CN115342805A - High-precision robot positioning navigation system and navigation method - Google Patents
High-precision robot positioning navigation system and navigation method Download PDFInfo
- Publication number
- CN115342805A CN115342805A CN202210733489.8A CN202210733489A CN115342805A CN 115342805 A CN115342805 A CN 115342805A CN 202210733489 A CN202210733489 A CN 202210733489A CN 115342805 A CN115342805 A CN 115342805A
- Authority
- CN
- China
- Prior art keywords
- robot
- data
- inertial
- positioning
- visual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000012937 correction Methods 0.000 claims abstract description 43
- 230000004927 fusion Effects 0.000 claims abstract description 19
- 238000010295 mobile communication Methods 0.000 claims abstract description 17
- 230000000007 visual effect Effects 0.000 claims description 26
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000007500 overflow downdraw method Methods 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/0014—Image feed-back for automatic industrial control, e.g. robot with camera
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Robotics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明属于机器人定位导航领域,尤其涉及一种高精度机器人定位导航系统及导航方法。The invention belongs to the field of robot positioning and navigation, and in particular relates to a high-precision robot positioning and navigation system and a navigation method.
背景技术Background technique
随着社会的进步与发展,机器人代替人工搬运繁重的物品是当今工业生产的发展趋势。现在市场上相同类型的机器人主要是通过磁导航、激光导航、二维码导航、惯性导航等导航方式。With the progress and development of society, it is the development trend of today's industrial production that robots replace manual handling of heavy items. Now the same type of robots on the market mainly use magnetic navigation, laser navigation, two-dimensional code navigation, inertial navigation and other navigation methods.
磁导航利用磁条和一些标记完成机器人的定位导航,磁条引导机器人沿着固定轨迹行进。实际应用中,磁条铺设困难而且施工成本高,增大了生产成本,降低了企业收益。Magnetic navigation uses magnetic strips and some markers to complete the positioning and navigation of the robot, and the magnetic strips guide the robot along a fixed trajectory. In practical application, the laying of magnetic strips is difficult and the construction cost is high, which increases the production cost and reduces the profit of the enterprise.
激光导航是在机器人行驶路径的周围安装激光反射板,机器人通过发射激光束,同时采集由反射板反射的激光束,来确定其当前的位置和方向。激光导航虽然具有高精度的优点,但是其成本高,而且对环境要求比较苛刻,难以应用于复杂的环境。Laser navigation is to install a laser reflector around the driving path of the robot. The robot emits a laser beam and collects the laser beam reflected by the reflector to determine its current position and direction. Although laser navigation has the advantages of high precision, its cost is high, and it has strict environmental requirements, so it is difficult to apply in complex environments.
二维码导航是通过离散铺设二维码,通过机器人摄像头扫描解析二维码获取实时坐标。由于二维码易磨损,需定期维护,增加了后期维护成本,而且该方式仅适用于环境好的仓库,不适用于复杂的环境。Two-dimensional code navigation is to lay out two-dimensional codes discretely, and obtain real-time coordinates by scanning and analyzing the two-dimensional codes through the robot camera. Since the two-dimensional code is easy to wear and needs regular maintenance, it increases the cost of later maintenance, and this method is only suitable for warehouses with good environments, not for complex environments.
惯性导航是在机器人上安装陀螺仪,利用陀螺仪可以获取机器人的三轴角速度和加速度,通过积分运算对机器人进行导航定位,由于陀螺仪本身随着时间增长,误差会累积增大,甚至是丢失位置,造成严重损失,不能满足高精度定位导航的需求。Inertial navigation is to install a gyroscope on the robot. The gyroscope can be used to obtain the three-axis angular velocity and acceleration of the robot, and the robot can be navigated and positioned by integral calculation. As the gyroscope itself grows with time, the error will accumulate and increase, or even be lost. location, causing serious losses, and cannot meet the needs of high-precision positioning and navigation.
以上这些导航方式存在场景铺设价格高昂,定位导航精度低,对使用场景要求高,难以适用于复杂的使用环境等情况,因此就需要一种成本较低、场景铺设简单且高精度的定位导航方式。The above navigation methods have high cost of scene laying, low positioning and navigation accuracy, high requirements for use scenarios, and are difficult to apply to complex use environments. Therefore, a positioning and navigation method with low cost, simple scene laying and high precision is needed. .
发明内容Contents of the invention
发明目的:本发明的目的在于提供一种高精度机器人定位导航方法及系统,本发明有效地解决了现有机器人定位导航精度不高,高精度机器人定位导航系统对使用场景要求高等问题。Purpose of the invention: The purpose of the present invention is to provide a high-precision robot positioning and navigation method and system. The present invention effectively solves the problems that the existing robot positioning and navigation accuracy is not high, and the high-precision robot positioning and navigation system requires high usage scenarios.
技术方案:本发明的高精度机器人定位导航系统,所述高精度机器人定位导航系统包括机器人底盘和地面辅助装置;Technical solution: the high-precision robot positioning and navigation system of the present invention, the high-precision robot positioning and navigation system includes a robot chassis and a ground auxiliary device;
所述机器人底盘包括机器人控制系统、定位导航系统以及移动通信模块;The robot chassis includes a robot control system, a positioning and navigation system, and a mobile communication module;
所述地面辅助装置包括易于机器人识别的循迹线以及不同于循迹线颜色的位置校正标识点,提供便于机器人获取有效的检测信息。The ground auxiliary device includes tracking lines that are easy for the robot to recognize and position correction marking points that are different in color from the tracking lines, so as to provide effective detection information for the robot to obtain.
进一步地,所述定位导航系统包括安装在底盘前部中间的前相机、安装在底盘后部中间的后相机以及安装在底盘中央的惯性传感器。Further, the positioning and navigation system includes a front camera installed in the middle of the front of the chassis, a rear camera installed in the middle of the rear of the chassis, and an inertial sensor installed in the center of the chassis.
进一步地,所述移动通信模块用于控制系统与后台之间的数据传输,机器人的行驶数据通过移动通信模块发送给后台,后台接收来自用户终端的操作指令以及工作任务,后台数据同步在用户终端显示。Further, the mobile communication module is used for data transmission between the control system and the background, the driving data of the robot is sent to the background through the mobile communication module, and the background receives operation instructions and work tasks from the user terminal, and the background data is synchronized in the user terminal show.
进一步地,所述地面辅助装置的位置校正标识点的位置,循迹线直线部分每间隔距离为0.5l1~3l1(l1为机器人长度)标定一个位置校正标识点,循迹线曲线部分每间隔距离为(l2为机器人转弯半径)标定一个位置校正标识点。Further, for the position of the position correction mark point of the ground auxiliary device, a position correction mark point is calibrated at every interval distance of 0.5l 1 to 3l 1 (l 1 is the length of the robot) for the straight part of the tracking line, and the curved part of the track line Each distance is (l 2 is the turning radius of the robot) to calibrate a position calibration mark point.
本发明还公开一种高精度机器人定位导航方法,包括如下步骤:The invention also discloses a high-precision robot positioning and navigation method, which includes the following steps:
步骤1:通过用户终端发送指令启动机器人,机器人进行初始化;Step 1: Start the robot by sending an instruction through the user terminal, and the robot is initialized;
步骤2:获取机器人初始位置数据,其中位置初始数据包括:视觉初始化数据、惯性初始化数据、视觉-惯性信息融合数据;视觉数据估计机器人所处的位置,惯性数据估计机器人的位姿,然后进行视觉-惯性信息融合,进一步精确估计机器人的位置;Step 2: Obtain the initial position data of the robot, where the initial position data includes: visual initialization data, inertial initialization data, visual-inertial information fusion data; visual data to estimate the position of the robot, inertial data to estimate the pose of the robot, and then perform visual -Inertial information fusion to further accurately estimate the position of the robot;
步骤3:将步骤2中机器人的视觉初始化数据、惯性传感器初始化数据、视觉-惯性信息融合数据通过移动通信模块实时发送给后台;Step 3: Send the visual initialization data, inertial sensor initialization data, and visual-inertial information fusion data of the robot in step 2 to the background in real time through the mobile communication module;
步骤4:机器人进入待机状态,等待用户通过用户终端发布机器人的工作任务至后台;Step 4: The robot enters the standby state, waiting for the user to release the robot's work tasks to the background through the user terminal;
步骤5:机器人检测是否有工作任务,如果没有则跳转至步骤4;如果有工作任务,则机器人进入工作状态,执行以下步骤;Step 5: The robot detects whether there is a work task, and if not, jumps to step 4; if there is a work task, the robot enters the working state and performs the following steps;
步骤6:视觉传感器与惯性传感器实时获取机器人的行驶数据,行驶数据包括:前后相机获取地面循迹线的关键帧数据和后相机获取机器人位置校正点的关键帧数据;Step 6: The visual sensor and the inertial sensor obtain the driving data of the robot in real time. The driving data includes: the key frame data of the ground tracking line obtained by the front and rear cameras and the key frame data of the robot position correction point obtained by the rear camera;
步骤7:后相机检测机器人是否行驶至位置校正标识点,判断是否需要进行视觉-惯性信息融合,进一步精准机器人定位信息;若机器人行驶至位置校正标识点,则进入步骤8,否则,直接进入步骤9;Step 7: After the camera detects whether the robot has traveled to the position correction mark point, it is judged whether visual-inertial information fusion is required to further refine the robot positioning information; if the robot travels to the position correction mark point, go to step 8, otherwise, go directly to step 9;
步骤8:视觉-惯性信息融合;Step 8: Visual-inertial information fusion;
步骤9:前后相机同时循线行驶并根据理论循迹线的位置,纠正机器人的行驶误差,采用控制算法,控制机器人的行驶;Step 9: The front and rear cameras follow the line at the same time and correct the driving error of the robot according to the position of the theoretical tracking line, and use the control algorithm to control the driving of the robot;
步骤10:机器人的工作任务是否完成,若未完成,则跳转至步骤6;若机器人的任务已完成,则进入下一步骤;Step 10: Whether the task of the robot is completed, if not, go to step 6; if the task of the robot is completed, enter the next step;
步骤11:机器人任务结束;若用户未执行任何操作,机器人则进入步骤2;若用户关闭机器人,则机器人进入关机状态;Step 11: The robot task ends; if the user does not perform any operation, the robot enters step 2; if the user turns off the robot, the robot enters the shutdown state;
步骤12:结束。Step 12: End.
进一步地,步骤6中,所述前后相机获取地面循迹线的关键帧数据:Further, in step 6, the front and back cameras acquire key frame data of ground tracking lines:
前相机计算出所观测的机器人循线数据,其中包括循迹线首行横坐标xa0,隔n行的循迹线横坐标xan,计算出前相机观测的机器人偏移角度θa,其中The front camera calculates the observed tracking data of the robot, including the abscissa x a0 of the first row of the tracking line, the abscissa x an of the tracking line every n lines, and calculates the robot offset angle θ a observed by the front camera, where
后相机计算出所观测的机器人循线数据,其中包括循迹线首行横坐标xb0,隔n行的循迹线横坐标xbn,计算出后相机观测的机器人偏移角度αb,其中The rear camera calculates the observed robot tracking data, which includes the abscissa x b0 of the first row of the tracking line, and the abscissa x bn of the tracking line every n rows, and calculates the robot offset angle α b observed by the rear camera, where
所述后相机获取机器人位置校正点的关键帧数据:The rear camera obtains key frame data of robot position correction points:
步骤1.1、若后相机检测到位置校正点,则根据地面位置校正标识点的已知地面设置方式,计算出机器人视觉里程d2,其中Step 1.1. If the rear camera detects the position correction point, then calculate the robot visual mileage d 2 according to the known ground setting method of the ground position correction mark point, where
d2=d′2+ld 2 =d′ 2 +l
式中,d′2为上一位置校正点的视觉里程,l为已知地面设置的位置校正标识点距离;In the formula, d' 2 is the visual mileage of the previous position correction point, and l is the distance of the position correction mark point set on the known ground;
步骤1.2、若后相机未检测到位置校正标识点,则机器人视觉里程d2保持不变;Step 1.2, if the rear camera does not detect the position correction mark point, the robot visual mileage d 2 remains unchanged;
步骤1.3、惯性传感器用于计算出机器人惯性里程d1,其中d1计算如下:Step 1.3, the inertial sensor is used to calculate the inertial mileage d 1 of the robot, where d 1 is calculated as follows:
式中,d0为上一周期的惯性里程,v为惯性传感器测得的机器人行驶速度,a为惯性传感器测得的机器人加速度,t为惯性传感器的采样周期。In the formula, d 0 is the inertia mileage of the previous cycle, v is the driving speed of the robot measured by the inertial sensor, a is the acceleration of the robot measured by the inertial sensor, and t is the sampling period of the inertial sensor.
进一步地,步骤8中,所述视觉-惯性信息融合方法如下:Further, in step 8, the visual-inertial information fusion method is as follows:
步骤2.1、若视觉里程d2与惯性里程d1不超过地面已知两定位标识点距离l一半时,即满足Step 2.1, if the visual mileage d 2 and the inertial mileage d 1 do not exceed half of the distance l between the two known positioning marks on the ground, then the
则惯性里程d1更新为视觉里程d2,即此时d1=d2;Then the inertial mileage d 1 is updated to the visual mileage d 2 , that is, d 1 =d 2 at this time;
步骤2.2、若视觉里程d2与惯性里程d1超过地面已知两定位标识点距离l时,即满足Step 2.2, if the visual mileage d 2 and the inertial mileage d 1 exceed the distance l between the two known positioning marks on the ground, then the
max{|d2-d1|,|d1-d2|}>l+lk(3≥k≥0)max{|d 2 -d 1 |, |d 1 -d 2 |}>l+lk(3≥k≥0)
此情况为地面缺失位置校正标识点,处理方法如下:直线行驶时惯性里程d1更新为定位标识点距离d2=d2+lk,若k不满足约束条件,则机器人则发送异常数据至后台,等待用户重新校正数据,用户校正数据完成后,进入步骤9。This situation is the lack of position correction marker points on the ground, and the processing method is as follows: when driving in a straight line, the inertia mileage d 1 is updated to the distance of the positioning marker point d 2 =d 2 +lk, if k does not meet the constraint conditions, the robot will send abnormal data to the background , and wait for the user to re-calibrate the data. After the user corrects the data, go to step 9.
进一步地,步骤9的具体步骤为:Further, the specific steps of step 9 are:
步骤3.1、根据前相机的数据控制机器人循线行驶,能够保持循迹线处于机器人前部的中间位置,控制系统输出量计算公式如下:Step 3.1. Control the robot to follow the line according to the data of the front camera, and keep the tracking line in the middle of the front of the robot. The formula for calculating the output of the control system is as follows:
u1=Kp1e1+Ki1∑e1+Kd1e1 u 1 =K p1 e 1 +K i1 ∑e 1 +K d1 e 1
e1=θa-θ1 e 1 = θ a - θ 1
式中,Kp1、Ki1、Kd1为控制系数,e1为前相机观测值θa与理论值θ1之间的误差,u1为控制系统的输出量;In the formula, K p1 , K i1 , K d1 are the control coefficients, e 1 is the error between the observed value θ a of the front camera and the theoretical value θ 1 , and u 1 is the output of the control system;
步骤3.2、根据后相机的数据控制机器人循线行驶,能够保持循迹线处于机器人后部的中间位置,控制系统输出量计算公式如下:Step 3.2. Control the robot to follow the line according to the data of the rear camera, and keep the tracking line in the middle of the rear of the robot. The output calculation formula of the control system is as follows:
u2=Kp2e2+Ki2∑e2+Kd2e2 u 2 =K p2 e 2 +K i2 ∑e 2 +K d2 e 2
e2=θb-θ2 e 2 = θ b - θ 2
式中,Kp2、Ki2、Kd2为控制系数,e2为后相机观测值θa与理论值θ2,u2为控制系统的输出量。In the formula, K p2 , K i2 , and K d2 are control coefficients, e 2 is the post-camera observation value θ a and theoretical value θ 2 , and u 2 is the output of the control system.
有益效果:与现有技术相比,本发明具有如下显著优点:Beneficial effect: compared with the prior art, the present invention has the following significant advantages:
(1)本发明的高精度机器人定位导航系统,视觉-惯性传感器定位导航系统价格较低,并且能够实现高精度的定位导航。(1) In the high-precision robot positioning and navigation system of the present invention, the price of the visual-inertial sensor positioning and navigation system is relatively low, and high-precision positioning and navigation can be realized.
(2)本发明中使用前后两个相机且位于同一直线上,确保机器人整体无左右偏差,而且算法比较简单,能够极大地减少控制器的运算。(2) In the present invention, the front and rear cameras are used and located on the same straight line to ensure that the whole robot has no left-right deviation, and the algorithm is relatively simple, which can greatly reduce the calculation of the controller.
(3)本发明依靠简单的地面辅助装置,便于在不同场景布置,更加易于使用在复杂的工业场景。(3) The present invention relies on simple ground auxiliary devices, which is convenient for deployment in different scenes, and is easier to use in complex industrial scenes.
附图说明Description of drawings
图1为本发明高精度机器人系统示意图;Fig. 1 is the schematic diagram of high-precision robot system of the present invention;
图2为本发明定位导航系统装置图;Fig. 2 is a device diagram of the positioning and navigation system of the present invention;
图3为本发明地面辅助装置示意图;Fig. 3 is a schematic diagram of the ground auxiliary device of the present invention;
图4为本发明机器人系统的结构框图;Fig. 4 is the structural block diagram of robot system of the present invention;
图5为本发明机器人定位导航方法流程图。Fig. 5 is a flow chart of the robot positioning and navigation method of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案作进一步说明。The technical solution of the present invention will be further described below in conjunction with the accompanying drawings.
针对相关技术中定位导航精度不高的问题,本发明实施例提出了一种高精度定位导航系统,该系统利用一种高精度搬运机器人,该搬运机器人不仅能够定位精准,而且确保机器人整体无左右偏差,满足实际应用中高精度机器人定位导航的需求。Aiming at the problem of low positioning and navigation accuracy in related technologies, the embodiment of the present invention proposes a high-precision positioning and navigation system. The system uses a high-precision handling robot. Deviation, to meet the needs of high-precision robot positioning and navigation in practical applications.
下面参照附图描述根据本发明实施例提出的一种高精度机器人定位导航系统。A high-precision robot positioning and navigation system proposed according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
如图1所示,高精度机器人定位导航系统包括机器人底盘以及地面辅助装置。As shown in Figure 1, the high-precision robot positioning and navigation system includes a robot chassis and ground auxiliary devices.
机器人底盘,包括机器人控制系统、移动通信模块以及定位导航系统。其中定位导航系统由前相机、后相机以及惯性传感器组成。前相机、后相机用于识别循迹线,后相机同时用于检测是否有位置校正标识点。用户终端,用户终端与后台实时通信,用户可以通过用户终端便捷地查看机器人的运行状态、行驶位置以及操控机器人。地面辅助装置,包括易于机器人识别的循迹线以及不同于循迹线颜色的位置校正标识点,提供便于机器人获取有效的检测信息。Robot chassis, including robot control system, mobile communication module and positioning and navigation system. The positioning and navigation system consists of a front camera, a rear camera, and an inertial sensor. The front camera and the rear camera are used to identify the tracking line, and the rear camera is also used to detect whether there is a position correction mark point. The user terminal, the user terminal communicates with the background in real time, and the user can conveniently view the robot's running status, driving position and control the robot through the user terminal. Ground auxiliary devices, including tracking lines that are easy for the robot to identify and position correction marking points that are different in color from the tracking lines, provide effective detection information for the robot to obtain.
根据本发明的高精度定位导航系统实施例,用户提前铺设好地面辅助装置,能够提供机器人行驶时所需要的定位导航信息。用户通过用户终端启动机器人后,机器人开始进行定位导航系统初始化,初始化完成后,等待控制系统通过移动通信模块来自后台的工作任务。机器人执行工作任务时,惯性传感器计算机器人的惯性里程,前相机、后相机同时循线,保证机器人整体无左右偏差,后相机同时检测机器人是否行驶至位置校正标识点,行驶至位置校正标识点时,进行视觉-惯性信息融合,校正机器人的定位误差。According to the embodiment of the high-precision positioning and navigation system of the present invention, the user lays the ground auxiliary device in advance, which can provide the positioning and navigation information required by the robot when driving. After the user starts the robot through the user terminal, the robot starts to initialize the positioning and navigation system. After the initialization is completed, it waits for the control system to come from the background through the mobile communication module. When the robot performs work tasks, the inertial sensor calculates the inertial mileage of the robot. The front camera and the rear camera follow the line at the same time to ensure that the robot as a whole has no left-right deviation. , perform visual-inertial information fusion, and correct the positioning error of the robot.
如图2所示,机器人左前轮101、左后轮102、右前轮103、右后轮104的安放如图所示。相机嵌入在机器人底盘下面,其中前相机2111安装在机器人底盘左、右前轮中间位置,后相机2112安装在机器人底盘左、右前轮中间位置。由于机器人底盘距离地面比较近,前后相机均为薄相机。惯性传感器212放置在机器人底盘几何中心的位置。As shown in FIG. 2 , the robot left
机器人正常行驶时,直线行驶时,前相机2111、后相机2112同时循迹行驶,保持前相机2111、后相机2112与地面辅助装置处于同一直线上。曲线行驶时,前相机2111、后相机2112同时循迹行驶,保持前相机2111、后相机2112与地面辅助装置的循迹线处于同一切线上,机器人行驶正常。后相机2112检测到地面位置校正标识点时,进行视觉-惯性信息融合,校正定位误差。When the robot is running normally and straight, the
如图3所示,所述地面辅助装置的位置校正标识点的位置,循迹线直线部分每间隔距离为0.5l1~3l1(l1为机器人长度)标定一个位置校正标识点,循迹线曲线部分每间隔距离为(l2为机器人转弯半径)标定一个位置校正标识点。。As shown in Figure 3, the position of the position correction mark point of the ground auxiliary device, the linear part of the tracking line is calibrated with a position correction mark point every interval distance of 0.5l 1 ~ 3l 1 (l 1 is the length of the robot), and the tracking line The distance between the curve parts of the line is (l 2 is the turning radius of the robot) to calibrate a position calibration mark point. .
高精度机器人执行任务时,前相机、后相机同时循迹行驶,能够保证机器人整体处于循迹线正上方,避免产生仅机器人前部处于循迹线正上方,而它部位已经偏离循迹线的情况。后相机同时检测机器人是否行驶至位置校正标识点,当检测到位置校正标识时,进行视觉-惯性信息融合,纠正机器人的定位偏差。When a high-precision robot performs a task, the front camera and the rear camera track at the same time, which can ensure that the robot as a whole is directly above the tracking line, and avoid situations where only the front of the robot is directly above the tracking line, while other parts have deviated from the tracking line. Happening. At the same time, the rear camera detects whether the robot has traveled to the position correction mark point. When the position correction mark is detected, visual-inertial information fusion is performed to correct the positioning deviation of the robot.
如图4所示,本实施例中机器人主控系统由电源模块、控制系统、定位导航系统、移动通信模块组成,定位导航系统又由前相机、后相机以及惯性传感器组成。As shown in Figure 4, the main control system of the robot in this embodiment is composed of a power supply module, a control system, a positioning and navigation system, and a mobile communication module. The positioning and navigation system is composed of a front camera, a rear camera, and an inertial sensor.
电源模块为整个电路的工作提供电能。移动通信模块接收来自后台的机器人工作任务,移动通信模块通过串口将工作任务发送给主控系统;反过来主控系统又通过串口将机器人运行状态发送给移动通信模块,移动通信模块将机器人运行状态发送给后台。惯性传感器计算惯性里程,前相机、后相机同时循迹行驶,纠正机器人行驶时的左右偏差,保证机器人行驶时机器人整体无左右偏差。后相机又同时检测是否有位置校正标识点,当检测到位置校正标识点时,视觉-惯性信息融合,校准机器人的定位。前相机、后相机与主控系统通过串口进行数据发送与接收,前相机、后相机选用的是超薄相机。具体地,根据本发明的一个具体实施例,惯性传感器可以选用MPU6050,惯性传感器与主控系统可以通过IIC总线协议进行数据发送与接收。The power supply module provides electric energy for the work of the whole circuit. The mobile communication module receives the robot work tasks from the background, and the mobile communication module sends the work tasks to the main control system through the serial port; in turn, the main control system sends the robot running status to the mobile communication module through the serial port, and the mobile communication module sends the robot running status sent to the background. The inertial sensor calculates the inertial mileage, and the front camera and the rear camera track at the same time to correct the left-right deviation when the robot is driving, so as to ensure that the robot as a whole has no left-right deviation when driving. The rear camera also detects whether there is a position correction mark point at the same time. When the position correction mark point is detected, the visual-inertial information is fused to calibrate the positioning of the robot. The front camera, the rear camera and the main control system send and receive data through the serial port, and the front camera and the rear camera are ultra-thin cameras. Specifically, according to a specific embodiment of the present invention, the inertial sensor can use MPU6050, and the inertial sensor and the main control system can send and receive data through the IIC bus protocol.
如图5是根据本发明的一个具体实施例的高精度定位导航方法及系统的方法流程图。具体步骤如下:FIG. 5 is a flow chart of the high-precision positioning and navigation method and system according to a specific embodiment of the present invention. Specific steps are as follows:
步骤1:通过用户终端发送指令启动机器人,机器人进行初始化;Step 1: Start the robot by sending an instruction through the user terminal, and the robot is initialized;
步骤2:获取机器人初始位置数据,其中位置初始数据包括:视觉初始化数据、惯性初始化数据、视觉-惯性信息融合数据。视觉数据估计机器人所处的位置,惯性数据估计机器人的位姿,然后进行视觉-惯性信息融合,进一步精确估计机器人的位置;Step 2: Obtain the initial position data of the robot, where the initial position data includes: visual initialization data, inertial initialization data, and visual-inertial information fusion data. Visual data estimates the position of the robot, inertial data estimates the robot's pose, and then performs visual-inertial information fusion to further accurately estimate the robot's position;
步骤3:将步骤2中机器人的视觉初始化数据、惯性传感器初始化数据、视觉-惯性信息融合数据通过移动通信模块实时传给后台;Step 3: Send the visual initialization data, inertial sensor initialization data, and visual-inertial information fusion data of the robot in step 2 to the background in real time through the mobile communication module;
步骤4:机器人进入待机状态,等待用户通过用户终端发布机器人的工作任务至后台;Step 4: The robot enters the standby state, waiting for the user to release the robot's work tasks to the background through the user terminal;
步骤5:机器人检测是否有工作任务,如果没有则跳转至步骤4;如果有工作任务,则机器人进入工作状态,执行以下步骤;Step 5: The robot detects whether there is a work task, and if not, jumps to step 4; if there is a work task, the robot enters the working state and performs the following steps;
步骤6:视觉传感器与惯性传感器实时获取机器人的行驶数据。行驶数据包括,Step 6: The visual sensor and inertial sensor acquire the driving data of the robot in real time. Driving data includes,
(1)前后相机获取地面循迹线的关键帧数据:(1) The front and rear cameras obtain the key frame data of the ground tracking line:
前相机计算出所观测的机器人循线数据,其中包括循迹线首行横坐标xa0,隔n行的循迹线横坐标xan,计算出前相机观测的机器人偏移角度θa,其中The front camera calculates the observed tracking data of the robot, including the abscissa x a0 of the first row of the tracking line, the abscissa x an of the tracking line every n lines, and calculates the robot offset angle θ a observed by the front camera, where
后相机计算出所观测的机器人循线数据,其中包括循迹线首行横坐标xb0,隔n行的循迹线横坐标xbn,计算出后相机观测的机器人偏移角度θb,其中The rear camera calculates the observed robot tracking data, including the abscissa x b0 of the first line of the tracking line, the abscissa x bn of the tracking line every n lines, and calculates the robot offset angle θ b observed by the rear camera, where
(2)后相机获取机器人位置校正点的关键帧数据:(2) The rear camera obtains the key frame data of the robot position correction point:
1)若后相机检测到位置校正点,则根据地面位置校正标识点的已知地面设置方式,计算出机器人视觉里程d2,其中1) If the rear camera detects the position correction point, then calculate the robot visual mileage d 2 according to the known ground setting method of the ground position correction mark point, where
d2=d′2+ld 2 =d′ 2 +l
式中,d′2为上一位置校正点的视觉里程,l为已知地面设置的位置校正标识点距离;In the formula, d' 2 is the visual mileage of the previous position correction point, and l is the distance of the position correction mark point set on the known ground;
2)若后相机未检测到位置校正标识点,则机器人视觉里程d2保持不变;2) If the rear camera does not detect the position correction mark point, the robot visual mileage d2 remains unchanged;
(3)惯性传感器用于计算出机器人惯性里程d1,其中d1计算如下:(3) The inertial sensor is used to calculate the inertial mileage d 1 of the robot, where d 1 is calculated as follows:
式中,d0为上一周期的惯性里程,v为惯性传感器测得的机器人行驶速度,a为惯性传感器测得的机器人加速度,t为惯性传感器的采样周期;In the formula, d 0 is the inertia mileage of the previous cycle, v is the driving speed of the robot measured by the inertial sensor, a is the acceleration of the robot measured by the inertial sensor, and t is the sampling period of the inertial sensor;
步骤7:后相机检测机器人是否行驶至位置校正标识点,判断是否需要进行视觉-惯性信息融合,进一步精准机器人定位信息。若机器人行驶至位置校正标识点,则进入步骤8,否则,直接进入步骤9;Step 7: The rear camera detects whether the robot has traveled to the position correction mark point, and judges whether visual-inertial information fusion is required to further accurately position the robot. If the robot travels to the position correction mark point, then go to step 8, otherwise, go directly to step 9;
步骤8:视觉-惯性信息融合方法如下:Step 8: The visual-inertial information fusion method is as follows:
(1)若视觉里程d2与惯性里程d1不超过地面已知两定位标识点距离l一半时,即满足(1) If the visual mileage d 2 and the inertial mileage d 1 do not exceed half of the distance l between two known positioning marker points on the ground, then the
则惯性里程d1更新为视觉里程d2,即此时d1=d2;Then the inertial mileage d 1 is updated to the visual mileage d 2 , that is, d 1 =d 2 at this time;
(2)若视觉里程d2与惯性里程d1超过地面已知两定位标识点距离l时,即满足(2) If the visual mileage d 2 and the inertial mileage d 1 exceed the distance l between two known positioning marks on the ground, then the
max{|d2-d1|,|d1-d2|}>l+lk(3≥k≥0)max{|d 2 -d 1 |, |d 1 -d 2 |}>l+lk(3≥k≥0)
此情况为地面缺失位置校正标识点,处理方法如下:直线行驶时惯性里程d1更新为定位标识点距离d2=d2+lk。若k不满足约束条件,则机器人则发送异常数据至后台,等待用户重新校正数据。用户校正数据完成后,进入步骤9;This situation is that the ground is missing a position correction mark point, and the processing method is as follows: when driving straight, the inertia mileage d 1 is updated to the distance of the positioning mark point d 2 =d 2 +lk. If k does not meet the constraints, the robot will send abnormal data to the background, waiting for the user to re-correct the data. After the user corrects the data, go to step 9;
步骤9:前后相机同时循线行驶并根据理论循迹线的位置,纠正机器人的行驶误差。采用控制算法,控制机器人的行驶。Step 9: The front and rear cameras follow the line at the same time and correct the robot's driving error according to the position of the theoretical tracking line. The control algorithm is used to control the driving of the robot.
(1)根据前相机的数据控制机器人循线行驶,能够保持循迹线处于机器人前部的中间位置,控制系统输出量计算公式如下:(1) According to the data of the front camera, the robot is controlled to follow the line, and the tracking line can be kept in the middle of the front of the robot. The calculation formula of the output of the control system is as follows:
u1=Kp1e1+Ki1∑e1+Kd1e1 u 1 =K p1 e 1 +K i1 ∑e 1 +K d1 e 1
e1=θa-θ1 e 1 = θ a - θ 1
式中,Kp1、Ki1、Kd1为控制系数,e1为前相机观测值θa与理论值θ1之间的误差,u1为控制系统的输出量;In the formula, K p1 , K i1 , K d1 are the control coefficients, e 1 is the error between the observed value θ a of the front camera and the theoretical value θ 1 , and u 1 is the output of the control system;
(2)根据后相机的数据控制机器人循线行驶,能够保持循迹线处于机器人后部的中间位置,控制系统输出量计算公式如下:(2) According to the data of the rear camera, the robot is controlled to follow the line, and the tracking line can be kept in the middle of the rear of the robot. The calculation formula of the output of the control system is as follows:
u2=Kp2e2+Ki2Σe2+Kd2e2 u 2 =K p2 e 2 +K i2 Σe 2 +K d2 e 2
e2=θb-θ2 e 2 = θ b - θ 2
式中,Kp2、Ki2、Kd2为控制系数,e2为后相机观测值θa与理论值θ2,u2为控制系统的输出量;In the formula, K p2 , K i2 , K d2 are control coefficients, e 2 is the post-camera observation value θ a and theoretical value θ 2 , u 2 is the output of the control system;
步骤10:机器人的工作任务是否完成,若未完成,则跳转至步骤6;若机器人的任务已完成,则进入下一步骤。Step 10: Whether the task of the robot is completed, if not, go to step 6; if the task of the robot is completed, go to the next step.
步骤11:机器人任务结束:Step 11: End of robot mission:
(1)若用户未执行任何操作,机器人则进入步骤2;(1) If the user does not perform any operation, the robot will enter step 2;
(2)若用户关闭机器人,则机器人进入关机状态。(2) If the user turns off the robot, the robot enters the shutdown state.
步骤12:结束。Step 12: End.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210733489.8A CN115342805B (en) | 2022-06-27 | 2022-06-27 | High-precision robot positioning navigation system and navigation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210733489.8A CN115342805B (en) | 2022-06-27 | 2022-06-27 | High-precision robot positioning navigation system and navigation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115342805A true CN115342805A (en) | 2022-11-15 |
CN115342805B CN115342805B (en) | 2024-11-19 |
Family
ID=83948391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210733489.8A Active CN115342805B (en) | 2022-06-27 | 2022-06-27 | High-precision robot positioning navigation system and navigation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115342805B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116592888A (en) * | 2023-05-08 | 2023-08-15 | 五八智能科技(杭州)有限公司 | Global positioning method, system, device and medium for patrol robot |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101850727A (en) * | 2010-02-26 | 2010-10-06 | 湖南山河智能机械股份有限公司 | Remote control wheel type mobile robot platform |
CN102794767A (en) * | 2012-08-31 | 2012-11-28 | 江南大学 | B spline track planning method of robot joint space guided by vision |
CN203745904U (en) * | 2014-02-27 | 2014-07-30 | 梁学坚 | Restaurant service robot system |
CN104848858A (en) * | 2015-06-01 | 2015-08-19 | 北京极智嘉科技有限公司 | Two-dimensional code and vision-inert combined navigation system and method for robot |
CN106985142A (en) * | 2017-04-28 | 2017-07-28 | 东南大学 | A kind of double vision for omni-directional mobile robots feels tracking device and method |
CN107063246A (en) * | 2017-04-24 | 2017-08-18 | 齐鲁工业大学 | A Loose Combination Navigation Method of Visual Navigation/Inertial Navigation |
CN107562059A (en) * | 2017-09-20 | 2018-01-09 | 浙江映美智能装备科技有限公司 | A kind of intelligent carriage tracking system with Quick Response Code site location information |
CN111123953A (en) * | 2020-01-09 | 2020-05-08 | 哈尔滨工程大学 | Particle-based mobile robot group under artificial intelligence big data and control method thereof |
CN111624995A (en) * | 2020-05-09 | 2020-09-04 | 太仓臻溢科技有限公司 | High-precision navigation positioning method for mobile robot |
-
2022
- 2022-06-27 CN CN202210733489.8A patent/CN115342805B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101850727A (en) * | 2010-02-26 | 2010-10-06 | 湖南山河智能机械股份有限公司 | Remote control wheel type mobile robot platform |
CN102794767A (en) * | 2012-08-31 | 2012-11-28 | 江南大学 | B spline track planning method of robot joint space guided by vision |
CN203745904U (en) * | 2014-02-27 | 2014-07-30 | 梁学坚 | Restaurant service robot system |
CN104848858A (en) * | 2015-06-01 | 2015-08-19 | 北京极智嘉科技有限公司 | Two-dimensional code and vision-inert combined navigation system and method for robot |
CN107063246A (en) * | 2017-04-24 | 2017-08-18 | 齐鲁工业大学 | A Loose Combination Navigation Method of Visual Navigation/Inertial Navigation |
CN106985142A (en) * | 2017-04-28 | 2017-07-28 | 东南大学 | A kind of double vision for omni-directional mobile robots feels tracking device and method |
CN107562059A (en) * | 2017-09-20 | 2018-01-09 | 浙江映美智能装备科技有限公司 | A kind of intelligent carriage tracking system with Quick Response Code site location information |
CN111123953A (en) * | 2020-01-09 | 2020-05-08 | 哈尔滨工程大学 | Particle-based mobile robot group under artificial intelligence big data and control method thereof |
CN111624995A (en) * | 2020-05-09 | 2020-09-04 | 太仓臻溢科技有限公司 | High-precision navigation positioning method for mobile robot |
Non-Patent Citations (1)
Title |
---|
王兴松: "Mecanum轮全方位移动机器人原理与应用", 30 June 2018, 《东南大学出版社》, pages: 1 - 181 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116592888A (en) * | 2023-05-08 | 2023-08-15 | 五八智能科技(杭州)有限公司 | Global positioning method, system, device and medium for patrol robot |
Also Published As
Publication number | Publication date |
---|---|
CN115342805B (en) | 2024-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106054878B (en) | Inertial guidance vehicle navigation method based on two-dimensional code positioning and inertial guidance vehicle | |
JP4079792B2 (en) | Robot teaching method and robot with teaching function | |
WO2022121459A1 (en) | Method and device for calculating installation position deviation of laser scanner of agv forklift | |
KR101214143B1 (en) | Method and apparatus for detecting position and orientation | |
CN110347160A (en) | A kind of automatic guide vehicle and its air navigation aid based on dual camera barcode scanning | |
WO2017158973A1 (en) | Automatic guided vehicle | |
CN108592906A (en) | AGV complex navigation methods based on Quick Response Code and inertial sensor | |
CN111624995B (en) | High-precision navigation and positioning method for mobile robot | |
CN109387194B (en) | Mobile robot positioning method and positioning system | |
CN110837257B (en) | AGV composite positioning navigation system based on iGPS and vision | |
CN109813305A (en) | Unmanned fork lift based on laser SLAM | |
CN111474938A (en) | Inertial navigation automatic guided vehicle and track determination method thereof | |
CN107272690A (en) | Inertial guide car air navigation aid and inertial guide car based on binocular stereo vision | |
CN109703650A (en) | A kind of automatic guided transport vehicle and guidance and tracking method | |
CN115342805B (en) | High-precision robot positioning navigation system and navigation method | |
CN112462762B (en) | A robot outdoor autonomous mobile system and method based on roadside two-dimensional code unit | |
CN106168803A (en) | A kind of location aware method for moving robot | |
CN107943026B (en) | Mecanum wheel patrol robot and its patrol method | |
CN109211260A (en) | The driving path method and device for planning of intelligent vehicle, intelligent vehicle | |
JP2007156576A (en) | Method and device for adjusting odometry(wheel range finder) parameter for traveling carrier | |
CN115903857A (en) | RFID-based unmanned grain surface inspection device and positioning method | |
CN110989596A (en) | Pile alignment control method and device, intelligent robot and storage medium | |
WO2022252220A1 (en) | Precise stopping system and method for multi-axis flatbed vehicle | |
JP2013250795A (en) | Movable body guiding device and movable body guiding method | |
CN206848817U (en) | Inertial guided vehicle based on binocular stereo vision navigation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |