111
Figure BDA0003784535190000121
Figure BDA0003784535190000122
P(x,y,z)为所述运动目标的空间三维坐标;所述OL为第一传感器阵列的中心点,所述OR为第二传感器阵列的中心点;所述B为OL与OR的中心间距。
本发明所提出的大视场运动目标的空间定位方法为大视场范围高速运动目标的定位提供了一种可行途径,大视场运动目标的空间定位系统采用的动态视觉传感器阵列仅对运动目标进行响应,既避免了普通相机对运动目标成像模糊的缺点,又极大减少了静态背景产生的冗余数据,在实际应用中可以极大减少冗余数据量,节省了计算资源和通信带宽;并且通过两组传感器阵列独立确定方位角的方式实现三维定位,不仅避免了双目视场范围小和需要图像特征匹配的劣势,还具有传感器阵列间距灵活可调的特点。
进一步地,如图8所示,基于上述大视场运动目标的空间定位方法,本发明还相应提供了一种大视场运动目标的空间定位系统,包括:
第一传感器阵列10和第二传感器阵列20,用于同时检测运动目标,并在检测到运动目标时产生脉冲序列;
同步采集模块30,所述同步采集模块30与所述第一传感器阵列10和第二传感器阵列20连接,用于采集所述第一传感器阵列10和所述第二传感器阵列20检测到运动目标时产生的脉冲序列;
终端40,所述终端40与所述同步采集模块30连接,用于预先对所述第一传感器阵列10和所述第二传感器阵列20进行标定,得到标定信息,以及获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标;
所述第一传感器阵列和所述第二传感器阵列均为动态视觉传感器阵列。
在一种实现方式中,预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息,具体包括:获取标定图像,根据所述标定图像对所述第一传感器阵列和所述第二传感器阵列中的每个传感器进行内参数标定,得到标定后的内参数信息;通过旋转台和标记点对每个传感器的安装方位角进行标定,得到标定后的安装方位角信息;通过测距尺或测距仪对所述第一传感器阵列和所述第二传感器阵列之间的中心间距进行测量,得到中心间距。
在一种实施例中,所述获取标定图像,根据所述标定图像对所述第一传感器阵列和所述第二传感器阵列中的每个传感器进行内参数标定,得到标定后的内参数信息,包括:对所述第一传感器阵列和所述第二传感器阵列中的每个传感器从不同角度拍摄采集多张棋盘格图像,并将所述棋盘格图像作为标定图像;根据所述标定图像采用张氏标定法对每个传感器进行内参数标定,得到标定后的内参数信息。
在一种实施例中,所述通过旋转台和标记点对每个传感器的安装方位角进行标定,得到标定后的安装方位角信息,包括:预先将所述第一传感器阵列和所述第二传感器阵列安装在转台上,利用所述转台将各个传感器的画面中心依次对准预设标记点;记录对准预设标记点时所述转台的转动方位角,根据所述转动方位角分别标定各个传感器相对各自阵列中心的安装方位角,得到标定后的安装方位角信息。
在一种实施例中,所述终端还用于获得所述脉冲序列,利用所述内参数信息对所述脉冲序列的图像畸变进行矫正;根据矫正后的所述脉冲序列确定所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标;根据所述第一质心坐标、第二质心坐标和所述安装方位角信息,确定所述运动目标相对第一传感器阵列中心的第一方位角,以及相对第二传感器阵列中心的第二方位角;以及根据所述第一方位角、所述第二方位角以及所述中心间距计算得到所述运动目标的空间三维坐标。
在一种实施例中,所述终端还用于按照预设时间窗口对所述脉冲序列分段,并重建所述运动目标的图像;将重建后的图像进行二值化处理,得到目标图像;以及根据所述目标图像计算得到所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标。
在一种实施例中,所述终端还用于获取所述第一传感器阵列的中心点到所述运动目标的第一直线,及所述第二传感器阵列的中心点到所述运动目标的第二直线;计算所述第一直线和第二直线的中垂线中点获得所述运动目标的空间三维坐标。
本发明还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序能够被执行以用于实现如上所述的大视场运动目标的空间定位方法的步骤。
综上所述,本发明公开的一种大视场运动目标的空间定位方法及系统,所述大视场运动目标的空间定位方法基于大视场运动目标的空间定位系统实现,所述大视场运动目标的空间定位系统包括:第一传感器阵列,第二传感器阵列,与所述第一传感器阵列和第二传感器阵列连接的同步采集模块,与所述同步采集模块连接的终端;第一传感器阵列和第二传感器阵列均为动态视觉传感器阵列;所述大视场运动目标的空间定位方法包括:预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息;所述同步采集模块采集所述第一传感器阵列和所述第二传感器阵列检测到运动目标时产生的脉冲序列;所述终端获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标。本发明通过两个传感器阵列拼接形成大视场,视场大小与阵列结构可以根据具体应用需求而设计,通过标定传感器阵列,进而在检测运动目标时,根据采集到的脉冲序列得到运动目标的空间三维坐标,满足了大视场高速目标空间定位的需求。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (11)

1.一种大视场运动目标的空间定位方法,所述大视场运动目标的空间定位方法基于大视场运动目标的空间定位系统实现,其特征在于,所述大视场运动目标的空间定位系统包括:第一传感器阵列,第二传感器阵列,与所述第一传感器阵列和第二传感器阵列连接的同步采集模块,与所述同步采集模块连接的终端;所述第一传感器阵列和所述第二传感器阵列均为动态视觉传感器阵列;
所述运动目标的空间定位方法包括:
预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息;
所述同步采集模块采集所述第一传感器阵列和所述第二传感器阵列检测到运动目标时产生的脉冲序列;
所述终端获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标。
2.根据权利要求1所述的大视场运动目标的空间定位方法,其特征在于,所述预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息,包括:
获取标定图像,根据所述标定图像对所述第一传感器阵列和所述第二传感器阵列中的每个传感器进行内参数标定,得到标定后的内参数信息;
通过旋转台和标记点对每个传感器的安装方位角进行标定,得到标定后的安装方位角信息;
通过测距尺或测距仪对所述第一传感器阵列和所述第二传感器阵列之间的中心间距进行测量,得到中心间距。
3.根据权利要求2所述的大视场运动目标的空间定位方法,其特征在于,所述获取标定图像,根据所述标定图像对所述第一传感器阵列和所述第二传感器阵列中的每个传感器进行内参数标定,得到标定后的内参数信息,包括:
对所述第一传感器阵列和所述第二传感器阵列中的每个传感器从不同角度拍摄采集多张棋盘格图像,并将所述棋盘格图像作为标定图像;
根据所述标定图像采用张氏标定法对每个传感器进行内参数标定,得到标定后的内参数信息。
4.根据权利要求2所述的大视场运动目标的空间定位方法,其特征在于,所述通过旋转台和标记点对每个传感器的安装方位角进行标定,得到标定后的安装方位角信息,包括:
预先将所述第一传感器阵列和所述第二传感器阵列安装在转台上,利用所述转台将各个传感器的画面中心依次对准预设标记点;
记录对准预设标记点时所述转台的转动方位角,根据所述转动方位角分别标定各个传感器相对各自阵列中心的安装方位角,得到标定后的安装方位角信息。
5.根据权利要求2所述的大视场运动目标的空间定位方法,其特征在于,所述终端获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标,包括:
所述终端获得所述脉冲序列,利用所述内参数信息对所述脉冲序列的图像畸变进行矫正;
根据矫正后的所述脉冲序列确定所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标;
根据所述第一质心坐标、第二质心坐标和所述安装方位角信息,确定所述运动目标相对第一传感器阵列中心的第一方位角,以及相对第二传感器阵列中心的第二方位角;
根据所述第一方位角、所述第二方位角以及所述中心间距计算得到所述运动目标的空间三维坐标。
6.根据权利要求5所述的大视场运动目标的空间定位方法,其特征在于,所述根据矫正后的所述脉冲序列确定所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标,包括:
按照预设时间窗口对所述脉冲序列分段,并重建所述运动目标的图像;
将重建后的图像进行二值化处理,得到目标图像;
根据所述目标图像计算得到所述运动目标在所述第一传感器阵列中的第一质心坐标和在所述第二传感器阵列中的第二质心坐标。
7.根据权利要求5所述的大视场运动目标的空间定位方法,其特征在于,所述第一传感器阵列与所述第二传感器阵列结构相同,具有相同的大视场。
8.根据权利要求7所述的大视场运动目标的空间定位方法,其特征在于,
所述运动目标相对第一传感器阵列中心的第一方位角的计算公式为:
Figure FDA0003784535180000031
所述运动目标相对第二传感器阵列中心的第二方位角的计算公式为:
Figure FDA0003784535180000032
其中,
Figure FDA0003784535180000033
为第一质心坐标;
Figure FDA0003784535180000034
为第二质心坐标;(w,h)表示传感器阵列的横向与纵向分辨率;(W,H)表示对应传感器的水平和垂直视场;
Figure FDA0003784535180000035
表示第一传感器阵列中对应传感器标定的安装方位角;
Figure FDA0003784535180000036
表示第二传感器阵列中对应传感器标定的安装方位角。
9.根据权利要求8所述的大视场运动目标的空间定位方法,其特征在于,根据所述第一方位角、所述第二方位角以及所述中心间距计算得到所述运动目标的空间三维坐标,包括:
获取所述第一传感器阵列的中心点到所述运动目标的第一直线,及所述第二传感器阵列的中心点到所述运动目标的第二直线;
计算所述第一直线和第二直线的中垂线中点,获得所述运动目标的空间三维坐标。
10.根据权利要求9所述的运动目标的空间定位方法,其特征在于,所述运动目标的空间三维坐标的计算公式为:
Figure FDA0003784535180000041
其中,
Figure FDA0003784535180000042
Figure FDA0003784535180000043
Figure FDA0003784535180000044
Figure FDA0003784535180000045
Figure FDA0003784535180000046
P(x,y,z)为所述运动目标的空间三维坐标;所述OL为第一传感器阵列的中心点,所述OR为第二传感器阵列的中心点;所述B为OL与OR的中心间距。
11.一种大视场运动目标的空间定位系统,其特征在于,包括:
第一传感器阵列和第二传感器阵列,用于同时检测运动目标,并在检测到运动目标时产生脉冲序列,;
同步采集模块,所述同步采集模块与所述第一传感器阵列和第二传感器阵列连接,用于采集所述第一传感器阵列和所述第二传感器阵列检测到运动目标时产生的脉冲序列;
终端,所述终端与所述同步采集模块连接,用于预先对所述第一传感器阵列和所述第二传感器阵列进行标定,得到标定信息,以及获得所述脉冲序列,根据所述标定信息和所述脉冲序列得到所述运动目标的空间三维坐标;
所述第一传感器阵列和所述第二传感器阵列均为动态视觉传感器阵列。
CN202210938252.3A 2022-08-05 2022-08-05 一种大视场运动目标的空间定位方法及系统 Pending CN115388891A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210938252.3A CN115388891A (zh) 2022-08-05 2022-08-05 一种大视场运动目标的空间定位方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210938252.3A CN115388891A (zh) 2022-08-05 2022-08-05 一种大视场运动目标的空间定位方法及系统

Publications (1)

Publication Number Publication Date
CN115388891A true CN115388891A (zh) 2022-11-25

Family

ID=84119254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210938252.3A Pending CN115388891A (zh) 2022-08-05 2022-08-05 一种大视场运动目标的空间定位方法及系统

Country Status (1)

Country Link
CN (1) CN115388891A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116012833A (zh) * 2023-02-03 2023-04-25 脉冲视觉(北京)科技有限公司 车牌检测方法、装置、设备、介质和程序产品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116012833A (zh) * 2023-02-03 2023-04-25 脉冲视觉(北京)科技有限公司 车牌检测方法、装置、设备、介质和程序产品
CN116012833B (zh) * 2023-02-03 2023-10-10 脉冲视觉(北京)科技有限公司 车牌检测方法、装置、设备、介质和程序产品

Similar Documents

Publication Publication Date Title
CN109559355B (zh) 一种基于相机组的无公共视场的多相机全局标定装置及方法
CN109632085B (zh) 一种基于单目视觉的低频振动校准方法
CN112669393A (zh) 一种激光雷达与相机联合标定方法
CN111288967B (zh) 一种基于机器视觉的远距离高精度位移检测方法
CN110332887A (zh) 一种基于特征光标点的单目视觉位姿测量系统及方法
CN111487320B (zh) 基于三维光学成像传感器的三维超声成像方法和系统
CN112581545B (zh) 多模态热源识别及三维空间定位系统、方法及存储介质
CN111854622B (zh) 一种大视场光学动态变形测量方法
CN109269525B (zh) 一种空间探测器起飞或着陆过程光学测量系统及方法
CN101561251A (zh) 基于相位标靶的光学三坐标测量方法
CN114323571A (zh) 一种光电瞄准系统多光轴一致性检测方法
CN110470226A (zh) 一种基于无人机系统的桥梁结构位移测量方法
CN106197292A (zh) 一种建筑物位移监测方法
CN110763204A (zh) 一种平面编码靶标及其位姿测量方法
CN113008158B (zh) 多线激光轮胎花纹深度测量方法
CN113554697A (zh) 基于线激光的舱段轮廓精确测量方法
CN107421503B (zh) 单探测器三线阵立体测绘成像方法及系统
CN111289111B (zh) 自标校红外体温快速检测方法及检测装置
CN115388891A (zh) 一种大视场运动目标的空间定位方法及系统
CN116310127A (zh) 基于环形激光三角测量的管道内壁三维重建方法及系统
CN101726316A (zh) 内方位元素及畸变测试仪
CN116958265A (zh) 一种基于双目视觉的船舶位姿测量方法及系统
CN105717502B (zh) 一种基于线阵ccd的高速激光测距装置
CN109470269B (zh) 空间目标测量机构的标定方法、标定设备及标定系统
CN114088088B (zh) 一种基于单目视觉的角速率与角加速度测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination