CN115368581A - 一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与应用 - Google Patents

一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与应用 Download PDF

Info

Publication number
CN115368581A
CN115368581A CN202211024444.XA CN202211024444A CN115368581A CN 115368581 A CN115368581 A CN 115368581A CN 202211024444 A CN202211024444 A CN 202211024444A CN 115368581 A CN115368581 A CN 115368581A
Authority
CN
China
Prior art keywords
ligand
bipyridine
mofs material
material containing
mofs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211024444.XA
Other languages
English (en)
Other versions
CN115368581B (zh
Inventor
谢景力
马驰枭
徐昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Funuo Nano Technology Co ltd
Jiaxing University
Original Assignee
Jiaxing Funuo Nano Technology Co ltd
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Funuo Nano Technology Co ltd, Jiaxing University filed Critical Jiaxing Funuo Nano Technology Co ltd
Priority to CN202211024444.XA priority Critical patent/CN115368581B/zh
Publication of CN115368581A publication Critical patent/CN115368581A/zh
Application granted granted Critical
Publication of CN115368581B publication Critical patent/CN115368581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • B01J31/182Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine comprising aliphatic or saturated rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/27Cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Pyridine Compounds (AREA)

Abstract

本发明属于金属有机配位化合物技术领域,具体涉及一种含联吡啶‑多羧基桥联配体的MOFs材料及其制备方法与应用。本发明通过使用联吡啶配体4‑甲基‑2,6‑双(4‑吡啶基亚甲基)环己酮及羧酸配体间苯二甲酸构建出3个新型MOFs材料。本发明提供的含联吡啶‑多羧基桥联配体的MOFs材料在结构上,一方面,联吡啶配体通常以棒状双齿结构的形式与金属离子键合;另一方面,多羧基化合物可以采用阴离子或质子化形式,提供多种配位。

Description

一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与 应用
技术领域
本发明属于金属有机配位化合物技术领域,具体涉及一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与应用。
背景技术
近几十年来,金属-有机骨架(MOFs)作为一种经典的无机-有机杂化多孔材料,由于其结构的多样性和可修饰性以及潜在的应用价值,如催化、分离、储气、传感、荧光、磁性、质子传导等。许多基于MOF的活性催化剂的光催化过程可以被认为是降解有机染料的有效方法,因为这些基于MOF的催化剂可以将合成的有机染料矿化成最小的组分,如CO2、H2O等。然而,这些金属有机框架的一个重要先决条件是光催化剂是半导体在暴露于光照射时存在的特性。
Wells在拓扑上将晶体结构简化为节点,节点连接形成具有无限周期网络的化合物。拓扑学的应用为结晶化合物的拆分带来了极大的便利。“网状化学”和“二次构建单元”等MOFs的一些有效合成策略已经成功建立和发展。
但是,传统的合成方法都难以对固体产物特征进行控制,这就有可能生成了与预先设计的反应路线无关的产物。晶体化学的设计由刚性分子开始,可在整个反应过程中都保持其结构的完整性,有利于晶体框架结构的形成。
发明内容
有鉴于此,本发明的目的是针对现有技术中存在的问题,提供一种含联吡啶-多羧基桥联配体的MOFs材料,利用高稳定的晶体结构实现了MOFs材料在光催化、染料降解方面的应用。
为了实现上述目的,本发明采用如下技术方案:
一种含联吡啶-多羧基桥联配体的MOFs材料,通式为M(MBPCH)(IP),其中,M表示金属离子,所述金属为Zn、Cd或Co;MBPCH表示联吡啶配体4-甲基-2,6-双(4-吡啶基亚甲基)环己酮;IP表示羧酸配体间苯二甲酸。
进一步的,所述MOF 1为C27H22N2O5Zn,P21/n空间群,单斜晶系,
Figure BDA0003815008930000021
符号为{44.62}。
进一步的,所述MOF 2为C27H24N2O7Cd,
Figure BDA0003815008930000022
空间群,三斜晶系,
Figure BDA0003815008930000023
符号为{44.62}。
进一步的,所述MOF3为C27H21N2O5Co,
Figure BDA0003815008930000024
空间群,三斜晶系,
Figure BDA0003815008930000025
符号为{44.62}。
本发明通过使用联吡啶配体4-甲基-2,6-双(4-吡啶基亚甲基)环己酮及羧酸配体间苯二甲酸构建出3个新型MOFs材料。本发明提供的含联吡啶-多羧基桥联配体的MOFs材料在结构上,一方面,联吡啶配体通常以棒状双齿结构的形式与金属离子键合;另一方面,多羧基化合物可以采用阴离子或质子化形式,提供多种配位。因此,酸、碱两种配体可以相互补偿彼此间的电荷平衡、配位缺陷、排斥真空和弱相互作用等,有利于形成高稳定的晶体结构。
本发明的第二个目的在于,提供所述的含联吡啶-多羧基桥联配体的MOFs材料的制备方法。
为了实现上述目的,本发明提供如下技术方案:
所述的含联吡啶-多羧基桥联配体的MOFs材料的制备方法,将金属盐、1,3-间苯二甲酸和4-甲基-2,6-双(4-吡啶基亚甲基)环己酮溶解于DMF/H2O/CH3CH2OH混合溶剂中,常温常压反应釜搅拌30min,恒温90℃反应48h,得到的块状晶体即为含联吡啶-多羧基桥联配体的MOFs材料。
进一步的,所述金属盐为Zn(NO3)2·6H2O、Cd(NO3)2·4H2O或Co(NO3)2·6H2O。
更进一步的,所述金属盐、1,3-间苯二甲酸和4-甲基-2,6-双(4-吡啶基亚甲基)环己酮的摩尔比为1:1:1,所述缓和溶剂DMF/H2O/CH3CH2OH的体积比为4:2:1,所述4-甲基-2,6-双(4-吡啶基亚甲基)环己酮在混合溶剂中的浓度为0.05mmol/7mL。
本发明的第三个目的在于提供所述含联吡啶-多羧基桥联配体的MOFs材料在光催化降解有机污染物方面的应用。
进一步的,所述有机污染物包括罗丹明B或盐酸副玫瑰苯胺。
与现有技术相比,本发明采用多主题桥联配体策略,使用联吡啶配体4-甲基-2,6-双(4-吡啶基亚甲基)环己酮及羧酸配体间苯二甲酸构建出三种新型MOFs材料,为新型吡啶类的设计和MOF的合成提供了一种崭新的思路。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图
图1为本发明实验例1中MBPCH的结构示意图。
图2为本发明实验例1中MOFs 1的结构示意图。
图3为本发明实验例1中MOFs 2的结构示意图。
图4为本发明实验例2中MOFs 1-3分别对RhB染料和MB的降解率。
图5为本发明实验例3中MOFs 1-3粉末X射线衍射图谱。
图6为本发明实验例4中MOFs 1-3的TGA曲线。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在这里专用的词“实施例”,作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。本发明实施例中性能指标测试,除非特别说明,采用本领域常规试验方法。应理解,本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明公开的内容。
除非另有说明,否则本文使用的技术和科学术语具有本发明所属技术领域的普通技术人员通常理解的相同含义;作为本发明中其它未特别注明的试验方法和技术手段均指本领域内普通技术人员通常采用的实验方法和技术手段。
本文所用的术语“基本”和“大约”用于描述小的波动。例如,它们可以是指小于或等于±5%,如小于或等于±2%,如小于或等于±1%,如小于或等于±0.5%,如小于或等于±0.2%,如小于或等于±0.1%,如小于或等于±0.05%。在本文中以范围格式表示或呈现的数值数据,仅为方便和简要起见使用,因此应灵活解释为不仅包括作为该范围的界限明确列举的数值,还包括该范围内包含的所有独立的数值或子范围。例如,“1~5%”的数值范围应被解释为不仅包括1%至5%的明确列举的值,还包括在所示范围内的独立值和子范围。因此,在这一数值范围中包括独立值,如2%、3.5%和4%,和子范围,如1%~3%、2%~4%和3%~5%等。这一原理同样适用于仅列举一个数值的范围。此外,无论该范围的宽度或所述特征如何,这样的解释都适用。
为了更好的说明本发明内容,在下文的具体实施例中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在实施例中,对于本领域技术人员熟知的一些方法、手段、仪器、设备等未作详细描述,以便凸显本发明的主旨。
在不冲突的前提下,本发明实施例公开的技术特征可以任意组合,得到的技术方案属于本发明实施例公开的内容。
实施例1
一种含联吡啶-多羧基桥联配体的MOFs材料MOF 1及其制备方法:
将Zn(NO3)2·6H2O(0.05mmol,15.0mg)、1,3-间苯二甲酸(0.05mmol,8mg)和4-甲基-2,6-双(4-吡啶基亚甲基)环己酮(0.05mmol,15mg)溶解于7mL DMF/H2O/CH3CH2OH(V:V:V=4:2:1)的混合溶剂中,常温常压反应釜搅拌30min,恒温90℃反应48h,得到的黄色块状晶体即为含联吡啶-多羧基桥联配体的MOFs材料MOF 1C27H22N2O5Zn。
实施例2
一种含联吡啶-多羧基桥联配体的MOFs材料MOF 2及其制备方法:
将Cd(NO3)2·4H2O(0.05mmol,23.0mg)、1,3-间苯二甲酸(0.05mmol,8mg)和4-甲基-2,6-双(4-吡啶基亚甲基)环己酮(0.05mmol,15mg)溶解于7mL DMF/H2O/CH3CH2OH(V:V:V=4:2:1)的混合溶剂中,常温常压反应釜搅拌30min,恒温90℃反应48h,得到的黄色块状晶体即为含联吡啶-多羧基桥联配体的MOFs材料MOF 2C27H24N2O7Cd。
实施例3
一种含联吡啶-多羧基桥联配体的MOFs材料MOF 3及其制备方法:
将Co(NO3)2·6H2O(0.05mmol,14.0mg)、1,3-间苯二甲酸(0.05mmol,8mg)和4-甲基-2,6-双(4-吡啶基亚甲基)环己酮(0.05mmol,15mg)溶解于7mL DMF/H2O/CH3CH2OH(V:V:V=4:2:1)的混合溶剂中,常温常压反应釜搅拌30min,恒温90℃反应48h,得到的黄色块状晶体即为含联吡啶-多羧基桥联配体的MOFs材料MOF 3C27H21N2O5Co。
为了进一步证明本发明的有益效果以更好地理解本发明,下面通过以下测定试验进一步阐明本发明所述的含联吡啶-多羧基桥联配体的MOFs材料具有的性质及应用性能,但不可理解为对本发明的限定,对于本领域的技术人员根据上述发明内容所作的其他测定实验得到的产品性质及根据上述性质进行的应用,也视为落在本发明的保护范围内。
实验例1
晶体结构测定
在室温下,分别通过显微镜观察并选取合适大小的化合物晶体,之后在室温下进行X-射线衍射实验。晶体的X-射线衍射数据在Oxford Diffraction Gemini R Ultra衍射仪上收集,用经石墨单色器单色化的Cu-Kα射线
Figure BDA0003815008930000061
Figure BDA0003815008930000062
在296K温度下以
Figure BDA0003815008930000063
方式收集衍射数据。部分结构的衍射数据使用SADABS程序进行吸收校正。晶体结构由直接法结合差值Fourier合解。所有非氢原子坐标及各向异性参数进行全矩阵最小二乘法修正,C-H原子的位置按理论模式计算从而确定,O-H原子首先根据差值Fourier找到,然后,其氢原子坐标及各向同性参数进行全矩阵最小二乘法修正,并参与最终结构精修。
MBPCH的结构表征X射线单晶衍射分析表明MBPCH在具有C2/c空间群的单斜晶系中结晶。晶体学分析表明配体MBPCH的结构(图1)与设计一致。
MOF 1的结构(图2)表征X射线单晶衍射分析表明,MOF 1在空间群P21/n的单斜晶系中结晶,不对称单元由1个Zn2+离子、1个MBPCH配体和1个IP2-配体组成。Zn2+离子是四配位的,由两个IP2-阴离子的三个氧原子(O2、O4Ⅰ)和两个MBPCH配体的两个氮原子(N1Ⅱ、N2)组成。此外,Zn2+离子产生由两个IP2-配体的两个桥连羧酸氧原子建立的[Zn(CO)2]二级结构单元(SBU1),并且Zn-O和Zn-N键距离在范围内分别为0.1941(2)-0.1946(2)nm和0.2045(3)-0.2085(3)nm。SBU1通过MBPCH连接组成一个2D层结构。拓扑分析表明,MOF 1是一个(2,4)-连接网络,具有由TOPS4.0合理化的
Figure BDA0003815008930000072
符号{64.8.10}{6}。
MOFs 2-3的结构表征X射线单晶衍射分析表明MOFs 2-3在与空间群
Figure BDA0003815008930000073
相同的三斜晶系中结晶。因此,以MOF 2的结构(图3)为例进行说明。MOF2的不对称单元包含1个Cd2+离子、1个MBPCH配体和1个IP2-配体。Cd2+离子是四配位的,由3个IP2-阴离子的四个氧原子(O1Ⅰ、O2Ⅰ、O3Ⅱ、O4)和两个MBPCH配体的两个氮原子(N1、N2Ⅲ)组成。此外,两个相邻的Cd2+离子产生一个[Cd(CO2)4]二级结构单元(SBU2),由四个IP2-配体的四个螯合桥和四个桥连羧酸氧原子和Cd-O和Cd-Nbong距离分别在0.2252(3)-0.2457(3)nm和0.2319(3)-0.2348(3)nm的范围内。SBU2通过MBPCH连接组成一个二维层结构。拓扑分析表明,MOF 2是一个4连通网络,具有由TOPS 4.0合理化的
Figure BDA0003815008930000074
符号{44.62}。
表1目标化合物的晶体学参数
Figure BDA0003815008930000071
Figure BDA0003815008930000081
表2 MOFs 1~3的选择键长
Figure BDA0003815008930000082
和键角(°)
Figure BDA0003815008930000083
Figure BDA0003815008930000091
实验例2
紫外性能分析
将MOFs 1-3(20mg)添加到盐酸副玫瑰苯胺(PH,c=10mg·L-1)或罗丹明B(RhB,c=10mg·L-1))的水溶液(50mL)中,避光搅拌30min,以保证所得溶液的吸附-解吸平衡。然后将溶液暴露于LP300WE灯(λ=365nm)的UV-Vis辐照下,并在辐照过程中保持搅拌。每隔30min取出4mL溶液进行UV-Vis测量。
进一步通过降解RhB和PH来评价MOFs的光催化活性1-3。图4显示了MOFs 1-3分别在辐照5h后对RhB染料和MB的光催化作用。结果显示MOFs1-3对Rhb染料的降解率分别为21.2%、20.4%、20.0%和PH分别为28.4%、26.4%和26.7%。通过实验比较,MOFs 1-3对PH的降解效率优于RhB。
实验例3
粉末X射线衍射(PXRD)
在30kV和20mA的条件下通过具有D/teX超级衍射仪以Cu-Kα
Figure BDA0003815008930000092
为放射源的Ultima IV测得的,化合物的X-射线粉末衍射(PXRD)实验数据与晶胞模拟数据相比较发现(图5),关键衍射峰在主要位置上都相互匹配,这进一步表明化合物具有较高的纯度,且为单一相。
实验例4
热重分析(TGA)
采用SDT 2960热重分析仪对MOFs 1-3进行TGA分析并得到相应的热重分析曲线。实验选取N2为载气,测试温度范围为10-800℃,升温速率为10℃/min。
MOFs 1-3的TGA分析已经研究了MOFs 1-3的热稳定性。MOF 1的TGA曲线显示出一步重量减轻。整个骨架在340℃左右开始塌陷,重量损失59.60%。MOF 2和3两步减重的TGA曲线。它可以基于两种材料的相同结构,并且它们的TG曲线非常相似。第一步是晶体内部的溶剂分子在340℃后损失,包括EtOH、H2O和DMF。第二步是整个骨架在339℃左右开始塌陷,失重分别为78.50%和68.80%。780℃后结构稳定,最终残留物为各自的金属氧化物。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种含联吡啶-多羧基桥联配体的MOFs材料,其特征在于,通式为M(MBPCH)(IP),其中,M表示金属离子,所述金属为Zn、Cd或Co;MBPCH表示联吡啶配体4-甲基-2,6-双(4-吡啶基亚甲基)环己酮;IP表示羧酸配体间苯二甲酸。
2.根据权利要求1所述的一种含联吡啶-多羧基桥联配体的MOFs材料,其特征在于,所述MOF 1为C27H22N2O5Zn,P21/n空间群,单斜晶系,
Figure FDA0003815008920000013
符号为{44.62}。
3.根据权利要求1所述的一种含联吡啶-多羧基桥联配体的MOFs材料,其特征在于,所述MOF 2为C27H24N2O7Cd,
Figure FDA0003815008920000011
空间群,三斜晶系,
Figure FDA0003815008920000012
符号为{44.62}。
4.根据权利要求1所述的一种含联吡啶-多羧基桥联配体的MOFs材料,其特征在于,所述MOF3为C27H21N2O5Co,
Figure FDA0003815008920000014
空间群,三斜晶系,
Figure FDA0003815008920000015
符号为{44.62}。
5.一种如权利要求1~4任一所述的含联吡啶-多羧基桥联配体的MOFs材料的制备方法,其特征在于,将金属盐、1,3-间苯二甲酸和4-甲基-2,6-双(4-吡啶基亚甲基)环己酮溶解于DMF/H2O/CH3CH2OH混合溶剂中,常温常压反应釜搅拌30min,恒温90℃反应48h,得到的块状晶体即为含联吡啶-多羧基桥联配体的MOFs材料。
6.根据权利要求5所述的含联吡啶-多羧基桥联配体的MOFs材料的制备方法,其特征在于,所述金属盐为Zn(NO3)2·6H2O、Cd(NO3)2·4H2O或Co(NO3)2·6H2O。
7.根据权利要求6所述的含联吡啶-多羧基桥联配体的MOFs材料的制备方法,其特征在于,所述金属盐、1,3-间苯二甲酸和4-甲基-2,6-双(4-吡啶基亚甲基)环己酮的摩尔比为1:1:1,所述缓和溶剂DMF/H2O/CH3CH2OH的体积比为4:2:1,所述4-甲基-2,6-双(4-吡啶基亚甲基)环己酮在混合溶剂中的浓度为0.05mmol/7mL。
8.一种如权利要求1~4任一所述的含联吡啶-多羧基桥联配体的MOFs材料在光催化降解有机污染物方面的应用。
9.根据权利要求8所述的含联吡啶-多羧基桥联配体的MOFs材料的应用,其特征在于,所述有机污染物包括罗丹明B或盐酸副玫瑰苯胺。
CN202211024444.XA 2022-08-25 2022-08-25 一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与应用 Active CN115368581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211024444.XA CN115368581B (zh) 2022-08-25 2022-08-25 一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211024444.XA CN115368581B (zh) 2022-08-25 2022-08-25 一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115368581A true CN115368581A (zh) 2022-11-22
CN115368581B CN115368581B (zh) 2023-08-25

Family

ID=84068557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211024444.XA Active CN115368581B (zh) 2022-08-25 2022-08-25 一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115368581B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709182A (zh) * 2013-12-06 2014-04-09 渤海大学 基于半刚性双吡啶双酰胺配体和5-甲基间苯二甲酸的过渡金属配合物及其合成方法和应用
CN103936796A (zh) * 2014-03-21 2014-07-23 渤海大学 一种基于柔性双吡啶双酰胺配体和苯二羧酸的钴配合物及其合成方法和应用
CN107619417A (zh) * 2017-08-29 2018-01-23 中国科学院福建物质结构研究所 一种具有光催化活性的镉有机配合物及其制备方法与应用
CN107774234A (zh) * 2016-08-29 2018-03-09 中国石油化工股份有限公司 一种金属有机骨架材料及其制备方法与应用
US20200269225A1 (en) * 2019-02-25 2020-08-27 King Fahd University Of Petroleum And Minerals 4,4'-bipyridyl-ethylene mofs of lead, zinc, or cadmium
CN114891045A (zh) * 2022-04-29 2022-08-12 福诺鑫(苏州)新材料科技有限公司 一种含酸碱配体的金属有机配位化合物及其流动化学制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709182A (zh) * 2013-12-06 2014-04-09 渤海大学 基于半刚性双吡啶双酰胺配体和5-甲基间苯二甲酸的过渡金属配合物及其合成方法和应用
CN103936796A (zh) * 2014-03-21 2014-07-23 渤海大学 一种基于柔性双吡啶双酰胺配体和苯二羧酸的钴配合物及其合成方法和应用
CN107774234A (zh) * 2016-08-29 2018-03-09 中国石油化工股份有限公司 一种金属有机骨架材料及其制备方法与应用
CN107619417A (zh) * 2017-08-29 2018-01-23 中国科学院福建物质结构研究所 一种具有光催化活性的镉有机配合物及其制备方法与应用
US20200269225A1 (en) * 2019-02-25 2020-08-27 King Fahd University Of Petroleum And Minerals 4,4'-bipyridyl-ethylene mofs of lead, zinc, or cadmium
CN114891045A (zh) * 2022-04-29 2022-08-12 福诺鑫(苏州)新材料科技有限公司 一种含酸碱配体的金属有机配位化合物及其流动化学制备方法与应用

Also Published As

Publication number Publication date
CN115368581B (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
US9777029B2 (en) Process for obtaining metal-organic materials with structure type MIL-101 (Cr) and MIL-101-Cr-MX+
Thirumurugan et al. 1, 2-, 1, 3-and 1, 4-Benzenedicarboxylates of Cd and Zn of different dimensionalities: Process of formation of the three-dimensional structure
Zhai et al. Crystal transformation synthesis of a highly stable phosphonate MOF for selective adsorption of CO 2
Peralta et al. Synthesis and adsorption properties of ZIF-76 isomorphs
EP4023656A1 (en) Novel aluminum-based metal-organic framework having three dimensional porous structure and comprising at least two types of ligands, preparation method therefor, and use thereof
Marti et al. Tuning the crystal size and morphology of the substituted imidazole material, SIM-1
Zhang et al. Temperature dependent charge distribution in three-dimensional homochiral cadmium camphorates
Sheng et al. A novel porous anionic metal–organic framework with pillared double-layer structure for selective adsorption of dyes
Al-Terkawi et al. Hydrated and dehydrated Ca-coordination polymers based on benzene-dicarboxylates: mechanochemical synthesis, structure refinement, and spectroscopic characterization
CN114891045B (zh) 一种含酸碱配体的金属有机配位化合物及其流动化学制备方法与应用
Zhang et al. Diverse structures of metal–organic frameworks based on different metal ions: luminescence and gas adsorption properties
Reinares-Fisac et al. Anionic and neutral 2D indium metal–organic frameworks as catalysts for the Ugi one-pot multicomponent reaction
Xu et al. Engineering ligand conformation by substituent manipulation towards diverse copper–tricarboxylate frameworks with tuned gas adsorption properties
Zhang et al. Two trinuclear cluster-based 3D interpenetrated metal-organic frameworks with selective adsorption and antiferromagnetic properties
Qian et al. Crystal structure, morphology and sorption behaviour of porous indium-tetracarboxylate framework materials
Lin et al. Snapshots of Postsynthetic Modification in a Layered Metal–Organic Framework: Isometric Linker Exchange and Adaptive Linker Installation
Chen et al. Organic templates promoted photocatalytic and photoluminescent properties between two coordination polymers
Yin et al. Syntheses, structures, luminescence and CO2 gas adsorption properties of four three-dimensional heterobimetallic metal–organic frameworks
Li et al. Flexible ligands-dependent formation of a new column layered MOF possess 1D channel and effective separation performance for CO2
Wang et al. Metal–organic coordination architectures of bis (N-imidazolyl) pyridazine: Syntheses, structures, emission and photocatalytic properties
CN109851559B (zh) 一种基于两头吡唑配体的镍的金属有机骨架材料和制备方法及其应用
He et al. In situ formation and solid-state oxidation of a triselenane NSeN-pincer MOF
CN115368581B (zh) 一种含联吡啶-多羧基桥联配体的MOFs材料及其制备方法与应用
Guo et al. Solvent-regulated assemblies of silver (I) and cadmium (II) supramolecular complexes with versatile tripyridyltriazole multidentate ligands
US11311856B2 (en) Vanadium metal-organic framework for selective adsorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant