CN115354219A - 一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法 - Google Patents

一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法 Download PDF

Info

Publication number
CN115354219A
CN115354219A CN202210795886.8A CN202210795886A CN115354219A CN 115354219 A CN115354219 A CN 115354219A CN 202210795886 A CN202210795886 A CN 202210795886A CN 115354219 A CN115354219 A CN 115354219A
Authority
CN
China
Prior art keywords
equal
less
temperature
rolling
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210795886.8A
Other languages
English (en)
Other versions
CN115354219B (zh
Inventor
刘海宽
白云
苗丕峰
张建
郁新芸
恽鹏程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangyin Xingcheng Special Steel Works Co Ltd
Original Assignee
Jiangyin Xingcheng Special Steel Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangyin Xingcheng Special Steel Works Co Ltd filed Critical Jiangyin Xingcheng Special Steel Works Co Ltd
Priority to CN202210795886.8A priority Critical patent/CN115354219B/zh
Publication of CN115354219A publication Critical patent/CN115354219A/zh
Application granted granted Critical
Publication of CN115354219B publication Critical patent/CN115354219B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明涉及一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法,钢板的化学成分按重量百分比计为C:0.16~0.20%,Si:0.20~0.40%,Mn:1.20~1.50%,P:≤0.006%,S:≤0.001%,Ni:0.10~0.20%,Mo:0.04~0.10%,Cr:0.10~0.20%,Nb:0.01~0.02%,V:0.01~0.03%,Ti:0.01~0.03%,Alt:0.02~0.05%,B:≤0.0005%,Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%,余量为Fe及不可避免的杂质元素。组织以面积%计,由65~80%的铁素体+10~15%的珠光体+10~20%的粒状贝氏体组成的混合显微组织,其中粒状贝氏体组织呈团簇状分布。钢板在620±10℃×12h模拟焊后热处理条件下,屈服强度和抗拉强度余量为30MPa以上,心部‑30℃横向夏比冲击功单值≥100J,200~400℃高温拉伸的屈服强度≥320MPa,抗拉强度≥500MPa。

Description

一种200~400℃高温强度优异的SA516Gr70钢板及其制造 方法
技术领域
本发明属于钢铁冶金技术领域,尤其涉及一种高温强度优异的钢板及其制造方法。
背景技术
SA516Gr70是中、低温压力容器用钢中的典型牌号,广泛应用于石油、化工、电站、锅炉等行业。随着石化行业的快速发展,设备服役的环境温度越来越低,而设备的使用温度越来越高。为了保证高温设备停产检修和高效运行过程中的安全性,设计上对钢板的综合机械性能和高温强度提出了越来越高的要求,进一步来说,就是在高温长时间模拟焊后热处理条件下,低温韧性须满足心部-30℃横向夏比冲击吸收能量≥41J,200~400℃高温拉伸抗拉强度须满足ASME第II卷材料D篇表U中规定:200~375℃高温拉伸的抗拉强度≥483Mpa,400℃高温拉伸的抗拉强度≥476Mpa。200~400℃高温拉伸的验收值均接近ASMESA516/SA516M-2021标准中SA516Gr70牌号常温拉伸性能验收标准的下限485Mpa。研究表明,经过高温长时间模拟焊后热处理后,钢板的强度和低温韧性明显下降,随着拉伸试验温度的升高,钢板的抗拉强度会进一步下降,因此,研发生产能够满足上述技术要求钢板的技术难度非常大,目前,国内中厚板厂尚无很好的解决方案,如何能够生产兼有良好低温韧性和优异耐热性的钢板是本领域亟待解决的技术问题。
目前能够检索到关于钢板高温拉伸性能的专利中绝大多数只关注钢板的高温拉伸屈服强度,而未提及钢板高温拉伸抗拉强度。针对提高或保证钢板高温拉伸抗拉强度的专利很少,尤其是在针对钢板在200~400℃范围内高温拉伸抗拉强度的相关专利更少。公布号为CN108754340A的中国专利涉及一种用于制造压力容器封头的Q345R钢板及其生产方法,钢板厚度为8~100mm,所述钢板化学成分组成及其百分含量为:C≤0.20%,Si≤0.55%,Mn:1.20~1.70%,P≤0.015,S≤0.005%,Alt:0.025~0.050%,Nb:0.01~0.05%,V:0.02~0.05%,Cu:0.10~0.30%,Ni:0.15~0.30%,余量为Fe和不可避免的杂质。所述生产方法包括加热、轧制和热处理工序,其中轧制工序采用再结晶区+未再结晶区两阶段控轧控冷工艺,热处理采用两次正火+回火。钢板力学性能可以满足-20℃冲击功≥100J,200~400℃高温拉伸抗拉强度≥450Mpa。该专利技术未具体关注模拟焊后热处理状态下力学性能,而且实施例中3中的350℃高温拉伸抗拉强度和实施例2中的400℃高温拉伸抗拉强度未达到ASME第II卷材料D篇表U中规定要求。此外,该专利产品的成分设计添加大量的贵重合金,而且热处理工艺复杂,生产效率低,生产周期长。综上,从成分设计、生产工艺到产品性能指标上来看,该专利均不符合目前国家提倡的低碳减排、绿色制造政策导向,也不满足石化设备向大型化、高参数方向发展的需要。
发明内容
本发明所要解决的技术问题是针对上述现有技术提供一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法,钢板厚度为8~120mm,适用于在高温和低温环境中使用,具有较高的强度、良好的低温韧性和优异的高温拉伸性能。
本发明解决上述问题所采用的技术方案为:一种200~400℃高温强度优异的SA516Gr70钢板,钢板的化学成分按重量百分比计为C:0.16~0.20%,Si:0.20~0.40%,Mn:1.20~1.50%,P:≤0.006%,S:≤0.001%,Ni:0.10~0.20%,Mo:0.04~0.10%,Cr:0.10~0.20%,Nb:0.01~0.02%,V:0.01~0.03%,Ti:0.01~0.03%,Alt:0.02~0.05%,B:≤0.0005%,Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%,余量为Fe及不可避免的杂质元素。
本发明属于铁基合金,钢中主要化学元素及其作用如下:
C能够显著提高钢板的强度,但对韧性和塑性不利,综合考虑钢板强度和韧性和,本发明中C含量设定为0.16~0.20%。
Mn通过固溶强化提高钢的强度,但Mn容易与S形成MnS夹杂,进而降低钢板低温韧性,因此Mn含量不易过高,本发明中Mn含量设定为1.20~1.50%。
Si主要作为炼钢时的还原剂和脱氧剂使用,有一定的固溶强化作用,如果含量过高,会导致钢板低温韧性降低,因此本发明中Si含量设定为0.20~0.40%。
Cr、Mo、V:强碳化物形成元素,能够增强固溶体中原子间的结合力,Cr-Mo-V复合强化可以有效提高钢板的热强性,保证高温强度,Mo、V属于贵重合金,应限制使用,Cr会提高钢的回火脆性转变温度,促进回火脆性,应限制使用,本发明中Mo含量设定为0.04~0.10%,Cr含量设定为0.10~0.20%,V含量设定为0.01~0.03%。
Ni镍能显著提高低温冲击韧性,同时Ni属于贵重合金,应限制使用,综合考虑钢板性能和生产成本,本发明中Ni含量设定为0.10~0.20%。
S、P是有害元素,增减钢的脆性,降低冲击韧性和焊接性能,因此,S、P含量控制越低越好,本发明中S含量设定≤0.001%。P含量设定≤0.006%。
Alt:铝主要用来脱氧和有细化晶粒,本专利Alt含量控制在0.02~0.05%。
Nb:铌可以显著提高钢的奥氏体再结晶温度,扩大再结晶区范围,便于实现高温轧制,铌还可以抑制奥氏体晶粒长大,具有细晶强化和析出强化的作用,本专利Nb含量控制在0.01~0.02%。
Ti:与C、N元素形成碳氮化物,具有推迟奥氏体再结晶,细化铁素体晶粒的作用,可以同时提高钢板强度和韧性,本专利Ti含量控制在0.010~0.03%。
B:容易与N形成BN,在晶间富集,弱化晶界,因此其含量应越低越好,本发明B含量设定≤0.0005%
Pb、Sn、As、Sb、Bi是有害元素,容易在晶间富集,弱化晶界,因此其含量应越低越好,本发明设定Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%。
本发明上述钢板的生产顺序依次为冶炼浇铸、连铸坯加热、轧制和热处理,具体工艺如下:
(1)冶炼浇铸:控制钢水中有害元素Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%,采用连铸工艺将钢水浇铸成连铸坯;
(2)轧前加热:使组织完全奥氏体化,元素充分固溶;
(3)轧制:包括粗轧和精轧两个阶段,粗轧阶段采用高渗透轧制工艺,开轧温度为1080~1160℃,终轧温度≥960℃,至少2个轧制道次的压下量≥50mm;精轧阶段待温厚度为成品钢板厚度的2~4倍,终轧温度控制在800~840℃,累计压下率为40~60%,轧后采用ACC水冷,终冷返红温度控制在670~730℃,冷却速率为3~5℃/s;
(4)热处理:采用正火+回火工艺。
优选地,步骤(1)钢水冶炼涉及KR铁水预处理、LF精炼、RH真空脱气,钢水精炼时控制A类、B类、C类和D类非金属夹杂物类单项≤1.0级,总和≤2.5级;连铸工序采用低过热度全程氩气保护浇注,通过动态轻压下技术控制铸坯偏析C类1.0级以下,控制钢水连铸过热度为10~20℃。
优选地,步骤(2)连铸坯采用分段式加热,总加热时间为250~600min,第二加热段温度为1180~1260℃,均热段温度为1220~1250℃,第二加热段和均热段总加热时间≥120min。
优选地,步骤(4)中正火温度为880~900℃,保温时间系数为2.0~2.4min/mm,但不低于30min,出炉水冷,回火温度为530~570℃,保温时间系数为2.5min/mm。
本发明采用上述工艺措施和工艺参数适用范围的原理如下:
钢的化学成分、碳化物颗粒大小和弥散度、显微组织等因素对钢的热强性产生重要影响。一般而言,高温下晶界为薄弱环节,其强度比晶内低,因此强化晶界是增加钢的热强性的关键措施。由于粗晶粒的晶界总面积比细晶粒少,因此粗晶粒的热强性比细晶粒高,但晶粒过粗,钢的低温韧性较差,显然无法通过晶粒度控制同时兼顾钢的高温性能和低温韧性。从组织类型来看,铁素体组织韧性和塑性较好,但强度较低;粒状贝氏体组织的高温强度较好,但韧性较差。研究表明,Nb、V、Ti、Mo等合金元素,在高温时可以复合析出形成碳化物,通过固溶强化和析出强化能够增加晶界的强度,提高钢的高温性能和综合力学性能。综合上述分析,本发明的设计思路是在C、Mn钢的基础上添加Cr、Mo、Nb、V、Ti微合金元素,同时严格限制B、Pb、Sn、As、Sb、Bi等弱化晶界的有害元素含量,通过控轧控冷和正火+回火热处理工艺进行微观组织调控,得到具有合适比例的铁素体+少量珠光体+粒状贝氏体的混合微观组织和弥散、细小的析出相来获得良好的高温性能和综合机械性能。
与现有技术相比,本发明的优点在于:
本发明一种200~400℃高温强度优异的SA516Gr70钢板,适用于在高温和低温环境中使用,该钢板具有较高的强度、良好的低温韧性和优异的高温拉伸性能。经检测,本发明的高温强度优异的SA516Gr70钢板在620±10℃×12h模拟焊后热处理条件下,屈服强度和抗拉强度余量为30Mpa以上,心部-30℃横向夏比冲击功单值≥100J,200~400℃高温拉伸的屈服强度≥320Mpa,抗拉强度≥500Mpa。通过所述正火+回火热处理工序制备的钢板具有(以面积%计)由65~80%的铁素体+10~15%的珠光体+10~20%的粒状贝氏体组成的混合显微组织,其中粒状贝氏体组织呈团簇状分布。其典型形貌详见附图1。
附图说明
图1为本发明钢板的典型微观结构图。
具体实施方式
以下结合实施例对本发明作进一步详细描述,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1
本实施例的高温强度优异的SA516Gr70钢板厚度为8mm,采用150mm连铸坯生产,其化学成分按重量百分比计为C:0.17%,Si:0.28%,Mn:1.42%,P:0.005%,S:0.0008%,Ni:0.15%,Mo:0.07%,Cr:0.17%,Nb:0.015%,V:0.025%,Ti:0.015%,Alt:0.032%,B:0.0003%,Pb:0.0001%,Sn:0.0002%,As:0.0002%,Sb:0.0001%,Bi:0.0002%,余量为Fe及不可避免的杂质元素。
该钢板的制造工艺如下:
(1)冶炼浇铸工艺:选用优质冶炼原料,控制有害元素Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%。冶炼原料依次经KR铁水预处理、LF精炼、RH真空脱气和连铸工序。精炼工序采用超纯净钢冶炼工艺,控制A类、B类、C类和D类非金属夹杂物类单项≤1.0级,其总和≤2.5级;连铸工序采用低过热度全程氩气保护浇注,通过动态轻压下技术控制铸坯偏析C类1.0级以下,本实施例中连铸钢水过热度为18℃。
(2)加热工艺:连铸坯采用分段式加热,总加热时间为250min,第二加热段温度为1180~1260℃,均热段温度为1220~1250℃,第二加热段和均热段总加热时间为130min。
(3)轧制工艺:轧制分为粗轧和精轧两个阶段。粗轧阶段采用高渗透轧制工艺,开轧温度为1120℃,终轧温度为980℃,压下量≥50mm的轧制道次为2个,分别为52mm、50mm。精轧阶段待温厚度为成品钢板厚度的4.0倍,终轧温度为820℃,累计压下率为56%,轧后采用ACC水冷,终冷返红温度为710℃,冷却速率为4.2℃/s。
(4)热处理工艺:采用正火+回火工艺,正火温度为890℃,保温时间系数为30min,出炉水冷,回火温度为560℃,保温时间系数为2.5min/mm。
经由上述制造工艺制得的8mm厚SA516Gr70钢板具有匹配良好的力学性能和优异的高温拉伸性能,其力学性能详见表1,钢板探伤满足ASME SA578/SA578M标准C级要求。
实施例2
本实施例的高温强度优异的SA516Gr70钢板厚度为50mm,采用370mm连铸坯生产,其化学成分按重量百分比计为C:0.17%,Si:0.35%,Mn:1.43%,P:0.004%,S:0.0006%,Ni:0.17%,Mo:0.08%,Cr:0.17%,Nb:0.018%,V:0.026%,Ti:0.012%,Alt:0.035%,B:0.0002%,Pb:10.0001%,Sn:≤0.0001%,As:≤0.0002%,Sb:≤0.0002%,Bi:≤0.0001%,余量为Fe及不可避免的杂质元素。
该钢板的制造工艺如下:
(1)冶炼浇铸工艺:选用优质冶炼原料,控制有害元素Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%。冶炼原料依次经KR铁水预处理、LF精炼、RH真空脱气和连铸工序。精炼工序采用超纯净钢冶炼工艺,控制A类、B类、C类和D类非金属夹杂物类单项≤1.0级,其总和≤2.5级;连铸工序采用低过热度全程氩气保护浇注,通过动态轻压下技术控制铸坯偏析C类1.0级以下,本实施例中连铸钢水过热度为16℃。
(2)加热工艺:连铸坯采用分段式加热,总加热时间为480min,第二加热段温度为1180~1260℃,均热段温度为1220~1250℃,第二加热段和均热段总加热时间为220min。
(3)轧制工艺:轧制分为粗轧和精轧两个阶段。粗轧阶段采用高渗透轧制工艺,开轧温度为1100℃,终轧温度980℃,压下量≥50mm的轧制道次为3个,分别为55mm、55mm、50mm。精轧阶段待温厚度为成品钢板厚度的3.0倍,终轧温度为820℃,累计压下率为60%,轧后采用ACC水冷,终冷返红温度为720℃,冷却速率为3.6℃/s。
(4)热处理工艺:采用正火+回火工艺,正火温度为900℃,保温时间系数为2.2min/mm,出炉水冷,回火温度为550℃,保温时间系数为2.5min/mm。
经由上述制造工艺制得的50mm厚SA516Gr70钢板具有匹配良好的力学性能和优异的高温拉伸性能,其力学性能详见表1,钢板探伤满足ASME SA578/SA578M标准C级要求。
实施例3
本实施例的高温强度优异的SA516Gr70钢板厚度为120mm,采用450mm连铸坯生产,其化学成分按重量百分比计为C:0.17%,Si:0.32%,Mn:1.44%,P:0.0005%,S:0.0005%,Ni:0.18%,Mo:0.08%,Cr:0.14%,Nb:0.016%,V:0.028%,Ti:0.017%,Alt:0.032%,B:0.0004%,Pb:0.0001%,Sn:0.0002%,As:0.0001%,Sb:0.0001%,Bi:0.0001%,余量为Fe及不可避免的杂质元素。
该钢板的制造工艺如下:
(1)冶炼浇铸工艺:选用优质冶炼原料,控制有害元素Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%。冶炼原料依次经KR铁水预处理、LF精炼、RH真空脱气和连铸工序。精炼工序采用超纯净钢冶炼工艺,控制A类、B类、C类和D类非金属夹杂物类单项≤1.0级,其总和≤2.5级;连铸工序采用低过热度全程氩气保护浇注,通过动态轻压下技术控制铸坯偏析C类1.0级以下,本实施例中连铸钢水过热度为17℃。
(2)加热工艺:连铸坯采用分段式加热,总加热时间为600min,第二加热段温度为1180~1260℃,均热段温度为1220~1250℃,第二加热段和均热段总加热时间为280min。
(3)轧制工艺:轧制分为粗轧和精轧两个阶段。粗轧阶段采用高渗透轧制工艺,开轧温度为1150℃,终轧温度为1000℃,压下量≥50mm的轧制道次为4个,分别为51mm、51mm、50mm、50mm。精轧阶段待温厚度为成品钢板厚度的2.0倍,终轧温度控制在810℃,累计压下率为52%,轧后采用ACC水冷,终冷返红温度为710℃,冷却速率为4.6℃/s。
(4)热处理工艺:采用正火+回火工艺,正火温度为900℃,保温时间系数为2.4min/mm,出炉水冷,回火温度为550℃,保温时间系数为2.5min/mm。
经由上述制造工艺制得的120mm厚SA516Gr70钢板具有匹配良好的力学性能和优异的高温拉伸性能,其力学性能详见表1,钢板探伤满足ASME SA578/SA578M标准C级要求。
表1各实施例所生产钢板的模拟焊后热处理状态下的力学性能
Figure BDA0003731923670000081
注:模拟焊后热处理制度:620±10℃×12h,≤400℃进出炉,升降温速度≤55℃/h。
取样位置:钢板厚度1/2处。
除上述实施例外,本发明还包括有其他实施方式,凡采用等同变换或者等效替换方式形成的技术方案,均应落入本发明权利要求的保护范围之内。

Claims (7)

1.一种200~400℃高温强度优异的SA516Gr70钢板,其特征在于:钢板的化学成分按重量百分比计为C:0.16~0.20%,Si:0.20~0.40%,Mn:1.20~1.50%,P:≤0.006%,S:≤0.001%,Ni:0.10~0.20%,Mo:0.04~0.10%,Cr:0.10~0.20%,Nb:0.01~0.02%,V:0.01~0.03%,Ti:0.01~0.03%,Alt:0.02~0.05%,B:≤0.0005%,Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%,余量为Fe及不可避免的杂质元素。
2.根据权利要求1所述的200~400℃高温强度优异的SA516Gr70钢板,其特征在于:钢板在620±10℃×12h模拟焊后热处理条件下,屈服强度和抗拉强度余量为30MPa以上,心部-30℃横向夏比冲击功单值≥100J,200~400℃高温拉伸的屈服强度≥320MPa,抗拉强度≥500MPa。
3.根据权利要求1所述的200~400℃高温强度优异的SA516Gr70钢板,其特征在于:钢板的组织以面积%计,由65~80%的铁素体+10~15%的珠光体+10~20%的粒状贝氏体组成的混合显微组织,其中粒状贝氏体组织呈团簇状分布。
4.一种制造权利要求1所述200~400℃高温强度优异的SA516Gr70钢板的方法,其特征在于,包括如下步骤:
(1)冶炼浇铸:控制钢水中有害元素Pb:≤0.0005%,Sn:≤0.0005%,As:≤0.0005%,Sb:≤0.0005%,Bi:≤0.0005%,采用连铸工艺将钢水浇铸成连铸坯;
(2)轧前加热:使组织完全奥氏体化,元素充分固溶;
(3)轧制:包括粗轧和精轧两个阶段,粗轧阶段采用高渗透轧制工艺,开轧温度为1080~1160℃,终轧温度≥960℃,至少2个轧制道次的压下量≥50mm;精轧阶段待温厚度为成品钢板厚度的2~4倍,终轧温度控制在800~840℃,累计压下率为40~60%,轧后采用ACC水冷,终冷返红温度控制在670~730℃,冷却速率为3~5℃/s;
(4)热处理:采用正火+回火工艺。
5.根据权利要求4所述的200~400℃高温强度优异的SA516Gr70钢板的制造方法,其特征在于:步骤(1)钢水冶炼涉及KR铁水预处理、LF精炼、RH真空脱气,钢水精炼时控制A类、B类、C类和D类非金属夹杂物类单项≤1.0级,总和≤2.5级;连铸工序采用低过热度全程氩气保护浇注,通过动态轻压下技术控制铸坯偏析C类1.0级以下,控制钢水连铸过热度为10~20℃。
6.根据权利要求4所述的200~400℃高温强度优异的SA516Gr70钢板的制造方法,其特征在于:步骤(2)连铸坯采用分段式加热,总加热时间为250~600min,第二加热段温度为1180~1260℃,均热段温度为1220~1250℃,第二加热段和均热段总加热时间≥120min。
7.根据权利要求4所述的200~400℃高温强度优异的SA516Gr70钢板的制造方法,其特征在于:步骤(4)中正火温度为880~900℃,保温时间系数为2.0~2.4min/mm,但不低于30min,出炉水冷,回火温度为530~570℃,保温时间系数为2.5min/mm。
CN202210795886.8A 2022-07-06 2022-07-06 一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法 Active CN115354219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210795886.8A CN115354219B (zh) 2022-07-06 2022-07-06 一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210795886.8A CN115354219B (zh) 2022-07-06 2022-07-06 一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法

Publications (2)

Publication Number Publication Date
CN115354219A true CN115354219A (zh) 2022-11-18
CN115354219B CN115354219B (zh) 2023-09-15

Family

ID=84030361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210795886.8A Active CN115354219B (zh) 2022-07-06 2022-07-06 一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法

Country Status (1)

Country Link
CN (1) CN115354219B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055651A1 (ja) * 2009-11-05 2011-05-12 住友金属工業株式会社 熱間圧延棒鋼または線材
US20120199255A1 (en) * 2011-02-07 2012-08-09 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
WO2016105003A1 (ko) * 2014-12-24 2016-06-30 주식회사 포스코 취성균열전파 저항성이 우수한 구조용 극후물 강재 및 그 제조방법
CN106591723A (zh) * 2016-12-14 2017-04-26 舞阳钢铁有限责任公司 一种高模焊条件下的SA516Gr70钢板及生产方法
CN107739990A (zh) * 2017-09-12 2018-02-27 舞阳钢铁有限责任公司 屈服260MPa级酸性环境服役管线钢板及其生产方法
US20180298463A1 (en) * 2016-04-19 2018-10-18 Jiangyin Xingcheng Special Steel Works Co., Ltd Pressure vessel steel plate resistant against hydrogen-induced cracking and manufacturing method thereof
CN108754340A (zh) * 2018-06-01 2018-11-06 舞阳钢铁有限责任公司 用于制造压力容器封头的q345r钢板及其生产方法
CN111465711A (zh) * 2017-12-15 2020-07-28 株式会社Posco 拉伸强度和低温冲击韧性优异的用于压力容器的钢板及其制造方法
CN113278878A (zh) * 2021-04-01 2021-08-20 江阴兴澄特种钢铁有限公司 一种厚度>200~250mm抗氢致开裂压力容器钢板及其制造方法
CA3157674A1 (en) * 2020-03-11 2021-09-16 Jiangyin Xingcheng Special Steel Works Co., Ltd An extra thick vessel steel plate with good low-temperature impact toughness at the center and a production method
CN114561528A (zh) * 2022-03-01 2022-05-31 舞阳钢铁有限责任公司 低硬度易焊接耐模焊高匀质化高性能特厚钢板及生产方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055651A1 (ja) * 2009-11-05 2011-05-12 住友金属工業株式会社 熱間圧延棒鋼または線材
US20120199255A1 (en) * 2011-02-07 2012-08-09 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
WO2016105003A1 (ko) * 2014-12-24 2016-06-30 주식회사 포스코 취성균열전파 저항성이 우수한 구조용 극후물 강재 및 그 제조방법
US20180298463A1 (en) * 2016-04-19 2018-10-18 Jiangyin Xingcheng Special Steel Works Co., Ltd Pressure vessel steel plate resistant against hydrogen-induced cracking and manufacturing method thereof
CN106591723A (zh) * 2016-12-14 2017-04-26 舞阳钢铁有限责任公司 一种高模焊条件下的SA516Gr70钢板及生产方法
CN107739990A (zh) * 2017-09-12 2018-02-27 舞阳钢铁有限责任公司 屈服260MPa级酸性环境服役管线钢板及其生产方法
CN111465711A (zh) * 2017-12-15 2020-07-28 株式会社Posco 拉伸强度和低温冲击韧性优异的用于压力容器的钢板及其制造方法
CN108754340A (zh) * 2018-06-01 2018-11-06 舞阳钢铁有限责任公司 用于制造压力容器封头的q345r钢板及其生产方法
CA3157674A1 (en) * 2020-03-11 2021-09-16 Jiangyin Xingcheng Special Steel Works Co., Ltd An extra thick vessel steel plate with good low-temperature impact toughness at the center and a production method
CN113278878A (zh) * 2021-04-01 2021-08-20 江阴兴澄特种钢铁有限公司 一种厚度>200~250mm抗氢致开裂压力容器钢板及其制造方法
CN114561528A (zh) * 2022-03-01 2022-05-31 舞阳钢铁有限责任公司 低硬度易焊接耐模焊高匀质化高性能特厚钢板及生产方法

Also Published As

Publication number Publication date
CN115354219B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
CN113278878B (zh) 一种厚度>200~250mm抗氢致开裂压力容器钢板及其制造方法
WO2022022047A1 (zh) 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
CN103352167B (zh) 一种低屈强比高强度桥梁用钢及其制造方法
CN108728743B (zh) 低温断裂韧性良好的海洋工程用钢及其制造方法
CN104674110B (zh) 一种压力容器用低温钢板及其生产方法
CN101514435B (zh) 低温韧性优良且稳定的管线钢及其热轧板卷轧制方法
CN102851587A (zh) 抗变形x80-x100管线钢板及其制造方法
CN113249641B (zh) 一种100~120mm Q460D特厚高强钢及其制备方法
CN102876999A (zh) 一种调质型低温压力容器用钢板及其制备方法
CN111748727B (zh) 一种可焊性优良的超高强无缝钢管及其制造方法
CN102877007A (zh) 厚度大于等于80mm低裂纹敏感性压力容器用钢板及制备方法
CN110551878A (zh) 一种超高强度超高韧性低密度双相层状钢板及其制备方法
CN109266967A (zh) 一种超低压缩比超厚调质水电钢板及其生产方法
CN103882312B (zh) 低成本高韧性-140℃低温用钢板的制造方法
CN112251670A (zh) 一种延伸性能良好的690MPa级钢板及其制造方法
CN114836694B (zh) 一种船用抗海水腐蚀疲劳超高强钢及制造方法
CN114480962B (zh) 一种620MPa级煤矿液压支架用钢及其制造方法
CN113234993B (zh) 一种抗湿硫化氢腐蚀性能优异的q370r钢板及其制造方法
CN114686649A (zh) 一种5%Ni低温钢及其制造方法
CN103614630A (zh) 一种高强桥梁用钢及其制备方法
CN116043113A (zh) 一种tmcp工艺生产的焊前免预热桥梁钢及其制备方法
CN114058960B (zh) 一种25~60mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法
CN115449709A (zh) 一种厚规格高强韧性l485m管线钢及其生产方法
CN115354219B (zh) 一种200~400℃高温强度优异的SA516Gr70钢板及其制造方法
CN114875331A (zh) 一种具有优良心部疲劳性能的610MPa级厚钢板及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant