CN115372222B - 一种用于变开度网络裂隙岩体渗流实验的装置 - Google Patents

一种用于变开度网络裂隙岩体渗流实验的装置 Download PDF

Info

Publication number
CN115372222B
CN115372222B CN202210827703.6A CN202210827703A CN115372222B CN 115372222 B CN115372222 B CN 115372222B CN 202210827703 A CN202210827703 A CN 202210827703A CN 115372222 B CN115372222 B CN 115372222B
Authority
CN
China
Prior art keywords
fracture
rock mass
opening
cavity
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210827703.6A
Other languages
English (en)
Other versions
CN115372222A (zh
Inventor
徐文杰
陈睿奇
胡英涛
詹良通
李金龙
陈云敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210827703.6A priority Critical patent/CN115372222B/zh
Publication of CN115372222A publication Critical patent/CN115372222A/zh
Application granted granted Critical
Publication of CN115372222B publication Critical patent/CN115372222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Abstract

本发明公开了一种用于变开度网络裂隙岩体渗流的实验装置及方法。岩体渗流密封加载箱包括反力龙门架及其内的内部箱体,内部箱体通过螺杆支撑装在反力龙门架内:变开度裂隙岩体网络模型装在内部箱体中;变开度裂隙岩体网络模型中设置岩体裂隙网络状的裂隙空腔,岩体裂隙网络状的裂隙空腔的两侧设有裂隙侧盘,裂隙空腔沿裂隙延伸方向两端的两侧裂隙侧盘之间设置裂隙开度控制弹性垫块,通过裂隙空腔和裂隙侧盘将变开度裂隙岩体网络模型分割为多个空间,空间设置基质框架,且在基质框架上开设密封孔。本发明安全可靠,可满足裂隙岩体设计的个性化需求,精度高,造价低;可实现裂隙开度可控的网络裂隙岩体模型的渗流实验,适用范围广。

Description

一种用于变开度网络裂隙岩体渗流实验的装置
技术领域
本发明属于裂隙岩体模型实验领域的一种渗流实验装置,尤其涉及一种用于变开度网络裂隙岩体渗流实验的装置。
背景技术
近年来,随着地下油气储库建设、二氧化碳地质封存、大规模水电站和核废料地质处置等重大地下工程的不断兴建,裂隙岩体中的多相流运动特征研究成为岩土工程领域的重要研究问题。裂隙岩体中基质的渗透系数极低,因此内部的裂隙网络往往成为多相流和污染物迁移的优势通道需要重点关注研究。裂隙的平均开度、粗糙度和交叉形状等重要几何参数是研究离散裂隙网络岩体的基础,对岩石裂隙中的单相与多相渗流机制的研究具有显著影响。但模拟实验中,很难采用合适的岩石样品对渗流过程进行定量化研究,而且无法容易地控制裂隙的粗糙度与开度。因此,通过3D打印技术定量地针对裂隙的开度、粗糙度和裂隙交叉形状进行模型设计有着很高的研究前景。但由于3D打印技术精度有限,难以还原真实裂隙岩的实际开度,因此设计出开度较小的三维交叉裂隙岩体模型并将其应用于具有一定围压条件的渗流实验有着较大难度。
在已经公开技术中,一种岩体交叉裂隙渗流的试验装置(申请号202010352357.1),由3D打印基质块模具浇筑抗渗水泥形成,可以灵活设置裂隙交叉角度形状等参数,但无法改变裂隙开度且整体操作难度较高;用于可视化实验的变开度粗糙裂隙及其制作方法(申请号201910238486.5),通过翻模制作的方法复制原始岩石粗糙裂隙面,可以通过刚性垫片调整裂隙空间的平均开度,但存在制作工艺复杂、不能灵活设置裂隙网络形状与分布的缺陷。
发明内容
本发明的目的是针对现有技术存在的上述问题,提供一种用于变开度网络裂隙岩体渗流实验的装置及方法。装置与方法安全可靠、可满足裂隙岩体设计的个性化需求、精度高、造价低;可以实现裂隙开度可控的网络裂隙岩体模型的渗流实验,适用范围广。
为实现上述目的,本发明所采用的技术方案如下:
所述的实验装置包括变开度裂隙岩体网络模型、模型垫块和岩体渗流密封加载箱;所述的岩体渗流密封加载箱包括了反力龙门架以及反力龙门架之内的内部箱体,所述的内部箱体通过螺杆支撑安装在反力龙门架之内:所述的变开度裂隙岩体网络模型安装在内部箱体中。
所述的变开度裂隙岩体网络模型包括裂隙侧盘、裂隙开度控制弹性垫块、裂隙空腔和基质框架;变开度裂隙岩体网络模型中设置岩体裂隙网络状的裂隙空腔,岩体裂隙网络状的裂隙空腔的两侧均布置有裂隙侧盘,裂隙空腔沿裂隙延伸方向两端的两侧裂隙侧盘之间设置裂隙开度控制弹性垫块,使得两侧裂隙侧盘沿裂隙延伸方向两端之间通过裂隙开度控制弹性垫块密封连接;通过裂隙空腔及其两侧的裂隙侧盘将变开度裂隙岩体网络模型分割为多个空间,每个空间设置基质框架,且在基质框架上开设用于填充材料的密封孔。
所述的裂隙空腔两端延伸到变开度裂隙岩体网络模型在沿垂直于裂隙延伸方向对称的两侧面,使得裂隙空腔两端分别延伸到变开度裂隙岩体网络模型两侧面的端口作为入流口和出流口。
所述岩体裂隙网络状的裂隙空腔沿裂隙延伸方向的各处截面相同,每处截面均为由众多条形裂隙相互交叉布置形成。
所述裂隙空腔、裂隙侧盘沿裂隙延伸方向的长度和变开度裂隙岩体网络模型的长度保持一致。
所述的密封孔处设置有用于密封的塞子,所述的塞子通过螺纹和密封孔螺纹连接形成密封。
所述的密封孔用于填入颗粒物,使得基质框架内部空腔被填满。
所述的基质框架为空心结构,包括支撑框架,支撑框架固定于裂隙侧盘,支撑框架的内腔为基质框架腔体,基质框架腔体内填入颗粒物,支撑框架开设密封孔。
所述的岩体渗流密封加载箱可以放置于超重力离心机中,在入流口和出流口提供超重力作用下的水力梯度,模拟深地环境中的水压力梯度。
所述的变开度裂隙岩体网络模型均采用3D打印制成。
所述的裂隙侧盘采用树脂、金属等具有一定刚度且不透水的材料;所述的裂隙开度控制弹性垫块采用橡胶、硅胶等具有一定弹性和不透水的材料;所述的基质框架采用树脂、有机玻璃、金属等不透水材料;所述裂隙空腔内打印时预先填充可溶于水的支撑材料。
所述内部箱体的对称两侧分别开设有水入口和水出口,水入口和裂隙空腔的入流口连通,水出口和裂隙空腔的出流口连通,水从内部箱体的水入口进入裂隙空腔的入流口中,再经裂隙空腔后流出到裂隙空腔的出流口,最后从水出口流出。
还包括所述的数据采集与监测单元,数据采集与监测单元包括布设于水入口和水出口的孔隙水压力传感器、温度探头等传感器。
本发明利用3D打印工艺一体化打印不同材质组成的变开度裂隙岩体网络模型,提升了模型制作精确度,可以满足裂隙岩体裂隙网络形状与粗糙度个性化设置需求;支撑框架采用填料密封的方式大大节约了模型制作成本;通过控制加载,从而灵活地改变裂隙内腔的开度大小,弥补了3D打印技术因精度不足不能还原真实裂隙开度的缺陷。该装置与方法安全可靠、可满足裂隙岩体设计的个性化需求,精度高、可重复性强,可以在一定围压条件下实现裂隙开度可控的网络裂隙岩体模型的渗流实验,适用范围广。
本发明具有的有益效果是:
1.本发明利用3D打印技术一体化打印裂隙网络模型,可灵活设置裂隙形状、分布状态、初始开度、粗糙度等几何参数,打印精度高,成本低,适用范围广,制作过程简单易行。
2.本发明可实现裂隙岩体渗流模拟实验裂隙开度可定量改变,通过对反力螺栓挤压裂隙开度控制弹性垫块使其变形,从而灵活调整裂隙开度。
3.本发明的裂隙网络支撑框架采用填料密封的方式大大节约了模型制作成本。
4.本发明可实现裂隙岩体试样模型边界面的独立密封,可以进行一定水压条件下的裂隙岩体渗流试验。
5.本发明整体强度高、安全可靠,易于安装,造价低。
附图说明
图1是本发明实施例提供的用于变开度网络裂隙岩体渗流的实验装置的原理图;
图2是本发明实施例提供的用于变开度网络裂隙岩体模型的立体图;
图3是本发明实施例提供的用于变开度网络裂隙岩体模型和模型垫块的组装侧面剖视图;
图4是本发明实施例提供的用于变开度网络裂隙岩体模型和模型垫块的组装正视图。
图中:变开度裂隙岩体网络模型Ⅰ、模型垫块Ⅱ、岩体渗流密封加载箱Ⅲ、裂隙侧盘1、裂隙开度控制弹性垫块2、裂隙空腔3、基质框架4、支撑框架4-1、基质框架腔体4-2、密封孔4-3、反力龙门架5、岩体模型密封箱6、反力螺杆7、弹性密封垫8。
具体实施方式
以下结合附图和具体实施例对本发明的实施方式作进一步详细描述。
如图1所示,本实施例提出的一种用于变开度网络裂隙岩体渗流的实验装置包括变开度裂隙岩体网络模型Ⅰ、模型垫块Ⅱ和岩体渗流密封加载箱Ⅲ;岩体渗流密封加载箱Ⅲ包括了反力龙门架5以及反力龙门架之内的内部岩体模型密封箱6,岩体模型密封箱6通过焊接方式安装在反力龙门架5底部:如图3所示,变开度裂隙岩体网络模型Ⅰ和模型垫块Ⅱ采用高强防水密封胶粘连后安装在岩体模型密封箱6中。裂隙空腔3两端延伸到变开度裂隙岩体网络模型Ⅰ在沿垂直于裂隙延伸方向对称的两侧面,使得裂隙空腔3两端分别延伸到变开度裂隙岩体网络模型Ⅰ两侧面的端口作为入流口和出流口,这样入流口经裂隙空腔3和出流口能够连通。在变开度裂隙岩体网络模型Ⅰ、模型垫块Ⅱ组成的结构和岩体渗流密封加载箱Ⅲ除入流口和出流口的其他接触面,为了保证渗流过程的密封效果均采用弹性密封垫8进行密封。岩体模型密封箱6周围设置多个反力螺杆7,每根螺杆通过螺纹穿设过反力龙门架的螺纹孔后顶接到岩体模型密封箱6外部,用于向内部箱体提供反力进行加压密封与固定。
如图2所示,变开度裂隙岩体网络模型Ⅰ包括裂隙侧盘1、裂隙开度控制弹性垫块2、裂隙空腔3和基质框架4;变开度裂隙岩体网络模型Ⅰ的空间中设置岩体裂隙网络状的裂隙空腔3,岩体裂隙网络状的裂隙空腔3的两侧均布置有裂隙侧盘1,裂隙空腔3沿裂隙延伸方向两端的两侧裂隙侧盘1之间设置裂隙开度控制弹性垫块2,使得两侧裂隙侧盘1沿裂隙延伸方向两端之间通过裂隙开度控制弹性垫块2密封连接,裂隙侧盘1和裂隙开度控制弹性垫块2之间通过3D打印固定连接,裂隙侧盘1和裂隙开度控制弹性垫块2围成之间的缝隙空间预先在3D打印过程中采用水溶性材料打印,模型固化后采用水溶、高压水腔冲洗等方式清除,形成作为裂隙空腔3,这样裂隙侧盘1之间通过裂隙开度控制弹性垫块2支撑隔开形成裂隙空腔3,基质框架4留有多条裂隙交错空间,裂隙空腔3之间部分相互交错连通,形成贯通的裂隙网络,用于模拟岩体中的裂隙渗流通道。
通过裂隙空腔3及其两侧的裂隙侧盘1将变开度裂隙岩体网络模型Ⅰ的空间分割为多个空间,每个空间设置基质框架4,基质框架4和裂隙侧盘1通过3D打印的方式在打印时固定连接,且在基质框架4上开设用于填充材料的密封孔4-3。
本发明的技术方案原理是通过反力螺杆7挤压岩体模型密封箱6,进而对裂隙侧盘1施加荷载,挤压裂隙开度控制弹性垫块2变形来控制裂隙空腔3的开度变化。
本发明通过裂隙开度控制弹性垫块2和裂隙侧盘1的设置形成的裂隙空腔3结构,其中裂隙开度控制弹性垫块2用于精准控制裂隙空腔3的开度,通过对裂隙侧盘1施加荷载,挤压裂隙开度控制裂隙开度控制弹性垫块2变形,利用裂隙开度控制弹性垫块2弹性和自密封性能的特点获得理想的封闭裂隙空腔与模型开度。
具体实施沿垂直于裂隙延伸方向施加压力挤压变开度裂隙岩体网络模型Ⅰ,能调整裂隙空腔3的开度,进而实现变开度裂隙岩体网络模型Ⅰ的可变开度。
岩体裂隙网络状的裂隙空腔3沿裂隙延伸方向的各处截面由众多条形裂隙相互交叉布置形成。
裂隙空腔3、裂隙侧盘1沿裂隙延伸方向的长度和变开度裂隙岩体网络模型Ⅰ的空间的长度保持对齐一致。
密封孔4-3处设置有用于密封的塞子,塞子通过螺纹和密封孔4-3螺纹连接形成密封。密封孔4-3用于填入颗粒物,颗粒物可以为砂、土等材料,使得基质框架4内部空腔被填满,即分割成的空间填满。
如图3所示,基质框架4为空心结构,包括一定厚度的支撑框架4-1,支撑框架4-1固定于裂隙侧盘1,支撑框架4-1的内腔为基质框架腔体4-2,基质框架腔体4-2内填入颗粒物,支撑框架4-1开设密封孔4-3。支撑框架4-1表面留有一定尺寸的密封孔4-3,通过充填方式提供模型内部支撑;基质框架4内部设有空腔,实验前采用灌砂或注浆等方法从密封孔4-3充填后,通过密封螺栓密封,以保证整体模型强度。
如图4所示,分割成的各个空间的基质框架4形状和变开度裂隙岩体网络模型Ⅰ外形匹配,具体实施的变开度裂隙岩体网络模型Ⅰ整体为长方体,岩体模型密封箱6为边长20厘米的正方体,需要设计与变开度裂隙岩体网络模型Ⅰ相匹配的模型垫块Ⅱ,并使用高强防水密封胶粘连。
变开度裂隙岩体网络模型Ⅰ均采用3D打印制成。用于渗流实验的变开度裂隙岩体网络模型Ⅰ采用3D打印技术一体化打印。
裂隙侧盘1的表面可以是平整、锯齿形、波浪形等形状,实现裂隙空腔3粗糙度、开度的个性化设计,用于满足实验对于岩体裂隙粗糙度设置的需求。使得用于渗流实验的变开度裂隙岩体网络模型Ⅰ根据需求将单裂隙结构进行组装,形成交叉裂隙、裂隙网络(图2)等复杂裂隙结构,其形态可根据实验装置需求设计为大小可控的圆柱体、正方体和长方体等。
对于变开度裂隙岩体网络模型Ⅰ的开度可以进行调整:
一方面,可以预先通过个性化设置裂隙侧盘1的形状大小以精确控制裂隙空腔3的粗糙度与开度。具体实施可以通过调整裂隙开度控制弹性垫块2的厚度或者材料弹性而进行调整。
另一方面,利用反力螺杆7提供沿垂直于裂隙延伸方向向变开度裂隙岩体网络模型Ⅰ的两侧施加侧面压力,挤压变开度裂隙岩体网络模型Ⅰ调整裂隙空腔3,通过调整侧面压力的数值对变开度裂隙岩体网络模型Ⅰ的开度进行可变控制。
将变开度裂隙岩体网络模型Ⅰ与模型垫块Ⅱ组装后,放置于反力龙门架5之内的内部岩体模型密封箱6中,在与渗流方向平行的接触面均采用弹性密封垫8进行密封,利用其弹性盒子密封的特点,避免在渗流过程中产生沿岩体模型密封箱6边缘的泄漏。
模型垫块Ⅱ的实体可以选用树脂或者铝合金等抗锈蚀的材料,弹性密封垫8可以选用橡胶、硅胶等具有一定弹性且不透水的材料。
岩体渗流密封加载箱Ⅲ可置于超重力离心机中,在入流口和出流口提供一定的水压梯度,在超重力离心机运行下,可以用于模拟深地环境的水压梯度。
内部箱体的对称两侧分别开设有水入口和水出口,水入口和裂隙空腔3的入流口连通,水出口和裂隙空腔3的出流口连通,水从内部箱体的水入口进入裂隙空腔3的入流口中,再经裂隙空腔3后流出到裂隙空腔3的出流口,最后从水出口流出。
还包括数据采集与监测单元,数据采集与监测单元包括布设于水入口和水出口的孔隙水压力传感器、温度探头等传感器,用于监测渗流实验过程出入口的压力温度等参数,用于监测实验过程中进出口的的水压力和温度等数据的变化。
本发明装置下的变开度网络裂隙岩体渗流实验方法,包括以下过程:
步骤1,利用Solidworks等三维建模软件建立具有一定形状和尺寸的三维裂隙网络模型,用3D打印机进行逐层喷涂堆叠,再经激光照射后固化获得一体化3D打印模型;
步骤2,将一体化3D打印模型再通过水溶、高压水腔冲洗等方式清除裂隙侧盘1之间的位于裂隙空腔3中的可溶于水的支撑材料,形成裂隙空腔3,再经打磨、抛光后得到变开度裂隙岩体网络模型Ⅰ;
步骤3,从基质框架4的密封孔4-3处采用灌砂或注浆等方式进行充填颗粒物的填充材料,用填充材料填满变开度裂隙岩体网络模型Ⅰ的基质框架腔体4-2、接着用密封螺栓密封,然后用高强防水密封胶将变开度裂隙岩体网络模型Ⅰ周围与模型垫块Ⅱ粘连形成整体的裂隙岩体模型块;
步骤4,将裂隙岩体模型块放置在内部箱体中,在周围铺设密封缓冲垫并密封;
步骤5,从水入口注入水,在水入口和水出口设置不同的水压边界且实施通过传感器检测水压,进行变开度网络裂隙岩体模型的渗流实验。
通过水入口和水出口检测的水压处理获得渗透系数。

Claims (10)

1.一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:
所述的实验装置包括变开度裂隙岩体网络模型(Ⅰ)、模型垫块(Ⅱ)和岩体渗流密封加载箱(Ⅲ);所述的岩体渗流密封加载箱(Ⅲ)包括了反力龙门架以及反力龙门架之内的内部箱体,所述的内部箱体通过螺杆支撑安装在反力龙门架之内:所述的变开度裂隙岩体网络模型(Ⅰ)安装在内部箱体中;
所述的变开度裂隙岩体网络模型(Ⅰ)包括裂隙侧盘(1)、裂隙开度控制弹性垫块(2)、裂隙空腔(3)和基质框架(4);变开度裂隙岩体网络模型(Ⅰ)中设置岩体裂隙网络状的裂隙空腔(3),岩体裂隙网络状的裂隙空腔(3)的两侧均布置有裂隙侧盘(1),裂隙空腔(3)沿裂隙延伸方向两端的两侧裂隙侧盘(1)之间设置裂隙开度控制弹性垫块(2),使得两侧裂隙侧盘(1)沿裂隙延伸方向两端之间通过裂隙开度控制弹性垫块(2)密封连接;通过裂隙空腔(3)及其两侧的裂隙侧盘(1)将变开度裂隙岩体网络模型(Ⅰ)分割为多个空间,每个空间设置基质框架(4),且在基质框架(4)上开设用于填充材料的密封孔(4-3)。
2.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述的裂隙空腔(3)两端延伸到变开度裂隙岩体网络模型(Ⅰ)在沿垂直于裂隙延伸方向对称的两侧面,使得裂隙空腔(3)两端分别延伸到变开度裂隙岩体网络模型(Ⅰ)两侧面的端口作为入流口和出流口。
3.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述岩体裂隙网络状的裂隙空腔(3)沿裂隙延伸方向的各处截面均为由众多条形裂隙相互交叉布置形成。
4.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述裂隙空腔(3)、裂隙侧盘(1)沿裂隙延伸方向的长度和变开度裂隙岩体网络模型(Ⅰ)的长度保持一致。
5.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述的密封孔(4-3)处设置有用于密封的塞子,所述的塞子通过螺纹和密封孔(4-3)螺纹连接形成密封。
6.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述的密封孔(4-3)用于填入颗粒物,使得基质框架(4)内部空腔被填满。
7.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述的基质框架(4)为空心结构,包括支撑框架(4-1),支撑框架(4-1)固定于裂隙侧盘(1),支撑框架(4-1)的内腔为基质框架腔体(4-2),基质框架腔体(4-2)内填入颗粒物,支撑框架(4-1)开设密封孔(4-3)。
8.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述的变开度裂隙岩体网络模型(Ⅰ)均采用3D打印制成。
9.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述内部箱体的对称两侧分别开设有水入口和水出口,水入口和裂隙空腔(3)的入流口连通,水出口和裂隙空腔(3)的出流口连通,水从内部箱体的水入口进入裂隙空腔(3)的入流口中,再经裂隙空腔(3)后流出到裂隙空腔(3)的出流口,最后从水出口流出。
10.根据权利要求1所述的一种用于变开度网络裂隙岩体渗流的实验装置,其特征在于:所述的实验装置还包括数据采集与监测单元,数据采集与监测单元包括布设于水入口和水出口的孔隙水压力传感器和温度探头。
CN202210827703.6A 2022-07-13 2022-07-13 一种用于变开度网络裂隙岩体渗流实验的装置 Active CN115372222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210827703.6A CN115372222B (zh) 2022-07-13 2022-07-13 一种用于变开度网络裂隙岩体渗流实验的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210827703.6A CN115372222B (zh) 2022-07-13 2022-07-13 一种用于变开度网络裂隙岩体渗流实验的装置

Publications (2)

Publication Number Publication Date
CN115372222A CN115372222A (zh) 2022-11-22
CN115372222B true CN115372222B (zh) 2023-09-12

Family

ID=84061585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210827703.6A Active CN115372222B (zh) 2022-07-13 2022-07-13 一种用于变开度网络裂隙岩体渗流实验的装置

Country Status (1)

Country Link
CN (1) CN115372222B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116202933B (zh) * 2023-01-17 2024-02-27 浙江大学 一种用于岩体渗流和污染物迁移试验的密封装置
CN116481976B (zh) * 2023-06-21 2023-09-26 河北工业大学 一种3d打印变开度裂隙岩体注浆试验系统及方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316447A (zh) * 2014-10-28 2015-01-28 中国矿业大学 一种裂隙岩体应力与渗流耦合测试系统及方法
CN105158039A (zh) * 2015-09-08 2015-12-16 河海大学 一种用于裂隙岩体渗流试验仿真裂隙制作方法
CN105158141A (zh) * 2015-09-08 2015-12-16 河海大学 一种可循环粗糙裂隙高速渗流试验装置
CN106908365A (zh) * 2017-01-23 2017-06-30 华北水利水电大学 一种采动断裂岩体裂隙动态闭合渗流模拟试验装置及方法
CN108169457A (zh) * 2017-12-26 2018-06-15 山东大学 一种可视化变开度裂隙注浆模型试验台及使用方法
CN108333093A (zh) * 2018-01-29 2018-07-27 中国矿业大学 一种应力作用下三维裂隙网络岩体两相介质渗流试验装置
CN110297072A (zh) * 2019-07-16 2019-10-01 绍兴文理学院 法向压力可控的交叉裂隙剪切渗流可视化实验系统及方法
WO2020048068A1 (zh) * 2018-09-07 2020-03-12 山东科技大学 一种制备含有可监测性微裂隙渗流试件的方法
CN111443022A (zh) * 2020-03-06 2020-07-24 三峡大学 一种利用气泡示踪技术测量岩石裂隙开度与流速矢量的可视化装置及方法
CN111504873A (zh) * 2020-04-24 2020-08-07 武汉大学 一种岩石交叉裂隙仿真模型的制作方法
CN111811995A (zh) * 2020-07-17 2020-10-23 中国地质大学(北京) 模拟粗糙单-交叉裂隙多相渗流的可视化试验方法及系统
CN112903557A (zh) * 2021-01-20 2021-06-04 东南大学 岩石裂隙渗流过程中流速和流场的可视化测量装置及方法
CN113533157A (zh) * 2021-07-02 2021-10-22 浙江大学 一种用于可视化实验的变开度可拆卸裂隙装置
WO2022017150A1 (zh) * 2020-07-21 2022-01-27 中国矿业大学 一种用于裂隙网络剪切渗流试验装置及其试验方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316447A (zh) * 2014-10-28 2015-01-28 中国矿业大学 一种裂隙岩体应力与渗流耦合测试系统及方法
CN105158039A (zh) * 2015-09-08 2015-12-16 河海大学 一种用于裂隙岩体渗流试验仿真裂隙制作方法
CN105158141A (zh) * 2015-09-08 2015-12-16 河海大学 一种可循环粗糙裂隙高速渗流试验装置
CN106908365A (zh) * 2017-01-23 2017-06-30 华北水利水电大学 一种采动断裂岩体裂隙动态闭合渗流模拟试验装置及方法
CN108169457A (zh) * 2017-12-26 2018-06-15 山东大学 一种可视化变开度裂隙注浆模型试验台及使用方法
CN108333093A (zh) * 2018-01-29 2018-07-27 中国矿业大学 一种应力作用下三维裂隙网络岩体两相介质渗流试验装置
WO2020048068A1 (zh) * 2018-09-07 2020-03-12 山东科技大学 一种制备含有可监测性微裂隙渗流试件的方法
CN110297072A (zh) * 2019-07-16 2019-10-01 绍兴文理学院 法向压力可控的交叉裂隙剪切渗流可视化实验系统及方法
CN111443022A (zh) * 2020-03-06 2020-07-24 三峡大学 一种利用气泡示踪技术测量岩石裂隙开度与流速矢量的可视化装置及方法
CN111504873A (zh) * 2020-04-24 2020-08-07 武汉大学 一种岩石交叉裂隙仿真模型的制作方法
CN111811995A (zh) * 2020-07-17 2020-10-23 中国地质大学(北京) 模拟粗糙单-交叉裂隙多相渗流的可视化试验方法及系统
WO2022017150A1 (zh) * 2020-07-21 2022-01-27 中国矿业大学 一种用于裂隙网络剪切渗流试验装置及其试验方法
CN112903557A (zh) * 2021-01-20 2021-06-04 东南大学 岩石裂隙渗流过程中流速和流场的可视化测量装置及方法
CN113533157A (zh) * 2021-07-02 2021-10-22 浙江大学 一种用于可视化实验的变开度可拆卸裂隙装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高家堡煤矿煤层顶板注浆加固堵水技术探讨;李金龙等;《煤田地质与勘探》;第第47卷卷;第20-25页 *

Also Published As

Publication number Publication date
CN115372222A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN115372222B (zh) 一种用于变开度网络裂隙岩体渗流实验的装置
CN115372221B (zh) 一种用于渗流实验的3d打印可变开度裂隙模型及方法
CN109342275B (zh) 模拟多主控变量的可视化裂隙注浆试验装置及方法
CN203742583U (zh) 一种三维水平井控水物理模拟实验装置
CN111963118B (zh) 一种模拟水平井开采的二维可视化填砂实验模型
CN113533157B (zh) 一种用于可视化实验的变开度可拆卸裂隙装置
CN105092449A (zh) 基于水的热流固耦合煤体真三轴剪切渗流实验装置及其实验方法
CN105403498A (zh) 可考虑多因素影响的岩石充填裂隙渗透率测试方法及装置
CN110687274B (zh) 岩石剪切-渗流试验机及其试验方法
CN106908323A (zh) 一种类岩石材料水力劈裂试验装置及方法
CN201902206U (zh) 应力敏感性地层钻井堵漏模拟评价装置
CN114135280B (zh) 碳酸盐岩缝洞油藏驱替物理模型、驱动装置及制作方法
CN108414363A (zh) 一种模拟输水隧洞高内水压的试验装置
CN114414326A (zh) 天然裂缝网络对水力裂缝干扰的岩样制作以及实验方法
CN105021471A (zh) 基于瓦斯气的热流固耦合煤体真三轴剪切渗流实验装置及其实验方法
CN212563191U (zh) 一种单砂体二氧化碳吞吐提高原油采收率的实验模拟装置
CN111595747B (zh) 一种测试土工膜复合竖向屏障渗漏的模型装置及其使用方法与应用
CN210347401U (zh) 利用真三轴仪器开展裂隙岩体各向异性渗流测试试验装置
CN111006974B (zh) 一种颗粒物质流固耦合光弹实验装置及其使用方法
CN110044719B (zh) 一种散体矸石真三轴压缩试验装置及方法
CN114776269B (zh) 模拟裂缝对纳米磁流体驱油效果的影响的实验装置及方法
CN206832635U (zh) 一种方形三面围压岩心夹持器
CN202300380U (zh) 一种水平井完井模拟试验装置
CN112012730B (zh) 一种三维填砂保压防窜模型模拟装置
CN109507085B (zh) 模拟土石材料多向渗流的真三轴实验装置及其方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant