CN115358115A - Analysis method of temperature field based on measured welding temperature field combined with finite element - Google Patents
Analysis method of temperature field based on measured welding temperature field combined with finite element Download PDFInfo
- Publication number
- CN115358115A CN115358115A CN202210929582.6A CN202210929582A CN115358115A CN 115358115 A CN115358115 A CN 115358115A CN 202210929582 A CN202210929582 A CN 202210929582A CN 115358115 A CN115358115 A CN 115358115A
- Authority
- CN
- China
- Prior art keywords
- temperature field
- temperature
- welding
- weldment
- detection points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 89
- 238000004458 analytical method Methods 0.000 title claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 14
- 230000008859 change Effects 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims abstract description 11
- 230000004913 activation Effects 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 3
- 238000004088 simulation Methods 0.000 abstract description 8
- 238000013459 approach Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 239000010953 base metal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012732 spatial analysis Methods 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本申请提供了一种基于实测焊接温度场并结合有限元的温度场分析方法,包括:在焊件表面设置温度检测点;将每个温度检测点的实际温度场整理成编号和时间的形式;在有限元分析软件中建立与焊件相同的焊件模型,同时将焊件模型的热力学材料参数定义为温度的形式;并利用有限元分析元件求解出焊件模型表面的模拟温度场;比较模拟温度场和实际温度场,如果在同一时刻两者的温差不超过预定值,则证明该模拟温度场有效;如果在同一时刻两者的温差大于预定值,则调整热源公式中的输出热效率,同时调整焊件模型的热力学材料参数,直到两者在同一时刻的温差不超过预定值。本申请的方法可以准确地模拟复杂焊接工艺以及复杂焊接构件的全过程温度场变化情况。
This application provides a temperature field analysis method based on the measured welding temperature field combined with finite elements, including: setting temperature detection points on the surface of the weldment; sorting the actual temperature field of each temperature detection point into the form of number and time; Establish the same weldment model as the weldment in the finite element analysis software, and define the thermodynamic material parameters of the weldment model as the form of temperature; and use the finite element analysis element to solve the simulated temperature field on the surface of the weldment model; compare the simulation If the temperature difference between the temperature field and the actual temperature field does not exceed the predetermined value at the same time, it proves that the simulated temperature field is valid; if the temperature difference between the two is greater than the predetermined value at the same time, adjust the output thermal efficiency in the heat source formula, and Adjust the thermodynamic material parameters of the weldment model until the temperature difference between the two at the same time does not exceed the predetermined value. The method of the present application can accurately simulate the complex welding process and the change of temperature field in the whole process of complex welded components.
Description
技术领域technical field
本申请涉及焊接温度场分析技术领域,具体而言,涉及一种基于实测焊接温度场并结合有限元的温度场分析方法。The present application relates to the technical field of welding temperature field analysis, and in particular, relates to a temperature field analysis method based on actual measurement of welding temperature field combined with finite elements.
背景技术Background technique
现有的焊接温度场的分析方法对实际情况进行了过多的简化,从而导致温度场仅在几个点上符合实际情况,很难对整体焊件温度场的变化情况进行评估。例如以下几种简化情况:获取的温度场仅仅是某个点在某一时间段的温度值;在有限元建模中大大简化焊道的焊接过程,不考虑每层焊道的焊接方向甚至将多层焊道合并为一层焊道进行建模;对热源子程序参数进行简化处理,其中的电流电压按照某一定值施加,忽略了两者关于时间的变化情况。Existing analysis methods for welding temperature field oversimplify the actual situation, resulting in the temperature field conforming to the actual situation only at a few points, and it is difficult to evaluate the change of the overall weldment temperature field. For example, the following simplified situations: the obtained temperature field is only the temperature value of a certain point in a certain period of time; in the finite element modeling, the welding process of the weld bead is greatly simplified, regardless of the welding direction of each layer of weld bead or even the The multi-layer weld bead is merged into one layer of weld bead for modeling; the parameters of the heat source subroutine are simplified, and the current and voltage are applied according to a certain value, ignoring the change of the two with respect to time.
现有的温度场分析方法比较适用于简单构件的焊接方式,比如平板对接接头焊接、平板T型接头焊接的形式,但对于一些复杂结构的焊接情况,比如相贯节点的焊接形式,就很难用传统方法去获取相应的温度场变化情况,从而导致后续残余应力的分析不准确的情况。The existing temperature field analysis methods are more suitable for the welding of simple components, such as the welding of flat butt joints and flat T-joints, but it is difficult to weld some complex structures, such as the welding of intersecting nodes. Using traditional methods to obtain the corresponding temperature field changes will lead to inaccurate analysis of subsequent residual stress.
发明内容Contents of the invention
本申请的主要目的在于提供一种基于实测焊接温度场并结合有限元的温度场分析方法,可以准确地模拟复杂焊接工艺以及复杂焊接构件的全过程温度场变化情况。The main purpose of this application is to provide a temperature field analysis method based on the measured welding temperature field combined with finite elements, which can accurately simulate complex welding processes and temperature field changes in the whole process of complex welding components.
为了实现上述目的,本申请提供了一种基于实测焊接温度场并结合有限元的温度场分析方法,包括:In order to achieve the above purpose, this application provides a temperature field analysis method based on the measured welding temperature field combined with finite elements, including:
步骤S1:在焊件表面设置温度检测点,对所述焊件上的所述温度检测点进行编号,并依次标识为整数n,其中n≥1;Step S1: setting temperature detection points on the surface of the weldment, numbering the temperature detection points on the weldment, and marking them as an integer n in turn, where n≥1;
步骤S2:对所述焊件进行焊接,将每个所述温度检测点的实际温度场T0(n,t)整理成编号n和时间t的形式,并将焊接过程中的焊接方向M(t)、焊接层数N(t)、焊接电流A(t)以及焊接电压V(t)都整理成关于时间t的形式;Step S2: Weld the weldment, organize the actual temperature field T 0 (n, t) of each temperature detection point into the form of number n and time t, and record the welding direction M ( t), welding layer number N(t), welding current A(t) and welding voltage V(t) are all sorted into the form of time t;
步骤S3:在有限元分析软件中建立与所述焊件相同的焊件模型,同时在所述有限元分析软件中将焊件模型的热力学材料参数定义为温度T的形式;Step S3: Establishing the same weldment model as the weldment in the finite element analysis software, and defining the thermodynamic material parameters of the weldment model in the form of temperature T in the finite element analysis software;
步骤S4:编写关于所述焊件的所述焊接电流A(t)、所述焊接电压V(t)以及所述焊接方向M(t)的热源公式,并利用所述有限元分析元件求解出所述焊件模型表面的模拟温度场T1(x,y,z,t);Step S4: Compile the heat source formula about the welding current A(t), the welding voltage V(t) and the welding direction M(t) of the weldment, and use the finite element analysis element to solve The simulated temperature field T 1 (x, y, z, t) of the surface of the weldment model;
步骤S5:在所述模拟温度场T1(x,y,z,t)中,根据x,y,z坐标找出相对应所述检测点的所述实际温度场T0(n,t),比较所述模拟温度场T1(x,y,z,t)和所述实际温度场T0(n,t),如果在同一时刻两者的温差不超过预定值,则证明所述模拟温度场T1(x,y,z,t)有效;如果在同一时刻所述模拟温度场T1(x,y,z,t)和所述实际温度场T0(n,t)的温差大于所述预定值,则调整所述热源公式中的输出热效率以控制温度的高低,同时在所述有限元分析软件中调整所述焊件模型的所述热力学材料参数来控制温度变化的速率大小,直到所述模拟温度场T1(x,y,z,t)与所述温度场T0(n,t)在同一时刻的温差不超过所述预定值。Step S5: In the simulated temperature field T 1 (x, y, z, t), find the actual temperature field T 0 (n, t) corresponding to the detection point according to the x, y, z coordinates , compare the simulated temperature field T 1 (x, y, z, t) with the actual temperature field T 0 (n, t), if the temperature difference between the two does not exceed a predetermined value at the same time, it proves that the simulation The temperature field T 1 (x, y, z, t) is valid; if the temperature difference between the simulated temperature field T 1 (x, y, z, t) and the actual temperature field T 0 (n, t) at the same time is greater than the predetermined value, then adjust the output heat efficiency in the heat source formula to control the temperature, and at the same time adjust the thermodynamic material parameters of the weldment model in the finite element analysis software to control the rate of temperature change , until the temperature difference between the simulated temperature field T 1 (x, y, z, t) and the temperature field T 0 (n, t) at the same moment does not exceed the predetermined value.
进一步地,在所述步骤S1中,所述温度检测点为三行,三行所述温度检测点均平行于所述焊接上的焊缝,所述三行温度检测点沿远离所述焊缝的方向依次间隔设置,且各行所述温度检测点包括多个间隔设置的所述温度检测点。Further, in the step S1, the temperature detection points are three rows, the temperature detection points of the three rows are all parallel to the weld seam on the welding, and the temperature detection points of the three rows are along the line away from the weld seam. The directions of the directions are arranged at intervals in sequence, and each row of the temperature detection points includes a plurality of the temperature detection points arranged at intervals.
进一步地,三行所述温度检测点包括第一行温度检测点、第二行温度检测点以及第三行温度检测点,Further, the three rows of temperature detection points include the first row of temperature detection points, the second row of temperature detection points and the third row of temperature detection points,
其中,所述第一行温度检测点距离所述焊件上的焊缝的距离为3cm至5cm;Wherein, the distance between the first row of temperature detection points and the weld seam on the weldment is 3cm to 5cm;
所述第二行温度检测点距离所述焊件上的焊缝的距离为6cm至8cm;The distance between the second row of temperature detection points and the weld seam on the weldment is 6cm to 8cm;
所述第二行温度检测点距离所述焊件上的焊缝的距离为9cm至11cm。The distance between the second row of temperature detection points and the weld seam on the weldment is 9cm to 11cm.
进一步地,在所述步骤S3中,所述热力学材料参数包括传导率、比热、换热系数以及热辐射率。Further, in the step S3, the thermodynamic material parameters include conductivity, specific heat, heat transfer coefficient and heat radiation rate.
进一步地,在所述步骤S3中,在所述有限元分析软件中建立所述焊件模型时,所述焊件模型上的焊缝区域的模型根据实际焊接的所述焊接方向M(t)和所述焊接层数N(t)进行生死单元的建立和激活。Further, in the step S3, when the weldment model is established in the finite element analysis software, the model of the weld area on the weldment model is based on the welding direction M(t) of the actual welding and the number of welding layers N(t) to establish and activate the birth and death unit.
进一步地,所述生死单元的激活方向跟所述焊接方向M(t)一致,所述生死单元的激活顺序和时间根据所述焊接层数N (t)来决定。Further, the activation direction of the life-death unit is consistent with the welding direction M(t), and the activation sequence and time of the life-death unit are determined according to the welding layer number N(t).
进一步地,激活所述生死单元时,层数小的先激活,层数大的后激活,每层的所述生死单元激活时间与每层开始焊接时间一一对应。Further, when activating the life-death units, the ones with a smaller number of layers are activated first, and the ones with a larger number of layers are activated later, and the activation time of the life-death units of each layer corresponds to the welding start time of each layer.
进一步地,在所述步骤S4中,所述热源公式运用移动热源子程序编写得到。Further, in the step S4, the heat source formula is compiled by using the moving heat source subroutine.
进一步地,所述移动热源子程序的移动热源的移动方式与所述焊接方向M(t)一致。Further, the moving mode of the moving heat source of the moving heat source subroutine is consistent with the welding direction M(t).
进一步地,所述预定值为10℃。Further, the predetermined value is 10°C.
应用本申请的技术方案,本发明的基于实测焊接温度场并结合有限元的温度场分析方法通过温度采集仪获取焊件全过程温度场的变化情况,并将该温度场整理成空间和时间的形式,然后将记录的焊接顺序、焊接层数、焊接电流以及焊接电压都整理成关于时间的形式,代入到有限元分析软件中去进行移动热源法获取瞬态温度场,将两者温度场进行比对,如果相差不大,可以证明该数值模拟温度场有效,如果相差较大可适当调整移动热源的参数和母材的换热系数去接近实测的温度场,直到两者误差在允许范围内,那么调整出来的数值模拟温度场也是准确有效的。也即是说,本发明可以采用温度采集仪获取实际焊件的温度场,再用有限元数值模拟的方法去逼近实际温度场,进而用有限元分析软件模拟的方法研究不同焊接方法下不同结构形式焊件的温度场分布规律。Applying the technical solution of the present application, the temperature field analysis method based on the actual measurement of the welding temperature field combined with the finite element method of the present invention obtains the change of the temperature field in the whole process of the weldment through the temperature acquisition instrument, and organizes the temperature field into a spatial and temporal analysis method. form, and then organize the recorded welding sequence, number of welding layers, welding current and welding voltage into the form of time, and put them into the finite element analysis software to obtain the transient temperature field by moving heat source method, and compare the two temperature fields Comparison, if the difference is not large, it can prove that the numerical simulation temperature field is valid. If the difference is large, the parameters of the moving heat source and the heat transfer coefficient of the base metal can be adjusted appropriately to approach the measured temperature field until the error of the two is within the allowable range , then the adjusted numerical simulation temperature field is also accurate and effective. That is to say, the present invention can use the temperature acquisition instrument to obtain the temperature field of the actual weldment, and then use the method of finite element numerical simulation to approach the actual temperature field, and then use the method of finite element analysis software simulation to study different structures under different welding methods The distribution law of the temperature field of the formal weldment.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The accompanying drawings constituting a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application, and do not constitute improper limitations to the present application. In the attached picture:
图1是本申请实施例公开的相贯节点焊件的主视图;Fig. 1 is the front view of the intersecting joint weldment disclosed in the embodiment of the present application;
图2是本申请实施例公开的相贯节点焊件的侧视图;Fig. 2 is a side view of the intersecting joint weldment disclosed in the embodiment of the present application;
图3是本申请实施例公开的基于实测焊接温度场并结合有限元的温度场分析方法的流程图。Fig. 3 is a flow chart of the temperature field analysis method based on the actually measured welding temperature field combined with finite elements disclosed in the embodiment of the present application.
其中,上述附图包括以下附图标记:Wherein, the above-mentioned accompanying drawings include the following reference signs:
10、焊件;11、焊缝;12、温度检测点。10. Weldment; 11. Weld seam; 12. Temperature detection point.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The present application will be described in detail below with reference to the accompanying drawings and embodiments.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到 :相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。The relative arrangements of components and steps, numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present application unless specifically stated otherwise. At the same time, it should be understood that, for the convenience of description, the sizes of the various parts shown in the drawings are not drawn according to the actual proportional relationship. Techniques, methods and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods and devices should be considered part of the Authorized Specification. In all examples shown and discussed herein, any specific values should be construed as illustrative only, and not as limiting. Therefore, other examples of the exemplary embodiment may have different values. It should be noted that similar numbers and letters denote similar items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures.
参见图1至图3所示,根据本发明的实施例,提供了一种基于实测焊接温度场并结合有限元的温度场分析方法,下称温度场分析方法,该温度场分析方法包括五个步骤,以下将对该温度场分析方法的各个步骤进行详细说明。Referring to Figures 1 to 3, according to an embodiment of the present invention, a temperature field analysis method based on the measured welding temperature field combined with finite elements is provided, hereinafter referred to as the temperature field analysis method, and the temperature field analysis method includes five Steps, each step of the temperature field analysis method will be described in detail below.
步骤S1:在焊件10表面设置温度检测点12,对焊件10上的温度检测点12进行编号,并依次标识为整数n,其中n≥1。Step S1: setting
在该步骤中,焊件10表面设置的温度检测件12为三行,该三行温度检测点12均平行于焊接上的焊缝11,且该三行温度检测点12沿远离焊件10上的焊缝11的方向依次间隔设置,且各行温度检测点12包括多个间隔设置的温度检测点12,如此设置,能够最大程度地检测出焊缝11附近的温度场变化情况。In this step, the
具体地,为了对温度检测点12处的温度进行检测,焊件10的表面设置有温度检测元件,该温度检测元件与温度采集仪电连接,便于将其采集得到的温度传递至温度采集仪。可选地,本实施中所述的温度检测元件例如可以是温度传感器。Specifically, in order to detect the temperature at the
参见图1和图2所示,本实施例中所述的三行温度检测点12包括第一行温度检测点12、第二行温度检测点12以及第三行温度检测点12,在图1和图2中,第一行温度检测点12、第二行温度检测点12以及第三行温度检测点12沿远离焊缝11的方向依次间隔设置。其中,第一行温度检测点12距离焊缝11的距离a为3cm至5cm,例如3cm、4cm、5cm等;第二行温度检测点12距离焊缝11的距离b为6cm至8cm,例如7cm、7cm、或者8cm等;第二行温度检测点12距离c焊缝11的距离为9cm至11cm,例如9cm、10cm或者11cm等,在同一行所述温度检测点12中,相邻两个温度检测点12之间的距离为5cm至10cm,例如5cm、6cm、7cm、8cm、9cm或者10cm。如此设置,能够进一步最大程度地检测出焊缝11附近的温度场变化情况。Referring to Fig. 1 and shown in Fig. 2, the three rows of
步骤S2:对焊件10进行焊接,将每个温度检测点12的实际温度场T0(n,t)整理成编号n和时间t的形式,并将焊接过程中的焊接方向M(t)、焊接层数N(t)、焊接电流A(t)以及焊接电压V(t)都整理成关于时间t的形式。Step S2: Weld the
具体地,对温度检测点12进行编号,标记成1、2、3、4……整数的形式。Specifically, the temperature detection points 12 are numbered and marked in the form of 1, 2, 3, 4... integers.
将温度采集仪获取的每个检测点的温度场T0(n,t)整理成编号n和时间t的形式。The temperature field T 0 (n, t) of each detection point acquired by the temperature acquisition instrument is sorted into the form of number n and time t.
T0(n,t)= T 0 (n, t) =
当将焊接方向M(t)、焊接层数N(t)、焊接电流A(t)以及焊接电压V(t)都整理成关于时间t的形式的过程中:When the welding direction M(t), welding layer number N(t), welding current A(t) and welding voltage V(t) are all sorted into the form of time t:
M(t)= M(t)=
N(t)= N(t)=
A(t)= A(t)=
V(t)= V(t)=
步骤S3:在有限元分析软件中建立与焊件10相同的焊件模型,同时在有限元分析软件中将焊件模型的热力学材料参数定义为温度T的形式。Step S3: Establish the same weldment model as the
在有限元分析软件中建立与焊件10相同的焊件模型时,除了使焊件模型的基本尺寸与实际焊件10相同外,模型焊件的坡口角度和焊缝间隔也要与实际焊件10的尺寸严格保持一致。When establishing the same weldment model as the
可选地,这里所述的热力学材料参数包括传导率、比热、换热系数以及热辐射率。因为实际焊件10的热力学材料参数随温度的变化而发生改变的,因此,在有限元分析软件中将焊件模型的热力学材料参数定义为温度T的形式,可以提高本申请中的温度场分析方法的分析精度。Optionally, the thermodynamic material parameters described herein include conductivity, specific heat, heat transfer coefficient, and thermal emissivity. Because the thermodynamic material parameters of the
在有限元分析软件中建立焊件模型时,焊件模型上的焊缝区域的模型根据实际焊接的焊接方向M(t)和焊接层数N(t)进行生死单元的建立和激活。When the weldment model is established in the finite element analysis software, the model of the weld area on the weldment model is established and activated according to the actual welding welding direction M(t) and the number of welding layers N(t).
生死单元的激活方向跟焊接方向M(t)一致,生死单元的激活顺序和时间根据焊接层数N (t)来决定。激活生死单元时,层数小的先激活,层数大的后激活,每层的生死单元激活时间与每层开始焊接时间一一对应。The activation direction of the life-death unit is consistent with the welding direction M(t), and the activation sequence and time of the life-death unit are determined according to the number of welding layers N(t). When activating the life-death unit, the one with the smaller number of layers is activated first, and the one with the larger number of layers is activated later. The activation time of the life-death unit of each layer corresponds to the welding start time of each layer.
步骤S4:编写关于焊件10的焊接电流A(t)、焊接电压V(t)以及焊接方向M(t)的热源公式,并利用有限元分析元件求解出焊件模型表面的模拟温度场T1(x,y,z,t)。Step S4: Write the heat source formulas for the welding current A(t), welding voltage V(t) and welding direction M(t) of the
在该步骤中,热源公式运用移动热源子程序编写得到。该移动热源子程序的移动热源的移动方式与焊接方向M(t)一致。In this step, the heat source formula is compiled using the moving heat source subroutine. The moving mode of the moving heat source of the moving heat source subroutine is consistent with the welding direction M(t).
步骤S5:在模拟温度场T1(x,y,z,t)中,根据x,y,z坐标找出相对应检测点的实际温度场T0(n,t),比较模拟温度场T1(x,y,z,t)和实际温度场T0(n,t),如果在同一时刻两者的温差不超过预定值,则证明该模拟温度场T1(x,y,z,t)有效;如果在同一时刻两者的温差大于预定值,则调整热源公式中的输出热效率以控制温度的高低,同时在有限元分析软件中调整焊件模型的热力学材料参数(换热系数)来控制温度变化的速率大小,直到模拟温度场T1(x,y,z,t)与温度场T0(n,t)在同一时刻的温差不超过预定值。可选地,该预定值为10℃。如此,可以准确地模拟复杂焊接工艺以及复杂焊接构件的全过程温度场变化情况。Step S5: In the simulated temperature field T 1 (x, y, z, t), find the actual temperature field T 0 (n, t) corresponding to the detection point according to the x, y, z coordinates, and compare the simulated temperature field T 1 (x, y, z, t) and the actual temperature field T 0 (n, t), if the temperature difference between the two does not exceed the predetermined value at the same time, it proves that the simulated temperature field T 1 (x, y, z, t) is valid; if the temperature difference between the two is greater than the predetermined value at the same time, adjust the output heat efficiency in the heat source formula to control the temperature, and at the same time adjust the thermodynamic material parameters (heat transfer coefficient) of the weldment model in the finite element analysis software To control the rate of temperature change until the temperature difference between the simulated temperature field T 1 (x, y, z, t) and the temperature field T 0 (n, t) at the same time does not exceed the predetermined value. Optionally, the predetermined value is 10°C. In this way, complex welding processes and temperature field changes in the whole process of complex welded components can be accurately simulated.
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:本发明的基于实测焊接温度场并结合有限元的温度场分析方法通过温度采集仪获取焊件全过程温度场的变化情况,并将该温度场整理成空间和时间的形式,然后将记录的焊接顺序、焊接层数、焊接电流以及焊接电压都整理成关于时间的形式,代入到有限元分析软件中去进行移动热源法获取瞬态温度场,将两者温度场进行比对,如果相差不大,可以证明该数值模拟温度场有效,如果相差较大可适当调整移动热源的参数和母材的换热系数去接近实测的温度场,直到两者误差在允许范围内,那么调整出来的数值模拟温度场也是准确有效的。采用温度采集仪获取实际焊件的温度场,再用有限元数值模拟的方法去逼近实际温度场,进而用有限元分析软件模拟的方法研究不同焊接方法下不同结构形式焊件的温度场分布规律。From the above description, it can be seen that the above-mentioned embodiments of the present application have achieved the following technical effects: The temperature field analysis method based on the actual measurement of the welding temperature field and combined with the finite element method of the present invention obtains the temperature field of the weldment in the whole process through the temperature acquisition instrument The change of the temperature field, and organize the temperature field into the form of space and time, and then organize the recorded welding sequence, number of welding layers, welding current and welding voltage into the form of time, and substitute it into the finite element analysis software. The moving heat source method obtains the transient temperature field, and compares the two temperature fields. If the difference is not large, it can prove that the numerical simulation temperature field is effective. If the difference is large, the parameters of the moving heat source and the heat transfer coefficient of the base material can be adjusted appropriately. To approach the measured temperature field until the error of the two is within the allowable range, then the adjusted numerical simulation temperature field is also accurate and effective. Use the temperature acquisition instrument to obtain the temperature field of the actual weldment, and then use the finite element numerical simulation method to approach the actual temperature field, and then use the finite element analysis software simulation method to study the distribution of the temperature field of the weldment with different structural forms under different welding methods .
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。For the convenience of description, spatially relative terms may be used here, such as "on ...", "over ...", "on the surface of ...", "above", etc., to describe the The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as "above" or "above" other devices or configurations would then be oriented "beneath" or "above" the other devices or configurations. under other devices or configurations". Thus, the exemplary term "above" can encompass both an orientation of "above" and "beneath". The device may be oriented differently (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。In addition, it should be noted that the use of words such as "first" and "second" to define components is only for the convenience of distinguishing corresponding components. To limit the protection scope of this application.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, various modifications and changes may be made to the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210929582.6A CN115358115A (en) | 2022-08-04 | 2022-08-04 | Analysis method of temperature field based on measured welding temperature field combined with finite element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210929582.6A CN115358115A (en) | 2022-08-04 | 2022-08-04 | Analysis method of temperature field based on measured welding temperature field combined with finite element |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115358115A true CN115358115A (en) | 2022-11-18 |
Family
ID=84001228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210929582.6A Pending CN115358115A (en) | 2022-08-04 | 2022-08-04 | Analysis method of temperature field based on measured welding temperature field combined with finite element |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115358115A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101804581A (en) * | 2010-03-23 | 2010-08-18 | 四川普什宁江机床有限公司 | Implementation method of automatic compensation for thermal deformation of machine tool |
CN102637235A (en) * | 2012-05-02 | 2012-08-15 | 中国石油集团渤海石油装备制造有限公司 | Determination method for heat source model parameters in multiplewire submerged-arc welding by numerical simulation |
CN102693336A (en) * | 2012-05-09 | 2012-09-26 | 天津大学 | Method for predicting welding thermal circulation parameters of large pipelines |
CN104985298A (en) * | 2015-07-10 | 2015-10-21 | 湘潭大学 | Method for predicting small-angle welding temperature field of rotating arc low-alloy structural steel |
CN105627961A (en) * | 2014-10-25 | 2016-06-01 | 西安越度机电科技有限公司 | Weld seam length automatic measurement method |
CN106066212A (en) * | 2016-05-27 | 2016-11-02 | 三峡大学 | A method for indirect measurement of cable conductor temperature |
US20190114385A1 (en) * | 2016-09-08 | 2019-04-18 | Southeast University | Motor thermoanalysis method with temperature field directly coupled with heat circuit |
CN112276313A (en) * | 2020-10-19 | 2021-01-29 | 上海振华重工(集团)股份有限公司 | Method for predicting hot and cold multi-wire composite submerged arc welding thermal cycle parameters of large steel structural part |
CN113673124A (en) * | 2021-07-06 | 2021-11-19 | 华南理工大学 | Numerical simulation prediction method, system and medium for welding temperature field of tee intersecting line |
-
2022
- 2022-08-04 CN CN202210929582.6A patent/CN115358115A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101804581A (en) * | 2010-03-23 | 2010-08-18 | 四川普什宁江机床有限公司 | Implementation method of automatic compensation for thermal deformation of machine tool |
CN102637235A (en) * | 2012-05-02 | 2012-08-15 | 中国石油集团渤海石油装备制造有限公司 | Determination method for heat source model parameters in multiplewire submerged-arc welding by numerical simulation |
CN102693336A (en) * | 2012-05-09 | 2012-09-26 | 天津大学 | Method for predicting welding thermal circulation parameters of large pipelines |
CN105627961A (en) * | 2014-10-25 | 2016-06-01 | 西安越度机电科技有限公司 | Weld seam length automatic measurement method |
CN104985298A (en) * | 2015-07-10 | 2015-10-21 | 湘潭大学 | Method for predicting small-angle welding temperature field of rotating arc low-alloy structural steel |
CN106066212A (en) * | 2016-05-27 | 2016-11-02 | 三峡大学 | A method for indirect measurement of cable conductor temperature |
US20190114385A1 (en) * | 2016-09-08 | 2019-04-18 | Southeast University | Motor thermoanalysis method with temperature field directly coupled with heat circuit |
CN112276313A (en) * | 2020-10-19 | 2021-01-29 | 上海振华重工(集团)股份有限公司 | Method for predicting hot and cold multi-wire composite submerged arc welding thermal cycle parameters of large steel structural part |
CN113673124A (en) * | 2021-07-06 | 2021-11-19 | 华南理工大学 | Numerical simulation prediction method, system and medium for welding temperature field of tee intersecting line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105157725B (en) | A kind of hand and eye calibrating method of two-dimensional laser visual sensor and robot | |
CN106529051B (en) | A Determining Method of Numerical Simulation Heat Source Model Parameters of Single Wire Submerged Arc Welding | |
Boyer et al. | Model for a sensor inspired by electric fish | |
CN104713885B (en) | A kind of structure light for pcb board on-line checking aids in binocular measuring method | |
CN101329164B (en) | Global calibration for stereo vision probe | |
CN110261427B (en) | Method for measuring heat conductivity coefficient of multilayer composite material based on conjugate gradient method | |
CN109129465B (en) | A robot hand-eye calibration system and its workflow | |
CN104802173A (en) | Data generation device for vision sensor and detection simulation system | |
CN111721802B (en) | Comprehensive measuring device and method for thermal and electrical physical properties of two-dimensional material | |
TWI513988B (en) | Method and device for measuring solar cells | |
US20150055676A1 (en) | Method and apparatus for determining thermal conductivity and thermal diffusivity of a heterogeneous material | |
CN108458710B (en) | Pose measurement method | |
CN115358115A (en) | Analysis method of temperature field based on measured welding temperature field combined with finite element | |
CN106353361A (en) | Method for testing laser absorptivity of material with coating layer | |
CN109799020B (en) | Method capable of testing welding residual stress on manufacturing site | |
CN106500641A (en) | The thermal deformation error compensating method of articulated coordinate machine | |
CN103258101B (en) | The characterization parameter defining method of mimic channel solder joint mechanical creep failure mechanism | |
CN102789644A (en) | Novel camera calibration method based on two crossed straight lines | |
CN106767422B (en) | Multiple unit train body critical size detection system solution neural network based | |
CN103322955B (en) | A kind of method oppositely solving chip single heat source position and area | |
CN105203131B (en) | Laser tracker turns station method | |
CN113960108B (en) | Method and system for simultaneously measuring heat conductivity coefficient and specific heat capacity of carbon fiber composite material | |
CN111159936A (en) | A Calculation Method for Thermal Field of Cable Joint Based on Generalized Time Domain Finite Difference | |
CN114474069B (en) | Robot line structure light hand-eye calibration method based on space orthogonal constraint | |
CN113084389A (en) | Method for evaluating welding performance of medium plate for large heat input welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |