CN115351079A - 一种提高轻质金属复合板热稳定性能的加工方法 - Google Patents

一种提高轻质金属复合板热稳定性能的加工方法 Download PDF

Info

Publication number
CN115351079A
CN115351079A CN202210906062.3A CN202210906062A CN115351079A CN 115351079 A CN115351079 A CN 115351079A CN 202210906062 A CN202210906062 A CN 202210906062A CN 115351079 A CN115351079 A CN 115351079A
Authority
CN
China
Prior art keywords
metal
composite plate
interlayer
foil
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210906062.3A
Other languages
English (en)
Other versions
CN115351079B (zh
Inventor
高海涛
喻海良
李璟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210906062.3A priority Critical patent/CN115351079B/zh
Priority claimed from CN202210906062.3A external-priority patent/CN115351079B/zh
Publication of CN115351079A publication Critical patent/CN115351079A/zh
Application granted granted Critical
Publication of CN115351079B publication Critical patent/CN115351079B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/144Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers using layers with different mechanical or chemical conditions or properties, e.g. layers with different thermal shrinkage, layers under tension during bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本发明提供一种提高轻质金属复合板热稳定性能的加工方法。a)对异种基体金属和夹层金属箔材进行组装;b)将组装得到的含夹层金属复合板在连续退火炉中进行加热;c)对加热后的含夹层金属复合板进行热轧;d)将热轧得到的含夹层金属复合板浸入到液氮中进行冷却;e)对冷却的含夹层金属复合板进行多道次小压下量轧制;f)重复步骤d和e,即可制备出耐热型金属复合板。本发明通过夹层‑深冷复合轧制法,改变界面处金属间化合物种类及诱发基体金属的堆垛层错及纳米孪晶结构,使金属复合板在高温环境长时间服役时表现出良好的热稳定性能。

Description

一种提高轻质金属复合板热稳定性能的加工方法
技术领域
本发明属于金属材料轧制技术领域,特别涉及一种提高轻质金属复合板热稳定性能的加工方法。
背景技术
金属复合板因其轻质高强、优良的导电导热和耐磨耐腐蚀性能,被广泛应用于电子电力、交通运输、航空航天等领域,其开发利用对轻量化生产和提高材料利用率具有极大的推动作用。随着科技的迅猛发展,高端领域对金属复合板性能要求日益提高,开发新的制备工艺来进一步提升复合板的综合性能已经成为一种必然趋势。
传统轧制复合工艺制备的金属复合板在高温环境下服役时,界面处金属间化合物层的厚度会显著增加,伴随着基体金属发生充分的再结晶行为,易发生界面开裂和基体强度骤降等问题,这将会严重影响金属复合板的使用寿命,诱发安全隐患。因此,如何提升金属复合板的热稳定性能成为高性能金属复合板的关键。
发明内容
为了克服上述现有技术的缺点,抑制金属复合板在高温环境服役过程的热失稳,本发明的目的在于提供一种提高轻质金属复合板热稳定性能的加工方法。
为了实现上述目的,本发明采用的技术方案是:
一种提高轻质金属复合板热稳定性能的加工方法,包括如下步骤:
第一步:选用异种基体金属和夹层金属箔材并进行组装,所述异种基体金属指不同种类的两种金属,初始厚度为0.5mm至3mm,所述夹层金属箔材的初始厚度为10μm至200μm,所述组装是将所述夹层金属箔材置入所述异种基体金属之间;
第二步:将组装得到的含夹层金属复合板在连续退火炉中进行加热,加热温度为573K~603K,时间为20min~30min;
第三步:对加热后的含夹层金属复合板进行热轧;
第四步:将热轧得到的含夹层金属复合板浸入到液氮中进行冷却,使其温度均匀地降低到77K~107K;
第五步:对冷却的含夹层金属复合板进行轧制;
第六步:重复第四步和第五步,直到总压下率达到70%~80%,制备出厚度范围0.5mm~2mm的耐热型金属复合板。
所述异种基体金属为铝和铜,铝和钛,铝和镁,铝和镍,铝和钢,或者镁和钛;所述夹层金属箔材为镍箔、铁箔、不锈钢箔、高熵合金箔材或钒箔。
所述夹层金属箔材为与所述异种基体金属不同种类的第三种金属。
所述第三步,轧制速度为3~5m/min,压下率在50%~60%。
所述第五步,轧制速度为3~5m/min,道次压下率在5%~7%。
本发明的主要原理如下:
金属复合板的界面处添加夹层金属箔材后,将界面处的金属间化合物转变为耐高温型化合物,能够防止界面处金属间化合物层的厚度增加过快以及裂纹拓展。同时,通过后续的深冷轧制可促进堆垛层错及纳米孪晶在基体金属中形成,基体金属在高温环境长时间服役过程中形成细小的再结晶晶粒,确保金属复合板具有较高的热稳定性能。
与现有技术相比,本发明的有益效果是:
根据本发明的工艺,在热轧之后将金属间化合物种类转变为耐高温型化合物。随后再通过深冷轧制,促进基体金属中形成堆垛层错及纳米孪晶,使得基体金属在高温环境长时间服役仍能保持较高的强度,实现界面处和基体金属的热稳定性能的协同提升,提升材料的使用寿命及安全系数。在电子电力、交通运输、航空航天等领域具有广阔的应用前景。
附图说明
图1是本发明金属复合板夹层轧制与深冷轧制流程图示意图。
图2是不锈钢箔夹层对Cu/Al复合板界面处金属间化合物的抑制作用示意图。其中,(a)为473K退火无夹层Cu/Al复合板界面;(b)为473K退火含不锈钢箔夹层Cu/Al复合板界面。
图3是473K,2h退火后铜铝复合板基体金属晶粒尺寸分布示意图。其中(a)为室温轧制;(b)为深冷轧制。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方式。
如图1所示,本发明提高轻质金属复合板热稳定性能的加工方法包括如下步骤:
第一步:选用异种基体金属和夹层金属箔材,并进行组装。
本发明中,异种基体金属指不同种类的两种金属,初始厚度为0.5mm至3mm,夹层金属箔材的初始厚度为10μm至200μm。
本发明适用的异种基体金属为铝和铜,铝和钛,铝和镁,铝和镍,铝和钢,或者镁和钛。
本发明适用的夹层金属箔材为镍箔、铁箔、不锈钢箔、高熵合金箔材或钒箔。优选地,本发明中的夹层金属箔材为与异种基体金属不同种类的第三种金属。
本发明的组装,是指将夹层金属箔材置入异种基体金属之间,例如,在图1中,将夹层箔材金属3置入了基体金属A1和基体金属B2之间,其具体实现,可借助箔材导辊4和压靠导辊5完成。
第二步:将组装得到的含夹层金属复合板在连续退火炉6中进行加热,加热温度为573K~603K,时间为20min~30min。
第三步:利用热轧机7,对加热后的含夹层金属复合板进行热轧,一种可行的轧制速度为3~5m/min,压下率在50%~60%,使基体金属和夹层箔材表面的氧化膜破碎,实现良好的界面结合。
第四步:将热轧得到的含夹层金属复合板8浸入到装有液氮的深冷箱9中进行冷却,使其温度均匀地降低到77K~107K;
第五步:利用冷轧机10,对冷却的含夹层金属复合板进行轧制,一种可行的轧制速度为3~5m/min,道次压下率在5%~7%,使基体金属晶粒得到显著细化,诱发堆垛层错和纳米孪晶,确保金属复合板在高温环境长时间服役时保持良好的强度。
第六步:重复第四步和第五步,直到总压下率达到70%~80%,制备出厚度范围0.5mm~2mm的耐热型金属复合板11。
通过上述工艺可以降低界面处脆性金属间化合物层的生长速度,抑制界面处裂纹的萌生及开裂失效,并细化基体金属的再结晶晶粒,提升金属复合板的热稳定性能。
在本发明的一个实施例中,利用上述工艺制备1mm厚的Cu/Al复合带材。
其中,基体金属A1选择退火态厚度为1.5mm的工业纯铜,基体金属B2选择退火态厚度为1.5mm的工业纯铝,夹层箔材金属3选择厚度为50μm的退火态不锈钢箔。按照铜/不锈钢箔/铝的顺序对复合带材进行组装。之后,选择加热温度为573K,保温时间为30min。热轧的轧制速度为3m/min,压下率为50%。热轧之后,473K,2h退火处理,添加不锈钢箔夹层的Cu/Al复合板界面处金属间化合物层的厚度得到了显著减小,有效抑制了复合板在高温环境下界面处金属间化合物层的生长速度,如图2中(a)和(b)所示。
随后,将含不锈钢箔夹层Cu/Al复合板浸入到液氮中均匀冷却到77K,冷轧的轧制速度5m/min,道次压下率5%。重复冷轧直到总压下率达到75%,获得厚度为1mm含不锈钢箔夹层的Cu/Al复合板。经过473K,2h退火后,深冷轧制的复合板铜铝基体的晶粒尺寸要远小于室温轧制的试样,如图3中(a)和(b)所示。

Claims (5)

1.一种提高轻质金属复合板热稳定性能的加工方法,其特征在于,包括如下步骤:
第一步:选用异种基体金属和夹层金属箔材并进行组装,所述异种基体金属指不同种类的两种金属,初始厚度为0.5mm至3mm,所述夹层金属箔材的初始厚度为10μm至200μm,所述组装是将所述夹层金属箔材置入所述异种基体金属之间;
第二步:将组装得到的含夹层金属复合板在连续退火炉中进行加热,加热温度为573K~603K,时间为20min~30min;
第三步:对加热后的含夹层金属复合板进行热轧;
第四步:将热轧得到的含夹层金属复合板浸入到液氮中进行冷却,使其温度均匀地降低到77K~107K;
第五步:对冷却的含夹层金属复合板进行轧制;
第六步:重复第四步和第五步,直到总压下率达到70%~80%,制备出厚度范围0.5mm~2mm的耐热型金属复合板。
2.根据权利要求1所述提高轻质金属复合板热稳定性能的加工方法,其特征在于,所述异种基体金属为铝和铜,铝和钛,铝和镁,铝和镍,铝和钢,或者镁和钛;所述夹层金属箔材为镍箔、铁箔、不锈钢箔、高熵合金箔材或钒箔。
3.根据权利要求1所述提高轻质金属复合板热稳定性能的加工方法,其特征在于,所述夹层金属箔材为与所述异种基体金属不同种类的第三种金属。
4.根据权利要求1所述提高轻质金属复合板热稳定性能的加工方法,其特征在于,所述第三步,轧制速度为3~5m/min,压下率在50%~60%。
5.根据权利要求1所述提高轻质金属复合板热稳定性能的加工方法,其特征在于,所述第五步,轧制速度为3~5m/min,道次压下率在5%~7%。
CN202210906062.3A 2022-07-29 一种提高轻质金属复合板热稳定性能的加工方法 Active CN115351079B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210906062.3A CN115351079B (zh) 2022-07-29 一种提高轻质金属复合板热稳定性能的加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210906062.3A CN115351079B (zh) 2022-07-29 一种提高轻质金属复合板热稳定性能的加工方法

Publications (2)

Publication Number Publication Date
CN115351079A true CN115351079A (zh) 2022-11-18
CN115351079B CN115351079B (zh) 2024-06-04

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117463782A (zh) * 2023-11-21 2024-01-30 佛山通宝精密合金股份有限公司 Ti-Al-Ti多层层状复合材料的制备方法及其制得的复合材料

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB867860A (en) * 1957-10-30 1961-05-10 Ici Ltd A method of cold rolling metals and alloys
GB1116377A (en) * 1964-07-02 1968-06-06 Reynolds Metals Co Metal composites
JP2003201519A (ja) * 2001-03-28 2003-07-18 Nippon Steel Corp 低温靱性に優れた超高強度鋼用鋳片及び超高強度鋼の製造方法
JP2005288543A (ja) * 2004-03-12 2005-10-20 Tokyu Car Corp 金属材の接合方法
CN101288877A (zh) * 2008-06-10 2008-10-22 哈尔滨工业大学 一种钛合金板与不锈钢板的真空热轧复合方法
CN101362149A (zh) * 2008-09-16 2009-02-11 哈尔滨工业大学 用铌中间层的耐高温钛合金和不锈钢过渡接头的制作方法
KR20140066413A (ko) * 2012-11-23 2014-06-02 한국기계연구원 상온 접합력이 향상된 클래드 판재의 제조방법 및 이를 통해 제조된 클래드 판재
CN104043915A (zh) * 2014-07-09 2014-09-17 哈尔滨正德科技开发有限公司 硬质合金钎焊用三明治夹层式复合钎料的制备方法
CN104874635A (zh) * 2015-06-16 2015-09-02 攀钢集团攀枝花钢铁研究院有限公司 以铜为中间层高结合强度钛钢复合板的制备方法
CN106623425A (zh) * 2016-12-20 2017-05-10 中南大学 一种降低铝钛复合板材轧制边裂的方法
CN106929780A (zh) * 2017-03-14 2017-07-07 四川大学 一种高强韧性微/纳米层状金属材料及其制备方法
CN107262726A (zh) * 2017-06-14 2017-10-20 中南大学 一种生产自粘接纳米层状结构的镍铝金属粉的深冷制备工艺
CN108906889A (zh) * 2018-05-08 2018-11-30 中南大学 一种制备高性能CrCoNi中熵合金箔材的深冷异步轧制方法
CN109201739A (zh) * 2018-11-05 2019-01-15 中南大学 一种高性能超细晶铜/铝/铜复合带材的连续热轧-深冷轧制复合制备方法
CN109201734A (zh) * 2018-08-17 2019-01-15 中南大学 一种制备超高强度金属箔材的深冷异步轧制工艺
CN112760577A (zh) * 2020-12-28 2021-05-07 中南大学 同时提高2219铝基AlCoCrFeNi复合材料板材强度与塑性的方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB867860A (en) * 1957-10-30 1961-05-10 Ici Ltd A method of cold rolling metals and alloys
GB1116377A (en) * 1964-07-02 1968-06-06 Reynolds Metals Co Metal composites
JP2003201519A (ja) * 2001-03-28 2003-07-18 Nippon Steel Corp 低温靱性に優れた超高強度鋼用鋳片及び超高強度鋼の製造方法
JP2005288543A (ja) * 2004-03-12 2005-10-20 Tokyu Car Corp 金属材の接合方法
CN101288877A (zh) * 2008-06-10 2008-10-22 哈尔滨工业大学 一种钛合金板与不锈钢板的真空热轧复合方法
CN101362149A (zh) * 2008-09-16 2009-02-11 哈尔滨工业大学 用铌中间层的耐高温钛合金和不锈钢过渡接头的制作方法
KR20140066413A (ko) * 2012-11-23 2014-06-02 한국기계연구원 상온 접합력이 향상된 클래드 판재의 제조방법 및 이를 통해 제조된 클래드 판재
CN104043915A (zh) * 2014-07-09 2014-09-17 哈尔滨正德科技开发有限公司 硬质合金钎焊用三明治夹层式复合钎料的制备方法
CN104874635A (zh) * 2015-06-16 2015-09-02 攀钢集团攀枝花钢铁研究院有限公司 以铜为中间层高结合强度钛钢复合板的制备方法
CN106623425A (zh) * 2016-12-20 2017-05-10 中南大学 一种降低铝钛复合板材轧制边裂的方法
CN106929780A (zh) * 2017-03-14 2017-07-07 四川大学 一种高强韧性微/纳米层状金属材料及其制备方法
CN107262726A (zh) * 2017-06-14 2017-10-20 中南大学 一种生产自粘接纳米层状结构的镍铝金属粉的深冷制备工艺
CN108906889A (zh) * 2018-05-08 2018-11-30 中南大学 一种制备高性能CrCoNi中熵合金箔材的深冷异步轧制方法
CN109201734A (zh) * 2018-08-17 2019-01-15 中南大学 一种制备超高强度金属箔材的深冷异步轧制工艺
CN109201739A (zh) * 2018-11-05 2019-01-15 中南大学 一种高性能超细晶铜/铝/铜复合带材的连续热轧-深冷轧制复合制备方法
CN112760577A (zh) * 2020-12-28 2021-05-07 中南大学 同时提高2219铝基AlCoCrFeNi复合材料板材强度与塑性的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
喻海良;: "深冷轧制制备高性能金属材料研究进展", 中国机械工程, no. 01, 31 January 2020 (2020-01-31), pages 89 - 99 *
张心金;李龙;刘会云;殷福星;: "中间夹层在金属复合板制造过程中的应用", 轧钢, no. 06, 15 December 2013 (2013-12-15), pages 45 - 49 *
高海涛等: "轧制(热轧,冷轧,深冷轧制)复合法制备轻质金属层状带材研究进展(英文)", 中国有色金属学报(英文版), vol. 33, no. 2, 28 February 2023 (2023-02-28), pages 337 - 356 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117463782A (zh) * 2023-11-21 2024-01-30 佛山通宝精密合金股份有限公司 Ti-Al-Ti多层层状复合材料的制备方法及其制得的复合材料
CN117463782B (zh) * 2023-11-21 2024-05-28 佛山通宝精密合金股份有限公司 Ti-Al-Ti多层层状复合材料的制备方法及其制得的复合材料

Similar Documents

Publication Publication Date Title
CN100425392C (zh) 高硅钢薄板的冷轧制备方法
CN110340142B (zh) 一种两步法轧制制备钢铝复合板的方法
CN102205346A (zh) 铜-铝-铜复合板材的制备方法
CN103212574A (zh) 一种冷、温轧制复合制备铝合金复合箔的方法
Bi et al. A novel method for preparing Al/Mg/Al laminated composite material, processing maps and interface diffusion analysis
CN103934266A (zh) 一种减少界面层厚度的铜/铝复合带制备方法
CN101402155A (zh) 一种高温结合强度的铝钢复合带材制备工艺与方法
CN110842194B (zh) 一种通过粉末压烧制备高硅钢薄片的方法
CN102641889A (zh) 一种钎焊复合铝箔的制备方法
CN106424136A (zh) 一种以if钢为中间层的钛钢复合板及其制造方法
CN112048682B (zh) 一种中熵合金板材的加工热处理工艺
CN110788137B (zh) 一种利用铸态坯料制备金属复合板的方法
CN110721999B (zh) 一种添加镍栅层的铜铝复合板带及其连续生产方法
CN114107834B (zh) 一种高强铁镍钼合金丝材及其低成本制备方法
Chang et al. Study on the phase structure of the interface zone of Cu–Al composite plate in cast-rolling state and different heat treatment temperatures based on EBSD
CN107267901A (zh) 一种高强度无铁磁性织构Ni‑W合金基带的制备方法
CN115351079B (zh) 一种提高轻质金属复合板热稳定性能的加工方法
CN115351079A (zh) 一种提高轻质金属复合板热稳定性能的加工方法
CN111155023B (zh) 高韧性高强度无取向高硅钢的制备方法
CN105598420A (zh) 固态铜材固液复合及轧制组合制备双金属复合材料的方法
CN111004943A (zh) 一种高性能镍钒铜磷合金基带的制备方法
CN109652683A (zh) 一种热交换器用钎焊铝合金复合材料
CN102489508A (zh) 钼铜合金箔片的交叉轧制方法
CN111112331B (zh) 一种高强度的织构复合基带的制备方法
CN102489504A (zh) 钨铜合金箔片的交叉轧制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant