CN115377356A - Three-dimensional vertical porous composite alkali metal cathode and preparation method and application thereof - Google Patents
Three-dimensional vertical porous composite alkali metal cathode and preparation method and application thereof Download PDFInfo
- Publication number
- CN115377356A CN115377356A CN202211202425.1A CN202211202425A CN115377356A CN 115377356 A CN115377356 A CN 115377356A CN 202211202425 A CN202211202425 A CN 202211202425A CN 115377356 A CN115377356 A CN 115377356A
- Authority
- CN
- China
- Prior art keywords
- alkali metal
- dimensional vertical
- porous composite
- composite
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052783 alkali metal Inorganic materials 0.000 title claims abstract description 143
- 150000001340 alkali metals Chemical class 0.000 title claims abstract description 143
- 239000002131 composite material Substances 0.000 title claims abstract description 56
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 229920000642 polymer Polymers 0.000 claims abstract description 89
- 238000000576 coating method Methods 0.000 claims abstract description 45
- 239000011248 coating agent Substances 0.000 claims abstract description 40
- 239000002243 precursor Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000004080 punching Methods 0.000 claims abstract description 21
- 239000003960 organic solvent Substances 0.000 claims abstract description 18
- 238000001035 drying Methods 0.000 claims abstract description 13
- 238000011065 in-situ storage Methods 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 14
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 14
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 12
- 239000011148 porous material Substances 0.000 claims description 11
- 229920005575 poly(amic acid) Polymers 0.000 claims description 8
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 7
- 239000002033 PVDF binder Substances 0.000 claims description 7
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 7
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 238000007606 doctor blade method Methods 0.000 claims 1
- 238000000151 deposition Methods 0.000 abstract description 21
- 230000008021 deposition Effects 0.000 abstract description 16
- 230000001351 cycling effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 34
- 238000001465 metallisation Methods 0.000 description 15
- 230000005684 electric field Effects 0.000 description 8
- 210000001787 dendrite Anatomy 0.000 description 7
- 238000005553 drilling Methods 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000009916 joint effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明属于金属电池制备技术领域,具体涉及一种三维垂直多孔复合碱金属负极及其制备方法和应用。The invention belongs to the technical field of metal battery preparation, and in particular relates to a three-dimensional vertical porous composite alkali metal negative electrode and its preparation method and application.
背景技术Background technique
传统二次电池逐渐难以满足飞速发展的电动汽车、光伏电站等大型储能装置对能量密度和安全性的高要求。比如,基于离子嵌入/脱出反应的锂离子电池,其负极为比容量已逼近其理论极限(372mAh g-1)的石墨材料,严重限制了锂离子电池整体能量密度的进一步突破,因此寻找可替代石墨的高比容量负极材料是大势所趋。Traditional secondary batteries are gradually difficult to meet the high energy density and safety requirements of large-scale energy storage devices such as electric vehicles and photovoltaic power stations that are rapidly developing. For example, for lithium-ion batteries based on ion intercalation/deintercalation reactions, the specific capacity of the anode has approached its theoretical limit (372mAh g -1 ), which severely limits further breakthroughs in the overall energy density of lithium-ion batteries. The high specific capacity negative electrode material of graphite is the trend of the times.
以碱金属材料代替石墨材料直接作为二次电池负极具有诸多优势。一方面,锂、钠、钾等碱金属资源地球储量丰富,可以满足大规模应用的要求。另一方面,碱金属负极普遍具有高比容量及低密度,可以极大的提升二次电池能量密度。比如,碱金属因具有极高的理论比容量(3860mAh g-1)、极低的密度(0.534g cm-3)和低电化学势(-3.04V vs标准氢电极),被认为是负极材料的“圣杯”。Using alkali metal materials instead of graphite materials directly as the negative electrode of secondary batteries has many advantages. On the one hand, the earth reserves of alkali metal resources such as lithium, sodium, and potassium are abundant, which can meet the requirements of large-scale applications. On the other hand, alkali metal negative electrodes generally have high specific capacity and low density, which can greatly improve the energy density of secondary batteries. For example, alkali metals are considered as negative electrode materials due to their extremely high theoretical specific capacity (3860mAh g -1 ), extremely low density (0.534g cm -3 ) and low electrochemical potential (-3.04V vs standard hydrogen electrode). The "Holy Grail".
但以碱金属直接作为二次电池负极同样会带来诸多问题,严重限制了其商业化应用前景。包括:However, using alkali metal directly as the negative electrode of secondary batteries will also bring many problems, which seriously limits its commercial application prospects. include:
(1)碱金属负极由于表面不平整等原因,在循环过程中易出现枝晶状沉积而导致隔膜刺穿,最终发生内短路引起起火爆炸等严重安全问题。(1) Due to the uneven surface and other reasons, the alkali metal anode is prone to dendritic deposition during the cycle, which leads to the piercing of the separator, and eventually causes serious safety problems such as fire and explosion due to internal short circuit.
(2)此外,碱金属负极在循环过程中存在巨大的体积变化,易导致电极表面SEI膜破裂,暴露出的新鲜的碱金属与电解液持续反应,从而加剧容量衰减。(2) In addition, the alkali metal anode has a huge volume change during the cycle, which easily leads to the rupture of the SEI film on the electrode surface, and the exposed fresh alkali metal continues to react with the electrolyte, thereby aggravating the capacity fading.
(3)同时,碱金属负极化学活性较高,与电解液或固态电解质匹配性较差,长循环过程中易发生腐蚀或形成钝化层,导致界面阻抗和极化骤增,最终电池失效。(3) At the same time, the alkali metal negative electrode has high chemical activity and poor compatibility with the electrolyte or solid electrolyte. It is prone to corrosion or the formation of a passivation layer during the long cycle process, resulting in a sudden increase in interface impedance and polarization, and eventually the battery fails.
因此,为抑制枝晶生长,限制碱金属负极在沉积/剥离过程中的体积变化,提升二次电池的安全性能,多种改性方法被提出,包括使用电解液添加剂、固态电解质、金属沉积骨架及复合金属负极等。但这些方法大多数工艺复杂、成本较高,且不能从根本上阻止枝晶状碱金属沉积形貌的产生,在长循环后仍不可避免的会出现上述问题,主要原因包括:Therefore, in order to inhibit the growth of dendrites, limit the volume change of the alkali metal anode during the deposition/stripping process, and improve the safety performance of the secondary battery, a variety of modification methods have been proposed, including the use of electrolyte additives, solid electrolytes, and metal deposition frameworks. and composite metal anodes. However, most of these methods are complicated in process and high in cost, and cannot fundamentally prevent the formation of dendritic alkali metal deposition morphology, and the above problems will inevitably occur after long cycles. The main reasons include:
(1)枝晶状碱金属沉积的产生是一个复杂随机的不可控过程,受到温度、压力、电场强度、离子浓度及电解液性能等多种因素的影响。(1) The generation of dendritic alkali metal deposition is a complex random uncontrollable process, which is affected by many factors such as temperature, pressure, electric field strength, ion concentration and electrolyte performance.
(2)引入的添加剂及界面层等在长循环后会消耗殆尽或受到破坏而失效,难以继续发挥作用。(2) The introduced additives and interfacial layers will be exhausted or damaged after long cycle, and will fail, making it difficult to continue to function.
(3)几乎没有方法能完全抑制锂金属与电解液或固态电解质发生副反应,产物最终会在界面处积累影响锂沉积形貌。(3) There is almost no way to completely suppress the side reaction between lithium metal and electrolyte or solid electrolyte, and the products will eventually accumulate at the interface and affect the morphology of lithium deposition.
因此,寻找一种简捷工艺在枝晶已经产生的情况下调控其生长行为并大幅延缓隔膜刺穿时间,对碱金属电池的安全性提升显得尤为重要。Therefore, it is particularly important to find a simple process to regulate the growth behavior of dendrites and greatly delay the separator puncture time when the dendrites have already been generated, which is particularly important for improving the safety of alkali metal batteries.
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种三维垂直多孔复合碱金属负极及其制备方法和应用,用于解决碱金属电池安全性低及循环稳定性差的技术问题,可以在枝晶状金属沉积已产生的情况下进一步调控其生长行为方式,实现致密化沉积并极大降低隔膜被刺穿的几率,达到提高金属电池的循环寿命与安全性的目的。The technical problem to be solved by the present invention is to provide a three-dimensional vertical porous composite alkali metal negative electrode and its preparation method and application in order to solve the technical problems of low safety and poor cycle stability of alkali metal batteries. , it is possible to further control the growth behavior of dendritic metal deposition under the condition that dendritic metal deposition has already occurred, realize densified deposition and greatly reduce the probability of the separator being pierced, and achieve the purpose of improving the cycle life and safety of the metal battery.
本发明采用以下技术方案:The present invention adopts following technical scheme:
一种三维垂直多孔复合碱金属负极,包括碱金属,碱金属的一侧设置有复合聚合物层,在复合聚合物层的一侧阵列设置三维垂直孔洞,三维垂直孔洞为微米级或亚微米级。A three-dimensional vertical porous composite alkali metal negative electrode, including alkali metal, one side of the alkali metal is provided with a composite polymer layer, and three-dimensional vertical holes are arranged in an array on one side of the composite polymer layer, and the three-dimensional vertical holes are micron or submicron .
具体的,复合聚合物层的厚度为1~10μm。Specifically, the thickness of the composite polymer layer is 1-10 μm.
具体的,三维垂直孔洞的直径为50~150μm,三维垂直孔洞的孔深为碱金属负极厚度的70%~90%,三维垂直孔洞在复合聚合物层上的面积占比为30%~70%。Specifically, the diameter of the three-dimensional vertical holes is 50-150 μm, the depth of the three-dimensional vertical holes is 70% to 90% of the thickness of the alkali metal negative electrode, and the area ratio of the three-dimensional vertical holes on the composite polymer layer is 30% to 70%. .
本发明的另一技术方案是,一种制备三维垂直多孔复合碱金属负极的方法,包括以下步骤:Another technical solution of the present invention is a method for preparing a three-dimensional vertical porous composite alkali metal negative electrode, comprising the following steps:
将聚合物前驱体溶液原位薄涂在碱金属的表面,在惰性氛围下,经低温烘干得到含有复合聚合物层的碱金属;通过机械打孔方法在复合聚合物层的一侧表面进行打孔,得到三维垂直多孔复合碱金属负极。The polymer precursor solution is thinly coated on the surface of the alkali metal in situ, and the alkali metal containing the composite polymer layer is obtained by drying at a low temperature under an inert atmosphere; the composite polymer layer is formed on one side of the composite polymer layer by mechanical drilling. Holes are punched to obtain a three-dimensional vertical porous composite alkali metal negative electrode.
具体的,聚合物前驱体溶液的质量分数为5%~20%。Specifically, the mass fraction of the polymer precursor solution is 5%-20%.
进一步的,将聚合物和有机溶剂混合,经充分搅拌得到聚合物前驱体溶液,聚合物为聚偏氟乙烯、聚偏氟乙烯-六氟丙烯、聚丙烯腈、聚酰胺酸和聚酰亚胺中的一种或几种,有机溶剂为N,N-二甲基甲酰胺,N,N-二甲基乙酰胺和乙腈中的一种或几种。Further, the polymer is mixed with an organic solvent, and the polymer precursor solution is obtained through thorough stirring, and the polymer is polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyacrylonitrile, polyamic acid and polyimide One or more of them, and the organic solvent is one or more of N,N-dimethylformamide, N,N-dimethylacetamide and acetonitrile.
具体的,采用刮刀刮涂方法将聚合物前驱体溶液原位薄涂在碱金属的表面,刮刀的高度高于碱金属厚度20~50μm。Specifically, the polymer precursor solution is thinly coated on the surface of the alkali metal in situ by using a scraper coating method, and the height of the scraper is 20-50 μm higher than the thickness of the alkali metal.
具体的,低温烘干处理的温度为40~50℃,时间为3~5h。Specifically, the temperature of the low-temperature drying treatment is 40-50° C., and the time is 3-5 hours.
具体的,碱金属为锂、钠和钾中的一种或多种。Specifically, the alkali metal is one or more of lithium, sodium and potassium.
本发明的另一技术方案是,三维垂直多孔复合碱金属负极在碱金属电池中的应用。Another technical solution of the present invention is the application of the three-dimensional vertical porous composite alkali metal negative electrode in the alkali metal battery.
与现有技术相比,本发明至少具有以下有益效果:Compared with the prior art, the present invention has at least the following beneficial effects:
一种三维垂直多孔复合碱金属负极,复合聚合物涂层一方面由于具有电子绝缘特性将碱金属沉积限制在洞内进行,另一方面由于其具有吸附离子特性提升了洞外边缘的离子浓度,有利于调控孔洞内壁枝晶状金属沉积沿水平方向向洞心生长;阵列设置的三维垂直孔洞可以有效调控负极电场分布,使得洞内电场转变为垂直向下并向四周洞壁偏转,洞外边缘电场转变为垂直向下并向洞内偏转,因此,碱金属会同时从洞底垂直沉积向上生长及洞壁水平沉积向洞心生长,直至相互接触挤压;在垂直阵列孔洞结构及聚合物涂层的双重作用下,最终洞内碱金属沉积形貌致密均匀,降低了枝晶刺穿隔膜的几率,极大提升了碱金属二次电池的电化学稳定性及安全性能。A three-dimensional vertical porous composite alkali metal negative electrode. On the one hand, the composite polymer coating confines the deposition of alkali metal in the hole due to its electronic insulating properties; It is beneficial to control the growth of dendritic metal deposition on the inner wall of the hole to the center of the hole along the horizontal direction; the three-dimensional vertical holes set in the array can effectively control the distribution of the negative electric field, so that the electric field in the hole changes vertically downward and deflects to the surrounding wall, and the outer edge of the hole The electric field changes vertically downward and deflects into the hole. Therefore, the alkali metal will grow upward from the vertical deposition on the bottom of the hole and the horizontal deposition on the wall to the center of the hole at the same time until they are in contact with each other. In the vertical array pore structure and polymer coating Under the double action of the layer, the final shape of the alkali metal deposition in the hole is dense and uniform, which reduces the probability of dendrites piercing the separator, and greatly improves the electrochemical stability and safety performance of the alkali metal secondary battery.
进一步的,调节刮刀高度使得最终复合聚合物层的厚度为1~10μm,不仅可以起到隔绝电子的作用,防止锂离子在聚合物层表面进行沉积,将其限制在洞内进行,并且超薄的厚度能尽量不影响电池的能量密度。Further, the height of the scraper is adjusted so that the thickness of the final composite polymer layer is 1-10 μm, which can not only isolate electrons, but also prevent lithium ions from depositing on the surface of the polymer layer, confine it to the hole, and be ultra-thin. The thickness can try not to affect the energy density of the battery.
进一步的,根据所匹配的正极材料的面容量确定复合负极需要的面沉积容量,再选择合适的针头孔径、针头密度及打孔深度;相同针头密度下,孔径及孔深适当增加,能容纳的洞内碱金属沉积面容量越多,则可以匹配高活性物质面载量的正极材料;相同孔径及孔深下,针头密度越大越均匀,能容纳的洞内碱金属沉积面容量越多,也可以匹配高活性物质面载量的正极材料。Further, according to the surface capacity of the matched positive electrode material, determine the surface deposition capacity required by the composite negative electrode, and then select the appropriate needle diameter, needle density and drilling depth; under the same needle density, the hole diameter and hole depth are appropriately increased, and the The larger the surface capacity of alkali metal deposition in the cave, the higher the positive electrode material with high active material surface loading can be matched; the larger the needle density and the more uniform the needle density, the more the alkali metal deposition surface capacity in the cave can be accommodated. Anode materials that can match the surface loading of high active materials.
一种三维垂直多孔复合碱金属负极制备方法,具有有机界面层的碱金属负极,即使在打孔形成三维沉积结构后机械性能仍较强,是碱金属负极沉积支撑结构的理想选择,先涂布烘干形成有机聚合物涂层的制备方法步骤设置,可以先增加碱金属负极的机械强度,使得在随后机械打孔的过程中碱金属负极不易破损损坏。A method for preparing a three-dimensional vertical porous composite alkali metal negative electrode. The alkali metal negative electrode with an organic interface layer has strong mechanical properties even after drilling to form a three-dimensional deposition structure. It is an ideal choice for the deposition support structure of the alkali metal negative electrode. Coating first The step setting of the preparation method for drying and forming the organic polymer coating can first increase the mechanical strength of the alkali metal negative electrode, so that the alkali metal negative electrode is not easy to be damaged during the subsequent mechanical drilling process.
进一步的,为避免溶剂挥发较慢导致碱金属与其发生持续副反应,根据所需要的刮刀高度及刮涂厚度确定前驱体溶液浓度。若刮刀高度和刮涂厚度较小,则前驱体溶液浓度也可适当减小,即有机溶剂占比可较高;反之,前驱体溶液浓度要适当加大,即有机溶剂占比要减小。Further, in order to avoid the slow volatilization of the solvent and the continuous side reaction of the alkali metal with it, the concentration of the precursor solution is determined according to the required height of the scraper and the thickness of the scraper. If the height of the scraper and the thickness of the scraper are small, the concentration of the precursor solution can also be appropriately reduced, that is, the proportion of the organic solvent can be higher; otherwise, the concentration of the precursor solution should be increased appropriately, that is, the proportion of the organic solvent should be reduced.
进一步的,通过将聚合物溶于有机溶剂中再刮涂的方法,不仅可以增加聚合物与碱金属的粘结性,而且能获得厚度等特性更均匀一致、表面光滑的有机聚合物涂层。Furthermore, by dissolving the polymer in an organic solvent and then scraping it, not only can the adhesion between the polymer and the alkali metal be increased, but also an organic polymer coating with more uniform properties such as thickness and a smooth surface can be obtained.
进一步的,通过刮刀刮涂的方法将有机聚合物溶液涂于碱金属表面,不仅可以更方便地改变刮刀高度以得到需要的涂层厚度,并且可以降低碱金属表面溶剂的量和增加挥发面积以抑制副反应的持续发生。Further, the organic polymer solution is applied to the surface of the alkali metal by the method of scraping with a scraper, which not only can change the height of the scraper more conveniently to obtain the required coating thickness, but also can reduce the amount of solvent on the surface of the alkali metal and increase the volatilization area to Inhibit the continued occurrence of side effects.
进一步的,通过薄涂聚合物溶液及快速低温烘干处理将有机溶剂挥发完全,避免其与碱金属持续发生副反应。涂层厚度一定的情况下,低温烘干温度越低则时间应适当增加;低温烘干温度一定的情况下,涂层厚度越厚则时间应适当增加;低温烘干时间一定的情况下,涂层厚度越厚则低温烘干温度应适当增加,最终使有机溶剂充分挥发。Further, the organic solvent is completely volatilized by thin coating of the polymer solution and rapid low-temperature drying treatment, so as to avoid continuous side reactions between it and the alkali metal. When the coating thickness is constant, the lower the low-temperature drying temperature, the time should be appropriately increased; when the low-temperature drying temperature is constant, the thicker the coating thickness, the time should be appropriately increased; The thicker the layer thickness, the lower the drying temperature should be appropriately increased, so that the organic solvent can be fully volatilized.
进一步的,碱金属(如:锂、钠、钾等)地球资源丰富,易于获取,普遍具有高的理论容量、低的密度和较低的电化学电位,有望取代商业石墨负极以提高电池的能量密度。Further, alkali metals (such as: lithium, sodium, potassium, etc.) are abundant in earth resources, easy to obtain, generally have high theoretical capacity, low density and low electrochemical potential, and are expected to replace commercial graphite negative electrodes to improve battery energy. density.
综上所述,本发明制备工艺简单,成本较低,适合大规模的商业化生产,通过另辟蹊径调控枝晶状沉积碱金属的生长方式以获得致密化沉积形貌,从而极大提升了电池循环稳定性,应用前景广阔,有助于二次碱金属电池高安全性的突破。To sum up, the preparation process of the present invention is simple, the cost is low, and it is suitable for large-scale commercial production. By adjusting the growth mode of dendritic deposited alkali metal to obtain a densified deposition morphology, the battery cycle is greatly improved. Stability, broad application prospects, and contribute to the breakthrough of high safety of secondary alkali metal batteries.
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solutions of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments.
附图说明Description of drawings
图1为;实施例1制备得到的碱金属负极的光学图像,其中(a)为仅含有聚合物涂层的碱金属负极表面形貌,(b)为同时含有垂直阵列孔洞结构及聚合物涂层的碱金属负极表面形貌;Figure 1 is the optical image of the alkali metal negative electrode prepared in Example 1, wherein (a) is the surface morphology of the alkali metal negative electrode containing only The surface morphology of the alkali metal negative electrode of the layer;
图2为实施例1中的具有100μm直径针头的机械打孔工具,其中(a)为工具正视图,(b)为工具侧视图;Fig. 2 is the mechanical punching tool with 100 μm diameter needle in
图3为实施例1制备得到的含有垂直阵列孔洞结构及聚合物涂层的新型碱金属负极的表面及截面电子扫描显微镜图像,其中(a)为新型碱金属负极表面形貌,(b)为新型碱金属负极截面形貌;Figure 3 is the surface and cross-sectional scanning electron microscope images of the novel alkali metal negative electrode containing the vertical array hole structure and polymer coating prepared in Example 1, wherein (a) is the surface morphology of the novel alkali metal negative electrode, and (b) is Cross-sectional morphology of novel alkali metal anode;
图4为对含有垂直阵列孔洞结构及聚合物涂层的新型碱金属负极组装的三元全电池,进行负极电场分布Comsol仿真的结果图;Figure 4 is the results of the Comsol simulation of the negative electrode electric field distribution for a ternary full battery assembled with a new type of alkali metal negative electrode containing a vertical array of pore structures and a polymer coating;
图5为基于只含有绝缘聚合物涂层的碱金属负极与含有绝缘聚合物涂层及垂直阵列孔洞的新型碱金属负极分别组装的三元全电池循环性能对比图;Figure 5 is a comparison chart of the cycle performance of the ternary full battery assembled based on the alkali metal negative electrode containing only the insulating polymer coating and the new alkali metal negative electrode containing the insulating polymer coating and the vertical array of holes;
图6在0.5mA cm-2的电流密度及不同沉积容量下,在实施例1制备的含有垂直阵列孔洞结构及聚合物涂层的新型碱金属负极组装的锂-锂对称电池中电极表面的碱金属沉积电子扫描显微镜图像,其中(a)为沉积0.1mAh cm-2的碱金属后的电极表面形貌,(b)为沉积0.3mAh cm-2的碱金属后的电极表面形貌,(c)为沉积0.5mAh cm-2的碱金属后的电极表面形貌,(d)为沉积0.75mAh cm-2的碱金属后的电极表面形貌;Fig. 6 Under the current density of 0.5mA cm -2 and different deposition capacities, the alkali concentration on the electrode surface of the lithium-lithium symmetric battery prepared in Example 1 contains a new type of alkali metal negative electrode assembly with a vertical array pore structure and a polymer coating Metal deposition scanning electron microscope image, where (a) is the surface morphology of the electrode after depositing 0.1mAh cm -2 of alkali metal, (b) is the surface morphology of electrode after depositing 0.3mAh cm -2 of alkali metal, (c ) is the electrode surface morphology after depositing 0.5mAh cm -2 of alkali metal, (d) is the electrode surface morphology after depositing 0.75mAh cm -2 of alkali metal;
图7在1mA cm-2的电流密度及0.5mAh cm-2的沉积容量下,在实施例1制备的含有垂直阵列孔洞结构及聚合物涂层的新型碱金属负极组装的锂-锂对称电池中,电极表面的光学照片;Figure 7 Under the current density of 1mA cm -2 and the deposition capacity of 0.5mAh cm -2 , in the lithium-lithium symmetric battery assembled with the new alkali metal negative electrode containing the vertical array hole structure and polymer coating prepared in Example 1 , the optical photograph of the electrode surface;
图8为基于实施例1制备的含有垂直阵列孔洞结构及聚合物涂层的新型碱金属与商业锂片分别组装的锂-NCM811三元正极全电池在1C倍率下的循环稳定性对比图;Fig. 8 is a comparison chart of the cycle stability of the lithium-NCM811 ternary positive electrode full battery at 1C rate based on the new alkali metal containing the vertical array hole structure and the polymer coating prepared in Example 1 and the commercial lithium sheet respectively assembled;
图9为组装的锂-三元正极全电池在2C倍率下的电压-容量曲线对比图,其中(a)为基于商业锂片组装的锂-NCM811三元正极全电池在2C倍率下的电压-容量曲线,(b)为基于实施例1制备的含有垂直阵列孔洞结构及聚合物涂层的新型碱金属负极组装的锂-NCM811三元正极全电池在2C倍率下的电压-容量曲线;Figure 9 is a comparison of the voltage-capacity curves of the assembled lithium-ternary positive electrode full battery at 2C rate, where (a) is the voltage- Capacity curve, (b) is the voltage-capacity curve of the lithium-NCM811 ternary positive electrode full battery assembled based on the new alkali metal negative electrode assembly containing the vertical array pore structure and polymer coating prepared in Example 1 at 2C rate;
图10为本发明含有垂直阵列孔洞结构及聚合物涂层的新型碱金属负极制备示意图。Fig. 10 is a schematic diagram of the preparation of a novel alkali metal negative electrode containing a vertical array pore structure and a polymer coating according to the present invention.
其中,1.锂片;2.聚合物前驱体溶液;3.刮刀;4.机械打孔工具。Among them, 1. lithium sheet; 2. polymer precursor solution; 3. scraper; 4. mechanical punching tool.
具体实施方式Detailed ways
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below, and obviously, the described embodiments are part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方法可以相互组合形成新的技术方案。In the present invention, unless otherwise specified, all the implementation modes and preferred implementation methods mentioned herein can be combined with each other to form new technical solutions.
本发明中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。In the present invention, if there is no special description, all the technical features and preferred features mentioned herein can be combined with each other to form a new technical solution.
本发明中,如果没有特别的说明,百分数(%)或者份指的是相对于组合物的重量百分数或重量份。In the present invention, unless otherwise specified, percentage (%) or part refers to percentage by weight or part by weight relative to the composition.
本发明中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。In the present invention, unless otherwise specified, the various components involved or their preferred components can be combined with each other to form a new technical solution.
本发明中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“6~22”表示本文中已经全部列出了“6~22”之间的全部实数,“6~22”只是这些数值组合的缩略表示。In the present invention, unless otherwise stated, the numerical range "a~b" represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers. For example, the numerical range "6-22" means that all the real numbers between "6-22" have been listed in this article, and "6-22" is just an abbreviated representation of the combination of these values.
本发明所公开的“范围”以下限和上限的形式,可以分别为一个或多个下限,和一个或多个上限。The "ranges" disclosed herein may be in the form of lower limits and upper limits, and may refer to one or more lower limits and one or more upper limits, respectively.
本发明中,本文中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。In the present invention, the term "and/or" used herein refers to any combination and all possible combinations of one or more of the associated listed items, and includes these combinations.
本发明中,除非另有说明,各个反应或操作步骤可以顺序进行,也可以按照顺序进行。优选地,本文中的反应方法是顺序进行的。In the present invention, unless otherwise specified, each reaction or operation step can be carried out sequentially or in sequence. Preferably, the reaction processes herein are performed sequentially.
除非另有说明,本文中所用的专业与科学术语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法或材料也可应用于本发明中。Unless otherwise specified, professional and scientific terms used herein have the same meanings as those familiar to those skilled in the art. In addition, any method or material similar or equivalent to the content described can also be applied in the present invention.
本发明提供了一种三维垂直多孔复合碱金属负极及其制备方法,将配置的聚合物前驱体溶液薄涂在碱金属一侧的表面并低温烘干,根据要匹配的正极材料面容量确定所需负极孔洞内碱金属沉积面容量,进而确定打孔工具针头直径、枕头密度及打孔深度,在惰性气氛下,在复合聚合物层的表面机械打孔得到分布均匀的微米级或亚微米级孔洞,即得到含有垂直阵列孔洞结构及聚合物涂层的新型碱金属负极。采用均匀垂直阵列孔洞可以有效调控负极电场强度分布,复合聚合物层一方面由于具有电子绝缘特性将碱金属沉积限制在洞内进行,另一方面由于具有吸附离子特性有利于调控孔洞边缘离子浓度;最终,在垂直孔洞结构及复合聚合物层的共同作用下,枝晶会同时从洞底沉积垂直向上生长及洞壁沉积水平向洞心生长,直至相互接触挤压而变得致密均匀,实现提高金属电池的循环寿命与安全性的目的。The invention provides a three-dimensional vertical porous composite alkali metal negative electrode and a preparation method thereof. The configured polymer precursor solution is thinly coated on the surface of the alkali metal side and dried at a low temperature. The surface capacity of the alkali metal deposition in the negative electrode hole is required, and then the diameter of the punching tool needle, the density of the pillow and the punching depth are determined. Under an inert atmosphere, mechanically punch holes on the surface of the composite polymer layer to obtain uniformly distributed micron or submicron Pores, that is, a new type of alkali metal negative electrode with a vertical array of pore structures and a polymer coating is obtained. The uniform vertical array of holes can effectively control the electric field intensity distribution of the negative electrode. On the one hand, the composite polymer layer has electronic insulation properties to limit the deposition of alkali metals in the holes, and on the other hand, because of its ion-adsorbing properties, it is beneficial to control the ion concentration at the edge of the holes; Ultimately, under the joint action of the vertical pore structure and the composite polymer layer, the dendrites will grow vertically upward from the bottom of the cave and horizontally from the wall to the center of the cave until they are in contact with each other and become dense and uniform, achieving improved dendrites. The cycle life of metal batteries and the purpose of safety.
请参阅图10,本发明一种三维垂直多孔复合碱金属负极,包括设置在碱金属上的复合聚合物层,复合聚合物层的厚度为1~10μm,复合聚合物层上开有若干分布均匀的微米级或亚微米级孔洞(孔洞占总表面积的30%~70%),微米级或亚微米级孔洞为三维垂直孔洞,三维垂直孔洞的直径为50~150μm,三维垂直孔洞的孔深为碱金属厚度的70%~90%。Please refer to Fig. 10 , a three-dimensional vertical porous composite alkali metal negative electrode of the present invention includes a composite polymer layer arranged on the alkali metal, the thickness of the composite polymer layer is 1-10 μm, and there are several uniformly distributed layers on the composite polymer layer. Micron or submicron holes (holes account for 30% to 70% of the total surface area), micron or submicron holes are three-dimensional vertical holes, the diameter of the three-dimensional vertical holes is 50-150 μm, and the depth of the three-dimensional vertical holes is 70% to 90% of the thickness of alkali metal.
本发明一种三维垂直多孔复合碱金属负极制备方法,包括以下步骤:A method for preparing a three-dimensional vertical porous composite alkali metal negative electrode of the present invention comprises the following steps:
S1、将聚合物及有机溶剂混合,充分搅拌后得到质量分数为5%~20%的聚合物前驱体溶液;S1. Mix the polymer and the organic solvent, and stir thoroughly to obtain a polymer precursor solution with a mass fraction of 5% to 20%;
其中,聚合物选择具有电子绝缘性及一定的离子吸附性的聚合物材料,为聚偏氟乙烯、聚偏氟乙烯-六氟丙烯、聚丙烯腈、聚酰胺酸和聚酰亚胺中的一种或几种,有机溶剂为N,N-二甲基甲酰胺,N,N-二甲基乙酰胺和乙腈中的一种或几种。Among them, the polymer is selected from a polymer material with electronic insulation and certain ion adsorption, which is one of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyacrylonitrile, polyamic acid and polyimide. one or more kinds, and the organic solvent is one or more of N,N-dimethylformamide, N,N-dimethylacetamide and acetonitrile.
S2、将聚合物前驱体溶液通过刮刀刮涂方法原位薄涂在碱金属的表面,在惰性氛围下,在40~50℃低温烘干3~5h,待有机溶剂挥发完全后得到含有复合聚合物层的碱金属;S2. Thinly coat the polymer precursor solution on the surface of the alkali metal in situ by the scraper coating method, and dry it at 40-50°C for 3-5 hours in an inert atmosphere, and obtain a composite polymer containing compound after the organic solvent is completely volatilized. Alkali metal in the material layer;
刮刀的高度高于碱金属厚度20~50μm,复合聚合物层的厚度为1~10μm。The height of the scraper is 20-50 μm higher than the thickness of the alkali metal, and the thickness of the composite polymer layer is 1-10 μm.
其中,碱金属为锂、钠和钾中的一种或多种。Wherein, the alkali metal is one or more of lithium, sodium and potassium.
S3、使用具有微米或亚微米级针头的打孔工具,通过机械打孔方法在复合聚合物层的表面打孔,得到三维垂直多孔复合碱金属负极。S3. Using a punching tool with a micron or submicron needle, punching holes on the surface of the composite polymer layer by a mechanical punching method to obtain a three-dimensional vertical porous composite alkali metal negative electrode.
机械打孔方法使用的针头直径为50~150μm,针头的密度为30%~70%(面积占比),打孔深度为碱金属负极厚度的70%~90%。The diameter of the needle used in the mechanical punching method is 50-150 μm, the density of the needle is 30%-70% (area ratio), and the punching depth is 70%-90% of the thickness of the alkali metal negative electrode.
其中,根据匹配的正极材料的面容量确定负极所需洞内沉积碱金属面容量,再根据负极所需洞内沉积碱金属面容量确定机械打孔工具表面的针头直径、针头密度及打孔深度,相同打孔密度下,孔径及孔深适当增加,能容纳的洞内碱金属沉积面容量越多;相同孔径及孔深下,打孔密度越大越均匀,能容纳的洞内碱金属沉积面容量越多。Among them, the areal capacity of the alkali metal deposited in the hole required by the negative electrode is determined according to the areal capacity of the matched positive electrode material, and then the needle diameter, needle density and punching depth on the surface of the mechanical punching tool are determined according to the areal capacity of the alkali metal deposited in the hole required by the negative electrode , under the same hole density, the larger the hole diameter and hole depth, the more alkali metal deposition surface capacity in the hole can be accommodated; the larger the hole density and the more uniform hole density, the more alkali metal deposition surface capacity in the hole can be accommodated. The more capacity.
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中的描述和所示的本发明实施例的组件可以通过各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations. Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
实施例1Example 1
将4,4'-二氨基二苯醚(ODA)加入有机溶剂N,N-二甲基乙酰胺(DMAC)中搅拌直至透明澄清后,再加入相同摩尔数的均苯四甲酸二酐(PMDA)进行搅拌,充分原位聚合后得到淡黄色澄清聚酰胺酸(PAA)前驱体溶液,其中PAA聚合物的质量百分含量为20%。Add 4,4'-diaminodiphenyl ether (ODA) into the organic solvent N, N-dimethylacetamide (DMAC) and stir until transparent and clear, then add the same molar number of pyromellitic dianhydride (PMDA ) was stirred, and after sufficient in-situ polymerization, a pale yellow clear polyamic acid (PAA) precursor solution was obtained, wherein the mass percentage of PAA polymer was 20%.
将聚合物前驱体溶液2用刮刀3原位刮涂在厚度为100μm的商业用锂片1的金属表面,刮刀3的高度高于碱金属厚度50μm,在40℃的低温及惰性气体氛围下烘干5h,得到图1(a)所示的仅含有聚合物涂层的碱金属负极。The
选取的机械打孔工具4的正面及侧面光学照片分别如图2(a)及图2(b)所示,其具有80μm直径的针头,打孔深度为70μm(碱金属厚度的70%),针头密度为30%(面积占比)。The front and side optical photos of the selected
将机械打孔后得到的含垂直阵列孔洞及聚合物涂层的新型碱金属负极进行电子扫描显微镜测试及光学观察,分别如图3及图1(b)所示,孔洞直径为80μm,孔洞密度为30%(面积占比),PAA聚合物涂层光滑平整无裂纹,且厚度为10μm。Scanning electron microscopy and optical observation were performed on the new alkali metal negative electrode with vertical array of holes and polymer coating obtained after mechanical drilling, as shown in Figure 3 and Figure 1(b), respectively. The diameter of the holes is 80 μm, and the hole density 30% (area ratio), the PAA polymer coating is smooth and flat without cracks, and the thickness is 10 μm.
对基于含垂直阵列孔洞及聚合物涂层的新型碱金属负极组装的三元全电池进行Comsol电场模拟,结果如图4所示,洞内电场转变为垂直向下并向四周洞壁偏转,洞外边缘电场转变为垂直向下并向洞内偏转,因此,碱金属会同时在洞底沉积垂直向上生长及洞壁沉积水平向洞心生长,直至相互接触挤压而变得致密均匀。The Comsol electric field simulation of the ternary full battery based on the new alkali metal negative electrode assembly with vertical array holes and polymer coating was carried out. The results are shown in Figure 4. The electric field at the outer edge turns vertically downward and deflects toward the inside of the hole. Therefore, the alkali metal will grow vertically upward on the bottom of the hole and grow horizontally toward the center of the hole at the same time, until they contact and squeeze each other to become dense and uniform.
用只含有绝缘聚合物涂层的碱金属与含有绝缘聚合物涂层及垂直阵列孔洞的新型碱金属作为负极,正极用NCM811材料,隔膜采用聚乙烯(PE)微孔隔膜,滴加70μL商用LiPF6电解液组装全电池,在1C倍率下进行充放电循环测试,活性物质比容量变化如图5所示,用含垂直阵列孔洞及聚合物涂层的新型碱金属负极组装的全电池首圈放电比容量为148.9mAh g-1,能够稳定运行超过600圈,在循环600圈后放电比容量为首圈放电比容量的82.13%,而用只含有绝缘聚合物涂层的碱金属负极组装的全电池没有放电比容量,证明PAA涂层具有电子绝缘性,碱金属无法在其表面进行沉积。Alkali metals containing only insulating polymer coatings and new alkali metals containing insulating polymer coatings and vertical array holes are used as negative electrodes, NCM811 material is used for positive electrodes, and polyethylene (PE) microporous diaphragms are used as separators, and 70 μL of commercial LiPF is added dropwise 6 The full battery was assembled with electrolyte solution, and the charge-discharge cycle test was carried out at a rate of 1C. The specific capacity change of the active material is shown in Figure 5. The full battery assembled with a new type of alkali metal negative electrode containing vertical array holes and polymer coating was discharged in the first cycle. The specific capacity is 148.9mAh g -1 , and it can run stably for more than 600 cycles. After 600 cycles, the discharge specific capacity is 82.13% of the discharge specific capacity of the first cycle, and the full battery assembled with the alkali metal negative electrode containing only insulating polymer coating There is no discharge specific capacity, which proves that the PAA coating has electronic insulation, and alkali metals cannot be deposited on its surface.
将含垂直阵列孔洞及聚合物涂层的新型碱金属电极作为负极,商业用锂片1作为正极,隔膜采用聚乙烯(PE)微孔隔膜,滴加70μL商用LiPF6电解液组装对称电池,在0.5mAcm-2的电流密度下充电不同时间后拆开电池进行电子扫描显微镜测试,结果如图6所示,随着时间的增加,沉积碱金属逐渐致密填满至整个孔洞。在1mA cm-2的电流密度下充电0.5h后拆开电池,负极的光学照片如图7所示,证明碱金属无法在聚合物层表面沉积,只能在洞内进行沉积生长。A new type of alkali metal electrode containing a vertical array of holes and a polymer coating was used as the negative electrode, a
分别用制备的含垂直阵列孔洞及聚合物涂层的新型碱金属及商业用锂片1作负极,NCM811三元材料作正极,隔膜采用聚乙烯(PE)微孔隔膜,滴加70μL商用LiPF6电解液组装全电池,在1C的倍率下充放循环测试,正极活性物质比容量变化趋势如图8所示,含垂直阵列孔洞及聚合物涂层的新型碱金属负极组装的全电池首圈放电比容量为148.9mAh g-1,能够稳定运行超过700圈,在循环700圈后放电比容量为首圈放电比容量的75.49%,而以商业锂片作为负极组装的全电池在循环700圈后放电比容量仅为首圈放电比容量的56.14%。说明在垂直孔洞结构及聚合物界面层的共同作用下,枝晶会同时从洞底沉积垂直向上生长及洞壁沉积水平向洞心生长,直至相互接触挤压而变得致密均匀,使电池具有更好的循环性能。在2C的倍率下充放循环测试,电压-容量曲线对比图如图9所示,均能证明新型结构的复合碱金属负极可以极大地提升电池循环稳定性与容量保持率。The newly prepared alkali metal and
实施例2Example 2
将聚偏氟乙烯(PVDF)加入有机溶剂N,N-二甲基乙酰胺(DMAC)中搅拌直至透明澄清后,得到聚合物前驱体溶液2,其中PVDF聚合物的质量百分含量为5%。Add polyvinylidene fluoride (PVDF) into the organic solvent N, after stirring in N-dimethylacetamide (DMAC) until transparent and clear, obtain
将聚合物前驱体溶液2用刮刀3原位刮涂在厚度为80μm的商业钠金属1的表面,刮刀3的高度高于钠金属厚度20μm,在50℃的低温及惰性气体氛围下烘干3h后,PVDF涂层厚度为1μm,最终得到含有聚合物涂层的钠金属负极。The
选取的机械打孔工具4具有100μm直径的针头,打孔深度为60μm(钠金属负极厚度的75%),针头密度为50%(面积占比),最终得到的含垂直阵列孔洞及聚合物涂层的新型钠金属负极。The selected
实施例3Example 3
将聚偏氟乙烯-六氟丙烯(PVDF-HFP)加入有机溶剂无水乙腈中搅拌直至透明澄清后,得到聚合物前驱体溶液2,其中PVDF-HFP聚合物的质量百分含量为10%。Add polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) into the organic solvent anhydrous acetonitrile and stir until transparent and clear to obtain
将聚合物前驱体溶液2用刮刀3原位刮涂在厚度为100μm的商业用锂片1的碱金属表面,刮刀3高度高于碱金属厚度50μm,在50℃的低温及惰性气体氛围下烘干3h后,PVDF-HFP涂层厚度为5μm,最终得到含有聚合物涂层的碱金属负极。The
选取的机械打孔工具4具有50μm直径的针头,打孔深度为90μm(碱金属负极厚度的90%),针头密度70%(面积占比),最终得到的含垂直阵列孔洞及聚合物涂层的新型碱金属负极。The selected
实施例4Example 4
将聚丙烯腈(PAN)加入有机溶剂N,N-二甲基甲酰胺(DMF)中搅拌直至透明澄清后,得到聚合物前驱体溶液2,其中PAN聚合物的质量百分含量为15%。Add polyacrylonitrile (PAN) into organic solvent N,N-dimethylformamide (DMF) and stir until transparent and clear to obtain
将聚合物前驱体溶液2用刮刀3原位刮涂在厚度为100μm的商业用锂片1的碱金属表面,刮刀3高度高于碱金属厚度30μm,在40℃的低温及惰性气体氛围下烘干3h后,PAN涂层厚度为10μm,最终得到含有聚合物涂层的碱金属负极。Apply the
选取的机械打孔工具4具有150μm直径的针头,打孔深度为90μm(碱金属负极厚度的90%),针头密度约为70%(面积占比),最终得到的含垂直阵列孔洞及聚合物涂层的新型碱金属负极。The selected
综上所述,本发明一种三维垂直多孔复合碱金属负极及其制备方法和应用,适合大规模的生产,引入的聚合物涂层不仅不会大幅影响电池的能量密度,而且结合垂直阵列孔洞结构可以调控碱金属沉积生长行为,最终将碱金属沉积生长限制在洞内且形貌致密均匀,不仅延缓了隔膜刺穿时间提升了安全性能,也大大提升了金属电池的循环稳定性和容量保持率。In summary, a three-dimensional vertical porous composite alkali metal negative electrode of the present invention and its preparation method and application are suitable for large-scale production. The introduced polymer coating not only does not greatly affect the energy density of the battery, but also combines vertical array holes The structure can regulate the growth behavior of alkali metal deposition, and finally the growth of alkali metal deposition is limited in the hole and the morphology is dense and uniform, which not only delays the time of separator piercing and improves safety performance, but also greatly improves the cycle stability and capacity retention of metal batteries Rate.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211202425.1A CN115377356A (en) | 2022-09-29 | 2022-09-29 | Three-dimensional vertical porous composite alkali metal cathode and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211202425.1A CN115377356A (en) | 2022-09-29 | 2022-09-29 | Three-dimensional vertical porous composite alkali metal cathode and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115377356A true CN115377356A (en) | 2022-11-22 |
Family
ID=84073885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211202425.1A Pending CN115377356A (en) | 2022-09-29 | 2022-09-29 | Three-dimensional vertical porous composite alkali metal cathode and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115377356A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170207489A1 (en) * | 2016-01-15 | 2017-07-20 | Aruna Zhamu | Method of producing alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities |
WO2017181532A1 (en) * | 2016-04-22 | 2017-10-26 | 清华大学深圳研究生院 | Lithium metal secondary battery, and negative terminal and porous copper current collector thereof |
CN107591554A (en) * | 2017-09-15 | 2018-01-16 | 中国科学院化学研究所 | A kind of preparation method of three-dimensional collector solid state battery |
US20190081346A1 (en) * | 2016-09-28 | 2019-03-14 | Lg Chem, Ltd. | Anode for lithium secondary battery comprising mesh-shaped insulating layer, and lithium secondary battery comprising same |
CN110247060A (en) * | 2019-06-30 | 2019-09-17 | 哈尔滨工业大学 | PANI/Go/PAN nanofiber membrane composite potassium cathode of air battery and preparation method thereof |
JP2020167029A (en) * | 2019-03-29 | 2020-10-08 | 薛樹超 | Manufacturing method of powder for lithium manganese cell with porous metal piece bonded together |
CN113299886A (en) * | 2021-04-30 | 2021-08-24 | 湖南立方新能源科技有限责任公司 | Preparation method of lithium metal negative electrode and lithium metal negative electrode |
CN114583174A (en) * | 2022-03-21 | 2022-06-03 | 蜂巢能源科技股份有限公司 | Sodium ion battery and preparation method thereof |
CN114597479A (en) * | 2021-06-26 | 2022-06-07 | 宁德时代新能源科技股份有限公司 | Flat-plate sodium metal battery and electrochemical device |
CN116314627A (en) * | 2023-03-03 | 2023-06-23 | 蜂巢能源科技股份有限公司 | Composite lithium metal negative electrode and preparation method and application thereof |
-
2022
- 2022-09-29 CN CN202211202425.1A patent/CN115377356A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170207489A1 (en) * | 2016-01-15 | 2017-07-20 | Aruna Zhamu | Method of producing alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities |
WO2017181532A1 (en) * | 2016-04-22 | 2017-10-26 | 清华大学深圳研究生院 | Lithium metal secondary battery, and negative terminal and porous copper current collector thereof |
US20190081346A1 (en) * | 2016-09-28 | 2019-03-14 | Lg Chem, Ltd. | Anode for lithium secondary battery comprising mesh-shaped insulating layer, and lithium secondary battery comprising same |
CN107591554A (en) * | 2017-09-15 | 2018-01-16 | 中国科学院化学研究所 | A kind of preparation method of three-dimensional collector solid state battery |
JP2020167029A (en) * | 2019-03-29 | 2020-10-08 | 薛樹超 | Manufacturing method of powder for lithium manganese cell with porous metal piece bonded together |
CN110247060A (en) * | 2019-06-30 | 2019-09-17 | 哈尔滨工业大学 | PANI/Go/PAN nanofiber membrane composite potassium cathode of air battery and preparation method thereof |
CN113299886A (en) * | 2021-04-30 | 2021-08-24 | 湖南立方新能源科技有限责任公司 | Preparation method of lithium metal negative electrode and lithium metal negative electrode |
CN114597479A (en) * | 2021-06-26 | 2022-06-07 | 宁德时代新能源科技股份有限公司 | Flat-plate sodium metal battery and electrochemical device |
CN114583174A (en) * | 2022-03-21 | 2022-06-03 | 蜂巢能源科技股份有限公司 | Sodium ion battery and preparation method thereof |
CN116314627A (en) * | 2023-03-03 | 2023-06-23 | 蜂巢能源科技股份有限公司 | Composite lithium metal negative electrode and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
梁杰铬;罗政;闫钰;袁斌;: "面向可充电电池的锂金属负极的枝晶生长:理论基础、影响因素和抑制方法", 材料导报, no. 11, 10 June 2018 (2018-06-10) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110474053B (en) | Lithium metal negative electrode material, preparation method and application | |
CN110010895A (en) | Carbon fiber-supported magnesium oxide particle cross-linked nanosheet array composite and its preparation method and application | |
CN109167063A (en) | A kind of lithium anode and its preparation method and application of artificial solid electrolyte interface layer protection | |
Lu et al. | Dual-regulation of ions/electrons in a 3D Cu–Cu x O host to guide uniform lithium growth for high-performance lithium metal anodes | |
CN108796504A (en) | A kind of preparation method of 3-dimensional metal cathode | |
CN110165179B (en) | Lithium battery negative electrode material, preparation method thereof and lithium battery containing negative electrode material | |
CN110311093A (en) | Application of graphene film in negative electrode of lithium metal battery, symmetrical battery, full battery and preparation method | |
CN115377353A (en) | Negative plate and battery using same | |
CN115441048B (en) | Composite electrolyte with stable gradient distribution structure, battery and preparation method | |
CN112531145B (en) | Sodium metal negative electrode protective layer, sodium metal negative electrode and preparation method and application of sodium metal negative electrode protective layer | |
CN112909316B (en) | Commercial diaphragm-based sandwich-structure polymer composite solid electrolyte membrane and preparation method thereof | |
CN111864180A (en) | A composite lithium metal negative electrode and preparation method thereof and lithium secondary battery | |
CN114203976A (en) | Mixed solution capable of improving stability of metal lithium cathode, preparation method and application | |
CN209747641U (en) | A kind of composite lithium metal negative electrode and lithium secondary battery | |
CN116230951A (en) | A modification method and application of lithium metal battery negative electrode current collector | |
CN115036447B (en) | Lithium/sodium metal battery electrode plate protective coating and preparation method thereof | |
CN116960357A (en) | Preparation method and application of gradient copper phosphide/copper oxide/foam copper lithium metal anode current collector | |
CN115394957B (en) | Metal electrode with surface protective layer, preparation method thereof and alkali metal battery | |
CN113451547B (en) | Composite metal lithium cathode and lithium ion battery comprising same | |
CN115377356A (en) | Three-dimensional vertical porous composite alkali metal cathode and preparation method and application thereof | |
CN116855022A (en) | A lithium metal battery negative electrode protective film with self-healing nucleation seeds and its application | |
KR20240018049A (en) | Silicon anode having a three-dimensional porous structure and method for manufacturing the same | |
CN115249801A (en) | Lithium metal negative electrode material and preparation method thereof | |
CN113964381A (en) | Asymmetric gel-state electrolyte and preparation method and application thereof | |
CN113224371A (en) | High-performance heat-resistant gradient nanowire positive-grade and lithium-philic negative electrode composite solid-state lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |