CN115347565A - 一种灾后配网与微网协同恢复方法和装置 - Google Patents

一种灾后配网与微网协同恢复方法和装置 Download PDF

Info

Publication number
CN115347565A
CN115347565A CN202211064269.7A CN202211064269A CN115347565A CN 115347565 A CN115347565 A CN 115347565A CN 202211064269 A CN202211064269 A CN 202211064269A CN 115347565 A CN115347565 A CN 115347565A
Authority
CN
China
Prior art keywords
microgrid
distribution network
model
node
scene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211064269.7A
Other languages
English (en)
Inventor
谢海鹏
祝昊
高建龙
别朝红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202211064269.7A priority Critical patent/CN115347565A/zh
Publication of CN115347565A publication Critical patent/CN115347565A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种灾后配网与微网协同恢复方法和装置,本发明以灾后配网与微网协同恢复为研究对象,计及维修队、分布式发电机、储能等灵活性资源及网络重构等恢复手段,考虑微网运行的自主性,提出了配网与微网协同恢复方法,基于线性DistFlow模型建立了两层混合整数线性规划模型,使用基于松弛的双层重构与分解算法求解。本发明计及分布式发电机、储能等灵活性资源,在保证各个微网自主运行的前提下,充分利用配网和微网中的资源,制定最优的灾后恢复方案。配网不能直接干预微网的运行,微网中的资源全部自主调度,解决了资源所有权不同的问题,提高了配网和微网协作的效率。

Description

一种灾后配网与微网协同恢复方法和装置
技术领域
本发明属于配网与微网协同技术领域,具体涉及一种灾后配网与微网协同恢复方法和装置。
背景技术
电力系统在现代社会中发挥着至关重要的作用,电力系统的安全是社会发展的基础。近年来,自然灾害造成了许多停电。例如,2016年,一场龙卷风导致中国江苏省13.5万户家庭停电。对2000年至2016年期间野火的统计分析表明,野火在加州部分输配电系统中造成公用事业损失超过7亿美元。由于气候变化,此类灾害的发生率将越来越高。此类自然灾害属于小概率高损失的极端事件,传统的可靠性指标只针对大概率小损失事件,面对极端事件时无法保证电力系统的安全,因此,建设具有恢复力的弹性电网正在成为能源领域的一个关键问题。
与输电系统相比,配电系统更加脆弱。近几十年来,已经进行了大量研究以提高配电网的弹性。配电网配置了丰富的灵活资源,例如分布式电源、电动汽车、储能,这意味着有很多方法可以提高配电网的弹性。许多研究人员将网络重构与灵活资源相结合以提高恢复效果,提出了一些考虑分布式电源、储能与网络重构配合的灾后恢复方案。此外,一些研究者使用网络重构将配电网划分成多个微电网来提高配电网的弹性,针对微网形成问题,部分研究提出了新的配电网运行方法,即形成由分布式电源供电的多个微网,通过控制开关装置和分布式电源的ON/OFF状态来满足微网的自给性和运行约束。为了解决后续事件中存在的潜在风险,有研究提出将微网的自适应形成作为关键负荷恢复的一部分。考虑到线路故障的不确定性,有研究提出了一种鲁棒的微网形成方法。除了分布式电源,储能系统在配网恢复中也发挥着重要的作用,有学者提出了一种通过微网和移动储能设备相互配合来增强配网恢复力的方法。
现有研究提出的恢复策略是在灾难发生后将配电网划分为由分布式电源或储能系统供电的微网,以恢复关键负载。灵活资源以集中方式调度,无需保护微网运营商的隐私。然而,随着屋顶太阳能光伏等分布式可再生能源的大量接入,正常运行下将形成大量微网,每个微网都有自己的运营方案,微网资源所有权的不同阻碍了不同微网恢复资源的协调。因此,需要提出一种灾害后配网和微网的协同配合方法并保证微网运行的自主性。
发明内容
本发明提供了一种灾后配网与微网协同恢复方法和装置,在保证各个微网自主运行的前提下,充分利用配网和微网中的资源,制定最优的灾后恢复方案。
为达到上述目的,本发明所述一种灾后配网与微网协同恢复方法,包括以下步骤:
步骤1、建立两层灾后恢复模型,所述两层灾后恢复模型包括上层模型和下层模型;
步骤2、求解模型步骤1建立的两层灾后恢复模型,得到最优解;
步骤3、根据最优解对配电网和微电网进行控制;
所述步骤1中,上层模型包括上层目标函数、上层线性潮流模型、维修队派遣模型、上层辐射状模型和配网-微网耦合模型;所述下层模型包括下层目标函数、下层线性潮流模型、下层辐射状模型和配网-微网耦合模型;
所述上层辐射状模型和配网-微网耦合模型和下层辐射状模型和配网-微网耦合模型均包括配网向微网发送的功率需求量。
进一步的,上层目标函数为:
Figure BDA0003827557170000021
其中Ns为新能源出力的典型场景集,NB为配网节点集合,T为时间间隔的集合,πs为场景s出现的概率,wj为节点j处负荷的重要度,
Figure BDA0003827557170000022
为场景s中时刻t时配网节点j处的失负荷量。
进一步的,上层线性潮流模型为:
Figure BDA0003827557170000031
Figure BDA0003827557170000032
Figure BDA0003827557170000033
Figure BDA0003827557170000034
Figure BDA0003827557170000035
Figure BDA0003827557170000036
Figure BDA0003827557170000037
Figure BDA0003827557170000038
Figure BDA0003827557170000039
Figure BDA00038275571700000310
Figure BDA00038275571700000311
其中NL为线路集合,NB为节点集合,NG为发电机集合,Πj为以节点j为起点的线路的集合,δj为以节点j为终点的线路的集合,NMG为与微网相连的节点的集合,
Figure BDA00038275571700000312
为场景s中t时刻线路l上流过的有功功率,
Figure BDA00038275571700000313
为场景s中t时刻线路l上流过的无功功率,
Figure BDA00038275571700000314
为场景s中t时刻发电机的有功出力,
Figure BDA00038275571700000315
为场景s中t时刻发电机的无功出力,PL,j为节点j处的有功负荷,QL,j为无功负荷,
Figure BDA00038275571700000316
为场景s中时刻t时节点j处的有功损失量,
Figure BDA00038275571700000317
为场景s中时刻t时节点j处的无功损失量,
Figure BDA00038275571700000318
为场景s中时刻t时节点i处的电压,
Figure BDA00038275571700000319
为场景s中时刻t时节点j处的电压,V0为配电网的基准电压,rl为线路l的电阻,Xl为线路l的电抗,
Figure BDA00038275571700000320
为线路l的容量约束,ul,t为t时刻线路l的状态,pfj为节点j处的功率因数,Vmin,j和Vmax,j为节点j处可以达到的最小和最大电压值,
Figure BDA00038275571700000321
Figure BDA00038275571700000322
为发电机的最小和最大有功出力,
Figure BDA00038275571700000323
为场景s中时刻t时发电机g的有功出力,场景
Figure BDA00038275571700000324
Figure BDA00038275571700000325
为发电机的最小和最大无功出力,
Figure BDA00038275571700000326
为场景s中时刻t时发电机g的无功出力,M为常数。
进一步的,主问题辐射状模型为:
Figure BDA0003827557170000041
Figure BDA0003827557170000042
Figure BDA0003827557170000043
Figure BDA0003827557170000044
其中,NL为线路集合,R为潜在的根节点集合,其包含损坏线路两端的节点和发电机所在的节点,nbus为节点数,0/1变量γj,t确定潜在的根节点是否成为根节点,fl,t为线路上流过的虚拟功率,M是常数。
进一步的,上层配网-微网耦合模型为:
Figure BDA0003827557170000045
Figure BDA0003827557170000046
所述下层配网-微网耦合模型为:
Figure BDA0003827557170000047
其中Ω为微网集合,NG,m为微网m的发电机集合,NESS,m为微网m的储能系统集合,NB,m为微网m的节点集合,
Figure BDA0003827557170000048
为场景s中配网向微网m发送的功率需求量,
Figure BDA0003827557170000049
为微网m中发电机g的出力预测值,
Figure BDA00038275571700000410
为微网m中的储能系统e的最大放电功率,
Figure BDA00038275571700000411
为微网m中节点j的负荷;
Figure BDA00038275571700000412
为与微网m中与配电网相连的节点,
Figure BDA00038275571700000413
为微网m中与配网相连的节点
Figure BDA00038275571700000414
的负荷,
Figure BDA00038275571700000415
为在场景s中微网m与配网相连的节点
Figure BDA00038275571700000416
的切负荷量,配网要求传输的电能在微网中被视为负荷。
进一步的,下层模型的目标函数为:
Figure BDA00038275571700000417
其中
Figure BDA0003827557170000051
为微网m中节点j处负荷的重要度,
Figure BDA0003827557170000052
为场景s中时刻t时微网m节点j处的失负荷量。
进一步的,下层模型的线性潮流模型为:
Figure BDA0003827557170000053
Figure BDA0003827557170000054
Figure BDA0003827557170000055
Figure BDA0003827557170000056
Figure BDA0003827557170000057
Figure BDA0003827557170000058
Figure BDA0003827557170000059
Figure BDA00038275571700000510
Figure BDA00038275571700000511
Figure BDA00038275571700000512
Figure BDA00038275571700000513
Figure BDA00038275571700000514
其中
Figure BDA00038275571700000515
为微网m中与配网相连的节点,
Figure BDA00038275571700000516
为微网m中线路l的受损状态,
Figure BDA00038275571700000517
Figure BDA00038275571700000518
分别为场景s时刻t时微网m中节点j处的储能系统的放电功率和充电功率,NL,m为微网m的线路集合,NG,m为微网m的发电机集合,Πj为以节点j为起点的线路的集合,δj为以节点j为终点的线路的集合,
Figure BDA00038275571700000519
为场景s中t时刻时微网m中线路l上流过的有功功率,
Figure BDA00038275571700000520
为场景s中t时刻时微网m中线路l上流过的无功功率,
Figure BDA00038275571700000521
为场景s中t时刻时微网m中发电机g的有功出力,
Figure BDA00038275571700000522
为场景s中t时刻时微网m中发电机g的无功出力,
Figure BDA00038275571700000523
为微网m中节点j处的有功负荷,
Figure BDA00038275571700000524
为无功负荷,
Figure BDA00038275571700000525
为场景s中时刻t时微网m中节点j处的有功损失量,
Figure BDA00038275571700000526
为场景s中时刻t时微网m中节点j处的无功损失量,
Figure BDA0003827557170000061
为场景s中时刻t时微网m中节点i处的电压,
Figure BDA0003827557170000062
为场景s中时刻t时微网m中节点j处的电压,
Figure BDA0003827557170000063
为微网m中的基准电压,
Figure BDA0003827557170000064
为微网m中线路l的电阻,
Figure BDA0003827557170000065
为微网m中线路l的电抗,
Figure BDA0003827557170000066
为微网m中线路l的容量约束,
Figure BDA0003827557170000067
为场景s中t时刻时微网m中线路l的状态,
Figure BDA0003827557170000068
为微网m中节点j处的功率因数,
Figure BDA0003827557170000069
Figure BDA00038275571700000610
为微网m中节点j处可以达到的最小和最大电压值,
Figure BDA00038275571700000611
为微网m中发电机g的最小和最大有功出力,
Figure BDA00038275571700000612
为场景s中时刻t时微网m中发电机g的有功出力,场景
Figure BDA00038275571700000613
Figure BDA00038275571700000614
为发电机的最小和最大无功出力,
Figure BDA00038275571700000615
为场景s中时刻t时微网m中发电机g的无功出力,M为常数。
进一步的,步骤3包括以下步骤:
Step 1:将两层灾后恢复模型写为矩阵形式:
min DTθ (54)
Figure BDA00038275571700000616
Figure BDA00038275571700000617
其中DT为上层问题目标函数的系数矩阵,ym,s代表下层模型中的全部连续变量,zm,s代表下层模型中的全部0/1变量,θ代表上层模型中除ym,s和zm,s的全部变量,
Figure BDA00038275571700000618
为场景s中微网m的目标函数的系数矩阵,AUL
Figure BDA00038275571700000619
及bUL分别为上层模型中θ、ym,s、zm,s的系数矩阵以及常系数矩阵,
Figure BDA00038275571700000620
Figure BDA00038275571700000621
分别为下层模型中θ、ym,s、zm,s的系数矩阵以及常系数矩阵,Ns为场景集合;
Step2:将双层问题分为主问题和子问题;
主问题的形式如下:
min DTθ (57)
Figure BDA00038275571700000622
Figure BDA0003827557170000071
Figure BDA0003827557170000072
其中ρm,s是惩罚系数,Im,s为一个仅含0和1的系数矩阵,Zm,s为场景s中问题m所含的0/1变量的全部组合,zm,s,k为固定的0/1变量组合,ym,s,k为下层模型的0/1变量组合取zm,s,k时下层模型中的连续变量的取值,βm,s,k为下层模型的0/1变量组合取zm,s,k时的惩罚变量,
Figure BDA0003827557170000073
Figure BDA0003827557170000074
Figure BDA0003827557170000075
为场景s下层问题m中θ、ym,s、zm,s的系数矩阵以及常系数矩阵;
在获得θ的最优解θ*后,子问题的具体形式如下:
Figure BDA0003827557170000076
Figure BDA0003827557170000077
Step3:求解主问题和子问题,包括以下步骤:
Step 3.1:输入配电网和微网的系统拓扑以及各元件参数,各元件参数包括线路的阻抗,发电机出力的范围,各节点的负荷大小,各节点可接受的电压范围,储能的最大出力以及储能的容量;
Step 3.2:初始化迭代次数i和迭代终止误差ε:i=0,ε=10-5,对于所有的m∈Ω,s∈Ns,设置迭代次数计数变量om,s=0以及Zm,s=φ,ρm,s=100;
Step3.3:求解主问题,得到最优解表示为
Figure BDA0003827557170000078
将下层问题的目标函数值记为
Figure BDA0003827557170000079
Figure BDA00038275571700000710
传递给子问题;其中
Figure BDA00038275571700000711
为θ的最优值;
Step 3.4:求解子问题,将子问题的最优解记为
Figure BDA00038275571700000712
将子问题最优值记为
Figure BDA00038275571700000713
Step 3.5:判断
Figure BDA00038275571700000714
是否成立:
若成立,则返回最优解
Figure BDA00038275571700000715
流程结束;
若不成立,那么oj,g=oj,g+1,并将组合
Figure BDA00038275571700000716
添加到Zj,g中,并更新Zm,s,然后设置i=i+1返回Step3.2。
一种灾后配网与微网协同恢复装置,包括:
输入模块,用于输入配电网和微网的系统拓扑以及各元件参数;
处理模块,用于根据配电网和微网的系统拓扑以及各元件参数,求解预设的两层灾后恢复模型,得到最优控制策略,并将控制策略传递至配电网和微网。
进一步的,两层灾后恢复模型包括上层模型和下层模型;所述上层模型包括上层目标函数、上层线性潮流模型、维修队派遣模型、上层辐射状模型和配网-微网耦合模型;所述下层模型包括下层目标函数、下层线性潮流模型、下层辐射状模型和配网-微网耦合模型;
所述上层辐射状模型和配网-微网耦合模型和下层辐射状模型和配网-微网耦合模型均包括配网向微网发送的功率需求量。
与现有技术相比,本发明至少具有以下有益的技术效果:本发明以灾后配网与微网协同恢复为研究对象,计及维修队、分布式发电机、储能等灵活性资源及网络重构等恢复手段,考虑微网运行的自主性,提出了配网与微网协同恢复方法,基于线性潮流模型建立了两层混合整数线性规划模型。其具有如下的优点:
本发明提出的方法计及维修队、分布式发电机、储能等灵活性资源,在保证各个微网自主运行的前提下,充分利用配网和微网中的资源,制定最优的灾后恢复方案。在协同恢复方法中,配网运营商不能直接干预微网的运行,只给微网传递需要微网提供的功率即可,微网微网中的资源全部自主调度,解决了资源所有权不同的问题,提高了配网和微网协作的效率。此外,所提出的方法只需要配网运营商与微网运营商进行少量的沟通,降低了对灾后通信的要求。
进一步的,本发明的方法使用随机规划来对可再生能源的不确定性进行建模,建立的两层混合整数线性规划模型可以被分布式求解,降低了配网运营商优化和控制的复杂度。
进一步的,本发明使用基于松弛的双层重构与分解算法求解传统单层重构法无法求解的双层混合整数线性规划模型,求解过程中两层模型在迭代过程中相互传递信息,保证得到全局最优的控制策略,在保证微网运行的自主性的同时,保证配网的失负荷最少,将经济损失降低至最小。对于需要较大迭代次数的复杂算例,该算法可以在保证找到最优解的前提下大大减少迭代次数和计算时间。此外,随着下层问题的增多,迭代次数和计算时间不会有明显的增加,使本发明提出的方法可以扩展到解决更复杂的情况。
附图说明
图1为灾后配网与微网协同恢复方法示意图;
图2为两层协同恢复模型结构图;
图3为模型求解流程图;
图4为本发明提供的灾后配网与微网协同恢复装置的模块结构示意图;
图5为本发明提供的计算机设备的结构示意图。
具体实施方式
为了使本发明的目的和技术方案更加清晰和便于理解。以下结合附图和实施例,对本发明进行进一步的详细说明,此处所描述的具体实施例仅用于解释本发明,并非用于限定本发明。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
本发明提出的配网与微网灾后协同恢复方法,考虑各个微网运行的自主性,充分利用配网和微网中的资源,制定最优的灾后恢复方案,其流程图如图1所示。在上层中,配电网控制中心负责维持配电网中的电力供应,灾难发生后,配电网控制中心优化可用资源的调度,通过维修人员派遣、分布式发电机调度、网络重构,尽可能多地恢复关键负荷。此外,配网控制中心与微网控制中心之间设定好协议,以便微网参与灾后的协同恢复。
当灾害发生后,微网控制中心向配网控制中心报告其剩余的发电容量,配网控制中心依据这个信息向微网控制中心发送协助命令。在这样的机制下,配网运营商可以快速制定灾后恢复方案,大大提高灾后恢复的效率。在下层中,每个微网都是由自己的控制中心进行,与配网控制中心相同,微网有维持微网中的电力供应的责任。在接收到配网控制中心的协助命令后,在保证自身需求的前提下,微网运营商调度分布式发电机和储能将剩余的电力输送给配电网。本发明提出的方法允许微网运营商自主调度自身的资源,保护了微网的隐私并解决了资源所有权不同所带来的问题。此外,微网的自主运行大大降低了配网运营商优化和控制的复杂度。
本发明首先建立两层灾后恢复模型,使用随机规划的建模方法对可再生能源不确定性进行建模,并将配网与微网的协同恢复构建成两层混合整数线性规划模型,通过维修队调度、分布式发电机调度、网络重构以及微网的协助,制定最优的灾后恢复方案。模型结构图如图2所示,上层模型是配网运营商恢复配网中的关键负荷,上层模型的问题以配电网缺供电量(失负荷)期望值最小为目标函数,基于线性潮流模型(以下简称线性DistFlow模型)建立混合整数线性规划模型,其包括四大部分,分别为线性DistFlow模型、维修队派遣模型、辐射状模型以及配网-微网耦合模型。
下层模型是微网运营商在接收到配网的协助命令后调度微网资源满足自身负荷并完成协助命令,计及分布式发电机、储能系统以及网络重构,建立混合整数线性规划模型,在保证自身负荷供应的情况下完成配网下达的协助命令。下层问题以微网失负荷量最小为目标函数,其包括四大部分,分别为线性DistFlow模型、辐射状模型、储能运行模型以及微网-配网耦合模型。使用基于松弛的双层重构与分解算法对建立两层混合整数规划模型进行求解。各部分具体如下。
参照图1,一种灾后配网与微网协同恢复方法,包括以下内容:
步骤1、建立两层灾后恢复模型,立两层灾后恢复模型包括上层模型和下层模型;
1.上层模型
(1)目标函数
Figure BDA0003827557170000111
其中Ns为新能源出力的典型场景集,例如预测误差达到最大、预测误差为0等场景,NB为配网节点集合,T为时间间隔的集合,πs为场景s出现的概率,wj为节点j处负荷的重要度,
Figure BDA0003827557170000112
为场景s中时刻t时配网节点j处的失负荷量。
(2)线性DistFlow模型
Figure BDA0003827557170000113
Figure BDA0003827557170000114
Figure BDA0003827557170000115
Figure BDA0003827557170000116
Figure BDA0003827557170000117
Figure BDA0003827557170000121
Figure BDA0003827557170000122
Figure BDA0003827557170000123
Figure BDA0003827557170000124
Figure BDA0003827557170000125
Figure BDA0003827557170000126
其中NL为线路集合,NB为节点集合,NG为发电机集合,Πj为以节点j为起点的线路的集合,δj为以节点j为终点的线路的集合,NMG为与微网相连的节点的集合,
Figure BDA0003827557170000127
为场景s中t时刻线路l上流过的有功功率,
Figure BDA0003827557170000128
为场景s中t时刻线路l上流过的无功功率,
Figure BDA0003827557170000129
为场景s中t时刻发电机的有功出力,
Figure BDA00038275571700001210
为场景s中t时刻发电机的无功出力,PL,j为节点j处的有功负荷,QL,j为无功负荷,
Figure BDA00038275571700001211
为场景s中时刻t时节点j处的有功损失量,
Figure BDA00038275571700001212
为场景s中时刻t时节点j处的无功损失量,
Figure BDA00038275571700001213
为场景s中时刻t时节点i处的电压,
Figure BDA00038275571700001214
为场景s中时刻t时节点j处的电压,V0为配电网的基准电压,rl为线路l的电阻,Xl为线路l的电抗,
Figure BDA00038275571700001215
为线路l的容量约束,ul,t为t时刻线路l的状态,pfj为节点j处的功率因数,Vmin,j和Vmax,j为节点j处可以达到的最小和最大电压值,
Figure BDA00038275571700001216
Figure BDA00038275571700001217
为发电机的最小和最大有功出力,
Figure BDA00038275571700001218
为场景s中时刻t时发电机g的有功出力,场景
Figure BDA00038275571700001219
Figure BDA00038275571700001220
为发电机的最小和最大无功出力,
Figure BDA00038275571700001221
为场景s中时刻t时发电机g的无功出力,M为一个很大的常数,可取10000。
等式(2)和(3)为功率平衡约束,约束(4)和(5)为线路两端电压与线路上流过的功率的关系,约束(6)和(7)限制线路上流过的有功和无功功率,约束(8)和(9)限制了切负荷量,约束(9)保证了各节点的功率因数保持不变,约束(10)限制了每个节点的电压水平,约束(11)和(12)对发电机出力进行了限制。
(3)维修队派遣模型
Figure BDA0003827557170000131
Figure BDA0003827557170000132
Figure BDA0003827557170000133
Figure BDA0003827557170000134
Figure BDA0003827557170000135
Figure BDA0003827557170000136
Figure BDA0003827557170000137
Figure BDA0003827557170000138
Figure BDA0003827557170000139
Figure BDA00038275571700001310
Figure BDA00038275571700001311
Figure BDA00038275571700001312
其中,x0,m,c为维修队从维修站出发时的路径选择变量,xm,dp,c为维修队完成维修任务后返回维修站的路径选择变量,RC为维修队集合,DN为损坏的元件及维修站的集合,dp为维修站,0/1变量xm,n,c为维修队c的路径选择变量,0/1变量Ym,c为损坏元件的维修队分配变量,
Figure BDA00038275571700001313
为维修队c到达损坏元件m的时间,
Figure BDA00038275571700001314
为维修队c修复损坏元件m需要的时间,
Figure BDA00038275571700001315
为维修队c到达损坏元件n需要的时间,
Figure BDA00038275571700001316
为维修队c从元件m到元件n的通行时间,M为常数,取100,0/1变量τm,t为元件的修复状态变量,如果为1表示元件m在时刻t被修复,0/1变量λm,t为修复完成变量,如果为1代表元件m在时刻t之前被修复,ε取0.01,λm,t代表t时刻时元件m是否被修复,如果为1则被修复,如果为0则未被修复。约束(13)保证维修队从维修站出发,约束(14)保证维修队最后回到维修站,约束(15)保证维修队修复完元件后会从该元件处离开,约束(16)和(17)保证了每一个损坏的元件都会有一支维修队前去维修,约束(18)和(19)确定了维修队到达每个损坏元件的时间,约束(20)每个损坏的元件必须被修复,约束(21)-(23)确定了各时刻元件的修复状态,约束(24)代表元件状态的变化。
(4)辐射状模型
Figure BDA0003827557170000141
Figure BDA0003827557170000142
Figure BDA0003827557170000143
Figure BDA0003827557170000144
其中,R为潜在的根节点集合,其包含损坏线路两端的节点和发电机所在的节点,nbus为节点数,0/1变量γj,t确定潜在的根节点是否成为根节点,fl,t为线路上流过的虚拟功率,M是个很大的常数,可取100。根据图论的知识,一个辐射状的图必须满足:(a)边的数量等于节点数减去子图数;(b)每个子图必须保证连通性。约束(25)满足了条件(a),约束(26)-(28)满足了条件(b)。
(5)配网-微网耦合模型
Figure BDA0003827557170000145
Figure BDA0003827557170000146
其中Ω为微网集合,NG,m为微网m的发电机集合,NESS,m为微网m的储能系统集合,NB,m为微网m的节点集合,
Figure BDA0003827557170000147
为场景s中配网向微网m发送的功率需求量,
Figure BDA0003827557170000148
为微网m中发电机g的出力预测值,
Figure BDA0003827557170000149
为微网m中的储能系统e的最大放电功率,
Figure BDA00038275571700001410
为微网m中节点j的负荷。约束(29)表示微网输送的电能可以视为发电机,约束(30)对输送的能量进行了限制。
2.下层模型
(1)目标函数
Figure BDA0003827557170000151
其中
Figure BDA0003827557170000152
为微网m中节点j处负荷的重要度,
Figure BDA0003827557170000153
为场景s中时刻t时微网m节点j处的失负荷量。
(2)线性DistFlow模型
Figure BDA0003827557170000154
Figure BDA0003827557170000155
Figure BDA0003827557170000156
Figure BDA0003827557170000157
Figure BDA0003827557170000158
Figure BDA0003827557170000159
Figure BDA00038275571700001510
Figure BDA00038275571700001511
Figure BDA00038275571700001512
Figure BDA00038275571700001513
Figure BDA00038275571700001514
Figure BDA00038275571700001515
其中
Figure BDA00038275571700001516
为微网m中与配网相连的节点,
Figure BDA00038275571700001517
为微网m中线路l的受损状态,
Figure BDA00038275571700001518
Figure BDA00038275571700001519
分别为场景s时刻t时微网m中节点j处的储能系统的放电功率和充电功率,NL,m为微网m的线路集合,NG,m为微网m的发电机集合,Πj为以节点j为起点的线路的集合,δj为以节点j为终点的线路的集合,
Figure BDA00038275571700001520
为场景s中t时刻时微网m中线路l上流过的有功功率,
Figure BDA00038275571700001521
为场景s中t时刻时微网m中线路l上流过的无功功率,
Figure BDA00038275571700001522
为场景s中t时刻时微网m中发电机g的有功出力,
Figure BDA00038275571700001523
为场景s中t时刻时微网m中发电机g的无功出力,
Figure BDA00038275571700001524
为微网m中节点j处的有功负荷,
Figure BDA0003827557170000161
为无功负荷,
Figure BDA0003827557170000162
为场景s中时刻t时微网m中节点j处的有功损失量,
Figure BDA0003827557170000163
为场景s中时刻t时微网m中节点j处的无功损失量,
Figure BDA0003827557170000164
为场景s中时刻t时微网m中节点i处的电压,
Figure BDA0003827557170000165
为场景s中时刻t时微网m中节点j处的电压,
Figure BDA0003827557170000166
为微网m中的基准电压,rl m为微网m中线路l的电阻,
Figure BDA0003827557170000167
为微网m中线路l的电抗,
Figure BDA0003827557170000168
为微网m中线路l的容量约束,
Figure BDA0003827557170000169
为场景s中t时刻时微网m中线路l的状态,
Figure BDA00038275571700001610
为微网m中节点j处的功率因数,
Figure BDA00038275571700001611
Figure BDA00038275571700001612
为微网m中节点j处可以达到的最小和最大电压值,
Figure BDA00038275571700001613
为微网m中发电机g的最小和最大有功出力,
Figure BDA00038275571700001614
为场景s中时刻t时微网m中发电机g的有功出力,场景
Figure BDA00038275571700001615
Figure BDA00038275571700001616
为发电机的最小和最大无功出力,
Figure BDA00038275571700001617
为场景s中时刻t时微网m中发电机g的无功出力,M为一个很大的常数,可取10000。
等式(32)和(33)为功率平衡约束,约束(34)和(35)为线路两端电压与线路上流过的功率的关系,约束(36)和(37)限制线路上流过的有功和无功功率,约束(38)和(39)限制了切负荷量,约束(39)保证了各节点的功率因数保持不变,约束(40)限制了每个节点的电压水平,约束(41)和(42)对发电机出力进行了限制。
(3)辐射状模型
Figure BDA00038275571700001618
Figure BDA00038275571700001619
Figure BDA00038275571700001620
Figure BDA00038275571700001621
其中,NB,m为微网m的节点集合,Rm为微网m的潜在根节点集合,其包含损坏线路两端的节点和发电机所在的节点,
Figure BDA00038275571700001622
为微网m的节点数,0/1变量
Figure BDA00038275571700001623
用于确定场景s中微网m的潜在根节点j是否成为根节点,
Figure BDA00038275571700001624
为场景s中微网m的线路l上流过的虚拟功率,M是各个很大的数,可取100。根据图论的知识,一个辐射状的图必须满足:(a)边的数量等于节点数减去子图数;(b)每个子图必须保证连通性。约束(44)满足了条件(a),约束(45)-(46)满足了条件(b)。
(4)储能运行模型
Figure BDA0003827557170000171
Figure BDA0003827557170000172
Figure BDA0003827557170000173
Figure BDA0003827557170000174
Figure BDA0003827557170000175
其中NESS,m是微网m中储能的集合,0/1变量
Figure BDA0003827557170000176
为储能系统e在t时刻的充放电状态,若为1表示储能处于放电状态,为0表示处于充电状态,
Figure BDA0003827557170000177
为场景s中微网m在t时刻储能系统e的放电功率,
Figure BDA0003827557170000178
为场景s时刻t时微网m中储能e的充电功率,
Figure BDA0003827557170000179
为微网m中储能e的最大充电功率,
Figure BDA00038275571700001710
为场景s时刻t时微网m中储能e在恢复初始时刻的荷电状态,
Figure BDA00038275571700001711
为场景s时刻t时微网m中储能e在t时刻的荷电状态,
Figure BDA00038275571700001712
为场景s时刻t时微网m中储能e在t+1时刻的荷电状态,ΔT为时间间隔,是一个常数,一般取1小时,
Figure BDA00038275571700001713
表示储能的初始荷电状态,ηdis,e和ηch,e分别为储能系统e的放电效率和充电效率,
Figure BDA00038275571700001714
Figure BDA00038275571700001715
分别为储能荷电状态的最低和最高水平。约束(48)和(49)对储能系统的充放电功率进行了限制,约束(50)-(52)代表储能系统荷电状态变化。
(5)微网-配网耦合模型
Figure BDA00038275571700001716
Figure BDA0003827557170000181
为与微网m中与配电网相连的节点,
Figure BDA0003827557170000182
为微网m中与配网相连的节点
Figure BDA0003827557170000183
的负荷,
Figure BDA0003827557170000184
为在场景s中微网m与配网相连的节点
Figure BDA0003827557170000185
的切负荷量配网要求传输的电能在微网中被视为负荷。
步骤2、模型求解
第一步:将上层模型和下层模型写为矩阵形式
建立双层混合整数线性规划模型无法使用传统的基于KKT条件的单层重构法进行求解,因此,本发明使用基于松弛的双层重构与分解算法对所建立的模型进行求解,其求解流程如图(3)所示。为了简化表达,将上层模型和下层模型写为矩阵形式:
min DTθ (54)
Figure BDA0003827557170000186
Figure BDA0003827557170000187
其中DT为上层问题目标函数的系数矩阵,ym,s代表下层模型中的全部连续变量,zm,s代表下层模型中的全部0/1变量,θ代表上层模型中除ym,s和zm,s的全部变量,
Figure BDA0003827557170000188
为场景s中微网m的目标函数的系数矩阵,AUL
Figure BDA0003827557170000189
及bUL分别为上层模型中θ、ym,s、zm,s的系数矩阵以及常系数矩阵,
Figure BDA00038275571700001810
Figure BDA00038275571700001811
分别为下层模型中θ、ym,s、zm,s的系数矩阵以及常系数矩阵,Ns为场景集合,约束(55)和(56)分别代表上层模型的约束和下层模型的约束。
第二步:根据基于松弛的双层重构与分解算法,将双层问题分为主问题和子问题,主问题的形式如下:
min DTθ (57)
Figure BDA00038275571700001812
Figure BDA00038275571700001813
Figure BDA00038275571700001814
其中ρm,s是一个很大的惩罚系数,可取100,Im,s为一个仅含0和1的系数矩阵,Zm,s为场景s中问题m所含的0/1变量的全部组合,zm,s,k为固定的0/1变量组合,ym,s,k为下层模型的0/1变量组合取zm,s,k时下层模型中的连续变量的取值,βm,s,k为下层模型的0/1变量组合取zm,s,k时的惩罚变量,
Figure BDA0003827557170000191
Figure BDA0003827557170000192
为场景s下层问题m中θ、ym,s、zm,s的系数矩阵以及常系数矩阵,这使得主问题可以使用传统的基于KKT条件的单层重构法求解,得到配电网的最优恢复策略θ*,将最优恢复策略传给子问题。
在获得θ*后,子问题的具体形式如下:
Figure BDA0003827557170000193
Figure BDA0003827557170000194
求解(61)-(62)组成的子问题即可得到各个微电网的运行操作。
第三步:参照图3,求解主问题和子问题,包括以下步骤:
Step 1:输入配电网和微网的系统拓扑以及各元件参数,各元件参数包括线路的阻抗,发电机出力的范围,各节点的负荷大小,各节点可接受的电压范围,储能的最大出力以及储能的容量;
Step 2:初始化迭代次数i和迭代终止误差ε:i=0,ε=10-5,对于所有的m∈Ω,s∈Ns,设置迭代次数计数变量om,s=0以及Zm,s=φ,ρm,s=100;
Step 3:使用商用求解器求解主问题(57-60),将最优解表示为
Figure BDA0003827557170000195
将下层问题的目标函数值记为
Figure BDA0003827557170000196
Figure BDA0003827557170000197
传递给子问题;其中
Figure BDA0003827557170000198
为θ的最优值;
Step 4:使用商用求解器求解子问题(61)-(62),将子问题的最优解记为
Figure BDA0003827557170000199
将子问题最优值记为
Figure BDA00038275571700001910
Step 5:判断
Figure BDA00038275571700001911
是否成立:
如果成立,则返回最优解
Figure BDA00038275571700001912
流程结束;
如果不成立,那么oj,g=oj,g+1,并将组合
Figure BDA0003827557170000201
添加到Zj,g中,并更新Zm,s,然后设置i=i+1返回Step 2。
步骤3、根据最优解
Figure BDA0003827557170000202
对配电网和微电网进行控制。
配网运营商与微网运营商灾前达成协议,以便微网同意参与灾后的协同恢复。灾害发生后,配网运营商立刻调度自身的资源对配网的负荷进行恢复,同时微网运营商向配网报告微网的剩余容量,然后配网运营商依据微网报告的信息向微网下达协助命令,在接收到配网的协助命令后,微网运营商调度分布式发电机和储能满足自身负荷并完成配网运营商的协助命令。
实施例2
本发明提供的一种灾后配网与微网协同恢复装置,如图4所示,包括输入模块和处理模块。
其中,输入模块用于输入配电网和微网的系统拓扑以及各元件参数;处理模块,用于根据配电网和微网的系统拓扑以及各元件参数,求解预设的两层灾后恢复模型,得到最优控制策略,并将控制策略传递至配电网和微网。
实施例3
本发明提供的一种计算机设备,如图5所示,包括电连接的存储器和处理器,其中,存储器上存储有可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现上述的恢复方法的步骤。
所述计算机程序可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器中,并由所述处理器执行,以完成本发明。
所述恢复装置可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述恢复装置可包括,但不仅限于,处理器、存储器。
所述处理器可以是中央处理单元(CentralProcessingUnit,CPU),还可以是其他通用处理器、数字信号处理器(DigitalSignalProcessor,DSP)、专用集成电路(ApplicationSpecificIntegratedCircuit,ASIC)、现成可编程门阵列(Field-ProgrammableGateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述恢复装置/终端设备的各种功能。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
实施例4
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (10)

1.一种灾后配网与微网协同恢复方法,其特征在于,包括以下步骤:
步骤1、建立两层灾后恢复模型,所述两层灾后恢复模型包括上层模型和下层模型;
步骤2、将配电网和微网的系统拓扑以及各元件参数输入步骤1建立的两层灾后恢复模型中,以配电网缺供电量期望值最小目标,求解所述两层灾后恢复模型,得到最优解;
步骤3、根据最优解对配电网和微电网进行控制;
所述步骤1中,上层模型包括上层目标函数、上层线性潮流模型、维修队派遣模型、上层辐射状模型和配网-微网耦合模型;所述下层模型包括下层目标函数、下层线性潮流模型、下层辐射状模型和配网-微网耦合模型;
所述上层辐射状模型和配网-微网耦合模型和下层辐射状模型和配网-微网耦合模型均包括配网向微网发送的功率需求量。
2.根据权利要求1所述的一种灾后配网与微网协同恢复方法,其特征在于,所述上层目标函数为:
Figure FDA0003827557160000011
其中Ns为新能源出力的典型场景集,NB为配网节点集合,T为时间间隔的集合,πs为场景s出现的概率,wj为节点j处负荷的重要度,
Figure FDA0003827557160000012
为场景s中时刻t时配网节点j处的失负荷量。
3.根据权利要求1所述的一种灾后配网与微网协同恢复方法,其特征在于,所述上层线性潮流模型为:
Figure FDA0003827557160000013
Figure FDA0003827557160000014
Figure FDA0003827557160000015
Figure FDA0003827557160000016
Figure FDA0003827557160000021
Figure FDA0003827557160000022
Figure FDA0003827557160000023
Figure FDA0003827557160000024
Figure FDA0003827557160000025
Figure FDA0003827557160000026
Figure FDA0003827557160000027
其中NL为线路集合,NB为节点集合,NG为发电机集合,Πj为以节点j为起点的线路的集合,δj为以节点j为终点的线路的集合,NMG为与微网相连的节点的集合,
Figure FDA0003827557160000028
为场景s中t时刻线路l上流过的有功功率,
Figure FDA0003827557160000029
为场景s中t时刻线路l上流过的无功功率,
Figure FDA00038275571600000210
为场景s中t时刻发电机的有功出力,
Figure FDA00038275571600000211
为场景s中t时刻发电机的无功出力,PL,j为节点j处的有功负荷,QL,j为无功负荷,
Figure FDA00038275571600000212
为场景s中时刻t时节点j处的有功损失量,
Figure FDA00038275571600000213
为场景s中时刻t时节点j处的无功损失量,
Figure FDA00038275571600000214
为场景s中时刻t时节点i处的电压,
Figure FDA00038275571600000215
为场景s中时刻t时节点j处的电压,V0为配电网的基准电压,rl为线路l的电阻,Xl为线路l的电抗,
Figure FDA00038275571600000216
为线路l的容量约束,ul,t为t时刻线路l的状态,pfj为节点j处的功率因数,Vmin,j和Vmax,j为节点j处可以达到的最小和最大电压值,
Figure FDA00038275571600000217
Figure FDA00038275571600000218
为发电机的最小和最大有功出力,
Figure FDA00038275571600000219
为场景s中时刻t时发电机g的有功出力,场景
Figure FDA00038275571600000220
Figure FDA00038275571600000221
为发电机的最小和最大无功出力,
Figure FDA00038275571600000222
为场景s中时刻t时发电机g的无功出力,M为常数。
4.根据权利要求1所述的一种灾后配网与微网协同恢复方法,其特征在于,所述主问题辐射状模型为:
Figure FDA00038275571600000223
Figure FDA00038275571600000224
Figure FDA0003827557160000031
Figure FDA0003827557160000032
其中,NL为线路集合,R为潜在的根节点集合,其包含损坏线路两端的节点和发电机所在的节点,nbus为节点数,0/1变量γj,t确定潜在的根节点是否成为根节点,fl,t为线路上流过的虚拟功率,M是常数。
5.根据权利要求1所述的一种灾后配网与微网协同恢复方法,其特征在于,所述上层配网-微网耦合模型为:
Figure FDA0003827557160000033
Figure FDA0003827557160000034
所述下层配网-微网耦合模型为:
Figure FDA0003827557160000035
其中Ω为微网集合,NG,m为微网m的发电机集合,NESS,m为微网m的储能系统集合,NB,m为微网m的节点集合,
Figure FDA0003827557160000036
为场景s中配网向微网m发送的功率需求量,
Figure FDA0003827557160000037
为微网m中发电机g的出力预测值,
Figure FDA0003827557160000038
为微网m中的储能系统e的最大放电功率,
Figure FDA0003827557160000039
为微网m中节点j的负荷;
Figure FDA00038275571600000310
为与微网m中与配电网相连的节点,
Figure FDA00038275571600000311
为微网m中与配网相连的节点
Figure FDA00038275571600000312
的负荷,
Figure FDA00038275571600000313
为在场景s中微网m与配网相连的节点
Figure FDA00038275571600000314
的切负荷量,配网要求传输的电能在微网中被视为负荷。
6.根据权利要求1所述的一种灾后配网与微网协同恢复方法,其特征在于,所述下层模型的目标函数为:
Figure FDA00038275571600000315
其中
Figure FDA00038275571600000316
为微网m中节点j处负荷的重要度,
Figure FDA00038275571600000317
为场景s中时刻t时微网m节点j处的失负荷量。
7.根据权利要求1所述的一种灾后配网与微网协同恢复方法,其特征在于,所述下层模型的线性潮流模型为:
Figure FDA0003827557160000041
Figure FDA0003827557160000042
Figure FDA0003827557160000043
Figure FDA0003827557160000044
Figure FDA0003827557160000045
Figure FDA0003827557160000046
Figure FDA0003827557160000047
Figure FDA0003827557160000048
Figure FDA0003827557160000049
Figure FDA00038275571600000410
Figure FDA00038275571600000411
Figure FDA00038275571600000412
其中
Figure FDA00038275571600000413
为微网m中与配网相连的节点,
Figure FDA00038275571600000414
为微网m中线路l的受损状态,
Figure FDA00038275571600000415
Figure FDA00038275571600000416
分别为场景s时刻t时微网m中节点j处的储能系统的放电功率和充电功率,NL,m为微网m的线路集合,NG,m为微网m的发电机集合,Πj为以节点j为起点的线路的集合,δj为以节点j为终点的线路的集合,
Figure FDA00038275571600000417
为场景s中t时刻时微网m中线路l上流过的有功功率,
Figure FDA00038275571600000418
为场景s中t时刻时微网m中线路l上流过的无功功率,
Figure FDA00038275571600000419
为场景s中t时刻时微网m中发电机g的有功出力,
Figure FDA00038275571600000420
为场景s中t时刻时微网m中发电机g的无功出力,
Figure FDA00038275571600000421
为微网m中节点j处的有功负荷,
Figure FDA00038275571600000422
为无功负荷,
Figure FDA00038275571600000423
为场景s中时刻t时微网m中节点j处的有功损失量,
Figure FDA00038275571600000424
为场景s中时刻t时微网m中节点j处的无功损失量,
Figure FDA0003827557160000051
为场景s中时刻t时微网m中节点i处的电压,
Figure FDA0003827557160000052
为场景s中时刻t时微网m中节点j处的电压,
Figure FDA0003827557160000053
为微网m中的基准电压,rl m为微网m中线路l的电阻,
Figure FDA0003827557160000054
为微网m中线路l的电抗,
Figure FDA0003827557160000055
为微网m中线路l的容量约束,
Figure FDA0003827557160000056
为场景s中t时刻时微网m中线路l的状态,
Figure FDA0003827557160000057
为微网m中节点j处的功率因数,
Figure FDA0003827557160000058
Figure FDA0003827557160000059
为微网m中节点j处可以达到的最小和最大电压值,
Figure FDA00038275571600000510
为微网m中发电机g的最小和最大有功出力,
Figure FDA00038275571600000511
为场景s中时刻t时微网m中发电机g的有功出力,场景
Figure FDA00038275571600000512
Figure FDA00038275571600000513
为发电机的最小和最大无功出力,
Figure FDA00038275571600000514
为场景s中时刻t时微网m中发电机g的无功出力,M为常数。
8.根据权利要求1所述的一种灾后配网与微网协同恢复方法,其特征在于,所述步骤3包括以下步骤:
Step 1:将两层灾后恢复模型写为矩阵形式:
min DTθ (54)
Figure FDA00038275571600000515
Figure FDA00038275571600000516
其中DT为上层问题目标函数的系数矩阵,ym,s代表下层模型中的全部连续变量,zm,s代表下层模型中的全部0/1变量,θ代表上层模型中除ym,s和zm,s的全部变量,
Figure FDA00038275571600000517
为场景s中微网m的目标函数的系数矩阵,AUL
Figure FDA00038275571600000518
及bUL分别为上层模型中θ、ym,s、zm,s的系数矩阵以及常系数矩阵,
Figure FDA00038275571600000519
Figure FDA00038275571600000520
分别为下层模型中θ、ym,s、zm,s的系数矩阵以及常系数矩阵,Ns为场景集合;
Step2:将双层问题分为主问题和子问题;
主问题的形式如下:
min DTθ (57)
Figure FDA0003827557160000061
Figure FDA0003827557160000062
Figure FDA0003827557160000063
其中ρm,s是惩罚系数,Im,s为一个仅含0和1的系数矩阵,Zm,s为场景s中问题m所含的0/1变量的全部组合,zm,s,k为固定的0/1变量组合,ym,s,k为下层模型的0/1变量组合取zm,s,k时下层模型中的连续变量的取值,βm,s,k为下层模型的0/1变量组合取zm,s,k时的惩罚变量,
Figure FDA0003827557160000064
Figure FDA0003827557160000065
Figure FDA0003827557160000066
为场景s下层问题m中θ、ym,s、zm,s的系数矩阵以及常系数矩阵;
在获得θ的最优解θ*后,子问题的具体形式如下:
Figure FDA0003827557160000067
Figure FDA0003827557160000068
Step3:求解主问题和子问题,包括以下步骤:
Step 3.1:输入配电网和微网的系统拓扑以及各元件参数,各元件参数包括线路的阻抗,发电机出力的范围,各节点的负荷大小,各节点可接受的电压范围,储能的最大出力以及储能的容量;
Step 3.2:初始化迭代次数i和迭代终止误差ε:i=0,ε=10-5,对于所有的m∈Ω,s∈Ns,设置迭代次数计数变量om,s=0以及Zm,s=φ,ρm,s=100;
Step3.3:求解主问题,得到最优解表示为
Figure FDA0003827557160000069
将下层问题的目标函数值记为
Figure FDA00038275571600000610
Figure FDA00038275571600000611
传递给子问题;其中
Figure FDA00038275571600000612
为θ的最优值;
Step 3.4:求解子问题,将子问题的最优解记为
Figure FDA00038275571600000613
将子问题最优值记为
Figure FDA00038275571600000614
Step 3.5:判断
Figure FDA00038275571600000615
是否成立:
若成立,则返回最优解
Figure FDA00038275571600000616
流程结束;
若不成立,那么oj,g=oj,g+1,并将组合
Figure FDA0003827557160000071
添加到Zj,g中,并更新Zm,s,然后设置i=i+1返回Step3.2。
9.一种灾后配网与微网协同恢复装置,其特征在于,包括:
输入模块,用于输入配电网和微网的系统拓扑以及各元件参数;
处理模块,用于根据配电网和微网的系统拓扑以及各元件参数,求解预设的两层灾后恢复模型,得到最优控制策略,并将控制策略传递至配电网和微网。
10.根据权利要求9所述的一种灾后配网与微网协同恢复装置,其特征在于,所述两层灾后恢复模型包括上层模型和下层模型;所述上层模型包括上层目标函数、上层线性潮流模型、维修队派遣模型、上层辐射状模型和配网-微网耦合模型;所述下层模型包括下层目标函数、下层线性潮流模型、下层辐射状模型和配网-微网耦合模型;
所述上层辐射状模型和配网-微网耦合模型和下层辐射状模型和配网-微网耦合模型均包括配网向微网发送的功率需求量。
CN202211064269.7A 2022-08-31 2022-08-31 一种灾后配网与微网协同恢复方法和装置 Pending CN115347565A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211064269.7A CN115347565A (zh) 2022-08-31 2022-08-31 一种灾后配网与微网协同恢复方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211064269.7A CN115347565A (zh) 2022-08-31 2022-08-31 一种灾后配网与微网协同恢复方法和装置

Publications (1)

Publication Number Publication Date
CN115347565A true CN115347565A (zh) 2022-11-15

Family

ID=83956593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211064269.7A Pending CN115347565A (zh) 2022-08-31 2022-08-31 一种灾后配网与微网协同恢复方法和装置

Country Status (1)

Country Link
CN (1) CN115347565A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115809836A (zh) * 2023-02-09 2023-03-17 华南理工大学 考虑分布式储能应急供电能力的配电网韧性规划的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115809836A (zh) * 2023-02-09 2023-03-17 华南理工大学 考虑分布式储能应急供电能力的配电网韧性规划的方法

Similar Documents

Publication Publication Date Title
Zhao et al. A model predictive control based generator start-up optimization strategy for restoration with microgrids as black-start resources
US11581732B2 (en) Establishing communication and power sharing links between components of a distributed energy system
CN112884245B (zh) 配电网灾后抢修调度及负荷恢复协同优化方法及系统
Bayram et al. A survey on energy trading in smart grid
Tan et al. Optimization of distribution network incorporating distributed generators: An integrated approach
CN113011670B (zh) 配电网故障应急抢修调度-故障恢复协同方法及装置
CN111626633B (zh) 基于综合评价指标的自储能柔性互联配电网扩展规划方法
CN113890023B (zh) 一种综合能源微网分布式经济调度优化方法及系统
CN110676849B (zh) 一种孤岛微电网群能量调度模型的构建方法
CN109840692A (zh) 一种互联微电网分布式鲁棒调度系统及调度方法
Igder et al. Service restoration through microgrid formation in distribution networks: A review
CN115347565A (zh) 一种灾后配网与微网协同恢复方法和装置
CN115693652A (zh) 基于电力平衡和性能成本的配电网网架优化方法及装置
Liu et al. Fully distributed control to coordinate charging efficiencies for energy storage systems
CN113762632A (zh) 一种电气综合能源系统的协同优化运行方法及系统
CN114818379B (zh) 考虑多维不确定性的信息物理主动配电系统互动规划方法
Casagrande et al. A distributed scenario-based stochastic MPC for fault-tolerant microgrid energy management
Elmouatamid et al. Review of control and energy management approaches in micro-grid systems. Energies 2021, 14, 168
Sadeghi et al. Fully decentralized multi-agent coordination scheme in smart distribution restoration: Multilevel consensus
Casagrande et al. A robust MPC method for microgrid energy management based on distributed optimization
Garip et al. Reliability Analysis of Microgrids: Evaluation of Centralized and Decentralized Control Approaches
Liang et al. Optimal trading strategies for energy hubs equipped with power-to-gas technology
CN113256446B (zh) 考虑数据缺失的信息物理融合的配电网鲁棒优化调度方法
Wan et al. A distributed admm algorithm for economic load dispatch considering demand response
CN115241878B (zh) 一种考虑风电备用可靠性的备用优化方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination