CN115340113A - Preparation method of vapor phase method nano alumina - Google Patents
Preparation method of vapor phase method nano alumina Download PDFInfo
- Publication number
- CN115340113A CN115340113A CN202211134491.XA CN202211134491A CN115340113A CN 115340113 A CN115340113 A CN 115340113A CN 202211134491 A CN202211134491 A CN 202211134491A CN 115340113 A CN115340113 A CN 115340113A
- Authority
- CN
- China
- Prior art keywords
- alumina
- preparation
- nano
- aluminum sol
- plasma reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000012808 vapor phase Substances 0.000 title abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 230000002776 aggregation Effects 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims abstract description 14
- 238000010791 quenching Methods 0.000 claims abstract description 12
- 230000000171 quenching effect Effects 0.000 claims abstract description 12
- 238000004220 aggregation Methods 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 238000005507 spraying Methods 0.000 claims abstract description 6
- 239000012798 spherical particle Substances 0.000 claims abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 48
- 229910052782 aluminium Inorganic materials 0.000 claims description 48
- 239000002002 slurry Substances 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000005054 agglomeration Methods 0.000 claims description 8
- 230000005284 excitation Effects 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 230000035484 reaction time Effects 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000000746 purification Methods 0.000 claims description 3
- 239000012043 crude product Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 abstract description 10
- 239000011858 nanopowder Substances 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 3
- 229910000761 Aluminium amalgam Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/42—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
- C01F7/422—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation with a gaseous oxidator at a high temperature
- C01F7/424—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation with a gaseous oxidator at a high temperature using a plasma
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Plasma & Fusion (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及纳米粉体材料制备技术领域,具体是涉及一种氧化铝的制备方法,特别是涉及一种气相法纳米氧化铝的制备方法。The invention relates to the technical field of nano powder material preparation, in particular to a method for preparing alumina, in particular to a method for preparing nano alumina by gas phase method.
背景技术Background technique
氧化铝具有高熔点、高硬度、高化学稳定性,广泛应用于涂料、塑料、造纸、印刷油墨、化纤、橡胶、化妆品等工业。目前,氧化铝的制备方法主要有:先制备出水合氧化铝,再进一步加工成活性氧化铝。水合氧化铝常采用铝土矿加工而得的偏铝酸钠、氢氧化铝、硫酸铝、氯化铝,以及异丙醇铝、铝汞齐等为原料,再用醇铝法、铝汞齐法、碱法(或称酸沉淀法)、酸法(或称碱沉淀法)制备。Alumina has a high melting point, high hardness, and high chemical stability, and is widely used in coatings, plastics, paper, printing inks, chemical fibers, rubber, cosmetics and other industries. At present, the preparation methods of alumina mainly include: firstly prepare hydrated alumina, and then further process it into activated alumina. Hydrated alumina often uses sodium metaaluminate, aluminum hydroxide, aluminum sulfate, aluminum chloride, aluminum isopropoxide, and aluminum amalgam obtained from bauxite processing as raw materials, and then uses aluminum alcohol method, aluminum amalgam, etc. Method, alkali method (or acid precipitation method), acid method (or alkali precipitation method) preparation.
随着等离子体技术的不断发展,将等离子体工艺应用于氧化铝的生产,也存在于一些文献或专利的报道中。中国专利申请CN 112723399 A公开了一种等离子弧火焰燃烧反应系统以及利用其制备高纯γ-Al2O3的方法,通过新颖设计的等离子弧火焰燃烧反应体系,能够实现高纯γ-Al2O3纳米粉体的快速制备,通过一步法离子弧燃烧快速合成纯度高、粉体比表面积大的纳米γ-Al2O3。这种方法主要采用的是高纯拟薄水铝石粗粉(纯度一般达到99.9%级别)利用分散研磨设备处理获得高纯拟薄水铝石细粉,这更有利于等离子弧火焰燃烧反应的进行,制备的高纯γ-Al2O3纳米粉体无需再次研磨即可获得细度均匀的纳米粉体。With the continuous development of plasma technology, the application of plasma technology to the production of alumina also exists in some literature or patent reports. Chinese patent application CN 112723399 A discloses a plasma arc flame combustion reaction system and a method for preparing high-purity γ-Al 2 O 3 by using it. The novelly designed plasma arc flame combustion reaction system can realize high-purity γ-Al 2 Rapid preparation of O 3 nano-powder, through one-step ion arc combustion to quickly synthesize nano-γ-Al 2 O 3 with high purity and large specific surface area of powder. This method mainly uses high-purity pseudo-boehmite coarse powder (purity generally reaches 99.9% level) and uses dispersion grinding equipment to obtain high-purity pseudo-boehmite fine powder, which is more conducive to the plasma arc flame combustion reaction. The prepared high-purity γ-Al 2 O 3 nanopowder can obtain uniform fineness nanopowder without re-grinding.
但是,这种反应系统,主要利用的是载气携带高纯拟薄水铝石细粉进入等离子弧火焰燃烧室中,其粉体材料的输送流量难以控制。相比较于粉体材料,呈现胶质形态的溶胶,则更容易被喷射进入燃烧室中,且进料流量可控,能够实现形貌均匀的氧化铝材料的制备。However, this reaction system mainly uses the carrier gas to carry high-purity pseudo-boehmite fine powder into the plasma arc flame combustion chamber, and the delivery flow rate of the powder material is difficult to control. Compared with powder materials, the colloidal sol is easier to be injected into the combustion chamber, and the feed flow rate is controllable, which can realize the preparation of alumina materials with uniform morphology.
发明内容Contents of the invention
针对上述存在制备氧化铝粉体存在的相关技术缺陷,本发明提供了一种气相法纳米氧化铝的制备方法,首先对铝溶胶预处理得到高纯铝溶胶,接着利用高温等离子体反应器瞬间反应,最后通过骤冷系统冷却,并利用分级收集系统获得气相法纳米氧化铝。In view of the above-mentioned technical defects in the preparation of alumina powder, the present invention provides a method for preparing nano-alumina by gas phase method. First, the aluminum sol is pretreated to obtain high-purity aluminum sol, and then the high-temperature plasma reactor is used to react instantaneously. , and finally cooled by a quenching system, and using a graded collection system to obtain gas-phase nano-alumina.
为了实现上述目的,本发明所采用的技术方案为:一种气相法纳米氧化铝的制备方法,步骤如下:In order to achieve the above object, the technical solution adopted in the present invention is: a preparation method of gas-phase method nano-alumina, the steps are as follows:
①、铝溶胶粗品提纯处理,制备高纯铝溶胶;①. Purification of crude aluminum sol to prepare high-purity aluminum sol;
②、采用高压喷射的方法喷进高温等离子体反应器中瞬间反应制备纳米氧化铝;②. Use high-pressure spraying method to spray into high-temperature plasma reactor for instantaneous reaction to prepare nano-alumina;
③、骤冷系统冷却;③, quenching system cooling;
④、分级收集系统,制备得到气相法纳米氧化铝。④. Classified collection system to prepare nano-alumina by gas phase method.
作为本发明的优选技术方案,步骤①中利用铝溶胶粗品制备高纯铝溶胶的步骤为:As a preferred technical solution of the present invention, the step of preparing high-purity aluminum sol by using the crude product of aluminum sol in step ① is:
(1)、在真空加热的条件下蒸发铝溶胶粗品浆液,直至水含量达到15~30%后冷却至室温;(1) Evaporate the crude aluminum sol slurry under vacuum heating until the water content reaches 15-30%, then cool to room temperature;
(2)、向浆液中加入无水乙醇,超声分散均匀,接着加入硅烷偶联剂KH550,升温至50~60℃搅拌1~3h;浆液、无水乙醇、硅烷偶联剂KH550的添加重量比为1:1.5~2.5:0.3~0.6;(2) Add absolute ethanol to the slurry, ultrasonically disperse evenly, then add silane coupling agent KH550, heat up to 50-60°C and stir for 1-3 hours; the weight ratio of slurry, absolute ethanol, and silane coupling agent KH550 1: 1.5~2.5: 0.3~0.6;
(3)、再次在真空加热的条件下蒸发直至水-乙醇含量达到5~10%后冷却至室温,得到高纯铝溶胶。(3) Evaporate again under vacuum heating until the water-ethanol content reaches 5-10%, then cool to room temperature to obtain high-purity aluminum sol.
作为本发明的优选技术方案,步骤②中具体步骤为:As a preferred technical solution of the present invention, the concrete steps in step 2. are:
采用高压喷射的方法,利用泵将高纯铝溶胶喷入高温等离子体反应器的反应腔体中,高温等离子体反应器的等离子激发气体为氮气或氩气,铝溶胶接触到高温瞬间汽化,裂解、解聚、聚合成纳米氧化铝微粒。Using the high-pressure injection method, the high-purity aluminum sol is sprayed into the reaction chamber of the high-temperature plasma reactor by using a pump. The plasma excitation gas of the high-temperature plasma reactor is nitrogen or argon, and the aluminum sol is instantly vaporized and cracked when exposed to high temperature. , depolymerization, and polymerization into nano-alumina particles.
进一步优选地,高温等离子体反应器中高纯铝溶胶的喷射流速为300~500g/min。Further preferably, the injection flow rate of the high-purity aluminum sol in the high-temperature plasma reactor is 300-500 g/min.
作为本发明的优选技术方案,步骤③以及④中具体步骤为:As a preferred technical solution of the present invention, the specific steps in steps 3. and 4. are:
在高温等离子体反应器的反应腔体中生成的纳米氧化铝微粒快速下落,经过骤冷系统冷却避免纳米颗粒聚集,减少团聚,最后通过分级收集系统,制备得到气相法纳米氧化铝。The nano-alumina particles generated in the reaction chamber of the high-temperature plasma reactor fall rapidly, and are cooled by a quenching system to avoid the aggregation of nanoparticles and reduce agglomeration. Finally, the gas-phase method nano-alumina is prepared through a graded collection system.
优选地,高温等离子体反应器中等离子体焰流温度为1500~2500℃可调,反应时间低于1s,高温等离子体反应器的功率为50~85kW可调。Preferably, the plasma flame temperature in the high-temperature plasma reactor is adjustable from 1500 to 2500° C., the reaction time is less than 1 s, and the power of the high-temperature plasma reactor is adjustable from 50 to 85 kW.
优选地,高温等离子体反应器的等离子激发气体的流量为100~200sccm。Preferably, the flow rate of the plasma excitation gas in the high temperature plasma reactor is 100-200 sccm.
与现有技术相比,本发明的有益效果表现在:Compared with the prior art, the beneficial effects of the present invention are as follows:
1)、本发明实现了高纯度氧化铝纳米粉体的制备,具有工艺简便、成本低廉、产物纯度高等优点,可以用于规模化生产,可以显著降低反应温度及生产能耗。1) The present invention realizes the preparation of high-purity alumina nanopowder, which has the advantages of simple process, low cost, high product purity, etc., can be used in large-scale production, and can significantly reduce reaction temperature and production energy consumption.
2)、在等离子体反应体系中,反应瞬间完成、可达到毫秒级别,制备产物颗粒粒径小、无硬团聚,这对于低粒径纳米粉体的形成具有至关重要的影响。2) In the plasma reaction system, the reaction is completed instantaneously and can reach the millisecond level, and the particle size of the prepared product is small and there is no hard agglomeration, which has a crucial impact on the formation of low particle size nanopowders.
3)、本发明制备的氧化铝呈球形颗粒形态,其直径为10~50nm,无聚集,呈单分散形态。3) The alumina prepared in the present invention is in the form of spherical particles with a diameter of 10-50 nm, without aggregation, and in a monodisperse form.
4)、本发明摒弃了传统粉体材料进料的弊端,首次提出利用泵将铝溶胶以喷射方式进入反应室中,能够实现反应均匀的进行,通过对进料流量的控制,能够实现粒径的有效控制,并有助于制备氧化铝纳米粉体的单分散形态。4), the present invention abandons the disadvantages of traditional powder material feeding, and for the first time proposes to use a pump to spray aluminum sol into the reaction chamber, so that the reaction can be carried out uniformly, and the particle size can be realized by controlling the feed flow rate. The effective control and help to prepare the monodisperse morphology of alumina nanopowder.
附图说明Description of drawings
图1为铝溶胶粗品(a)和高纯铝溶胶(b)的SEM图。Figure 1 is the SEM images of crude aluminum sol (a) and high-purity aluminum sol (b).
图2为实施例1制备产物的XRD图。Fig. 2 is the XRD pattern of the product prepared in Example 1.
图3为实施例1制备产物的SEM图。Fig. 3 is the SEM image of the product prepared in Example 1.
图4为对比实施例制备产物的SEM图(a对应喷射流速100g/min,b对应喷射流速1500g/min)。Figure 4 is a SEM image of the product prepared in the comparative example (a corresponds to the injection flow rate of 100g/min, b corresponds to the injection flow rate of 1500g/min).
具体实施方式Detailed ways
本发明提出了一种气相法纳米氧化铝的制备方法,下面以实施例和附图对本发明的方法做进一步的详述。The present invention proposes a method for preparing nano-alumina by a vapor phase method, and the method of the present invention will be further described in detail below with examples and accompanying drawings.
实施例1Example 1
一种气相法纳米氧化铝的制备方法,步骤如下:A method for preparing nano-alumina by gas phase method, the steps are as follows:
①、铝溶胶粗品提纯处理,制备高纯铝溶胶。①. Purify the crude aluminum sol to prepare high-purity aluminum sol.
(1)、在真空加热的条件下蒸发铝溶胶粗品浆液,直至水含量达到25%后冷却至室温。(1) Evaporate the crude aluminum sol slurry under vacuum heating until the water content reaches 25%, and then cool to room temperature.
(2)、向浆液中加入无水乙醇,超声分散均匀,接着加入硅烷偶联剂KH550,升温至55℃搅拌2h。浆液、无水乙醇、硅烷偶联剂KH550的添加重量比为1:2:0.5。(2) Add absolute ethanol to the slurry, ultrasonically disperse evenly, then add silane coupling agent KH550, heat up to 55°C and stir for 2 hours. The weight ratio of slurry, absolute ethanol and silane coupling agent KH550 is 1:2:0.5.
(3)、再次在真空加热的条件下蒸发直至水-乙醇含量达到10%后冷却至室温,得到高纯铝溶胶。(3) Evaporate again under vacuum heating until the water-ethanol content reaches 10%, then cool to room temperature to obtain high-purity aluminum sol.
通过图1可以看出,铝溶胶粗品呈棉絮状团聚体,形貌分布不均匀。而通过提纯处理制备的高纯铝溶胶则明显分布更加均匀,形貌均一度高。It can be seen from Figure 1 that the crude aluminum sol is in the form of cotton wool-like aggregates, and the distribution of morphology is uneven. However, the high-purity aluminum sol prepared by purification treatment is obviously more uniform in distribution and has a high degree of uniformity in morphology.
②、采用高压喷射的方法喷进高温等离子体反应器中瞬间反应制备纳米氧化铝。②. Use high-pressure spraying method to spray into high-temperature plasma reactor for instantaneous reaction to prepare nano-alumina.
采用高压喷射的方法,利用泵将高纯铝溶胶喷入高温等离子体反应器的反应腔体中,高温等离子体反应器的等离子激发气体为氮气或氩气,铝溶胶接触到高温瞬间汽化,裂解、解聚、聚合成纳米氧化铝微粒。Using the high-pressure injection method, the high-purity aluminum sol is sprayed into the reaction chamber of the high-temperature plasma reactor by using a pump. The plasma excitation gas of the high-temperature plasma reactor is nitrogen or argon, and the aluminum sol is instantly vaporized and cracked when exposed to high temperature. , depolymerization, and polymerization into nano-alumina particles.
其中,高温等离子体反应器中等离子体焰流温度为2000℃,反应时间低于1s,高纯铝溶胶的喷射流速为400g/min。Among them, the plasma flame temperature in the high-temperature plasma reactor is 2000°C, the reaction time is less than 1s, and the jet flow rate of the high-purity aluminum sol is 400g/min.
③、骤冷系统冷却、分级收集系统收集③, quenching system cooling, classification collection system collection
在高温等离子体反应器的反应腔体中生成的纳米氧化铝微粒快速下落,经过骤冷系统冷却避免纳米颗粒聚集,减少团聚,最后通过分级收集系统,制备得到气相法纳米氧化铝。The nano-alumina particles generated in the reaction chamber of the high-temperature plasma reactor fall rapidly, and are cooled by a quenching system to avoid the aggregation of nanoparticles and reduce agglomeration. Finally, the gas-phase method nano-alumina is prepared through a graded collection system.
图2为实施例1制备产物的SEM图,图3为实施例1制备产物的SEM图。通过图可以看出,制备的氧化铝呈分散近球形颗粒形态,其直径为20~50nm,近球形,无硬团聚。结合图2所示的XRD图与标准PDF卡片(46-1131)相对比可以发现制备的产物为氧化铝。经过检测,制备的纳米氧化铝粉体纯度达到99.9%以上。Fig. 2 is the SEM image of the product prepared in Example 1, and Fig. 3 is the SEM image of the product prepared in Example 1. It can be seen from the figure that the prepared alumina is in the form of dispersed nearly spherical particles with a diameter of 20-50 nm, which is nearly spherical and has no hard agglomeration. Comparing the XRD pattern shown in Figure 2 with the standard PDF card (46-1131), it can be found that the prepared product is alumina. After testing, the prepared nano-alumina powder has a purity of over 99.9%.
对比实施例comparative example
制备方法步骤同实施例1,区别仅在于调整高纯铝溶胶的喷射流速,分别为100g/min、1500g/min。The steps of the preparation method are the same as those in Example 1, except that the injection flow rate of the high-purity aluminum sol is adjusted to 100 g/min and 1500 g/min respectively.
通过图4可以看出,随着喷射流速的改变,对制备产物形貌有着较大程度的影响,特别是如图4b所示,当喷射流速过大时,制备产物团聚现象较为严重,无法制备呈单分散形态的氧化铝。It can be seen from Figure 4 that with the change of the injection flow rate, the morphology of the prepared product is greatly affected, especially as shown in Figure 4b, when the injection flow rate is too high, the agglomeration of the prepared product is more serious, and it is impossible to prepare Alumina in monodisperse form.
实施例2Example 2
一种气相法纳米氧化铝的制备方法,步骤如下:A method for preparing nano-alumina by gas phase method, the steps are as follows:
①、铝溶胶粗品提纯处理,制备高纯铝溶胶。①. Purify the crude aluminum sol to prepare high-purity aluminum sol.
(1)、在真空加热的条件下蒸发铝溶胶粗品浆液,直至水含量达到30%后冷却至室温。(1) Evaporate the crude aluminum sol slurry under vacuum heating until the water content reaches 30%, and then cool to room temperature.
(2)、向浆液中加入无水乙醇,超声分散均匀,接着加入硅烷偶联剂KH550,升温至55℃搅拌3h。浆液、无水乙醇、硅烷偶联剂KH550的添加重量比为1:2.5:0.4。(2) Add absolute ethanol to the slurry, ultrasonically disperse evenly, then add silane coupling agent KH550, heat up to 55°C and stir for 3 hours. The weight ratio of slurry, absolute ethanol, and silane coupling agent KH550 is 1:2.5:0.4.
(3)、再次在真空加热的条件下蒸发直至水-乙醇含量达到8%后冷却至室温,得到高纯铝溶胶。(3) Evaporate again under vacuum heating until the water-ethanol content reaches 8%, then cool to room temperature to obtain high-purity aluminum sol.
②、采用高压喷射的方法喷进高温等离子体反应器中瞬间反应制备纳米氧化铝。②. Use high-pressure spraying method to spray into high-temperature plasma reactor for instantaneous reaction to prepare nano-alumina.
采用高压喷射的方法,利用泵将高纯铝溶胶喷入高温等离子体反应器的反应腔体中,高温等离子体反应器的等离子激发气体为氮气或氩气,铝溶胶接触到高温瞬间汽化,裂解、解聚、聚合成纳米氧化铝微粒。Using the high-pressure injection method, the high-purity aluminum sol is sprayed into the reaction chamber of the high-temperature plasma reactor by using a pump. The plasma excitation gas of the high-temperature plasma reactor is nitrogen or argon, and the aluminum sol is instantly vaporized and cracked when exposed to high temperature. , depolymerization, and polymerization into nano-alumina particles.
其中,高温等离子体反应器中等离子体焰流温度为1800℃,反应时间低于1s,高纯铝溶胶的喷射流速为350g/min。Among them, the plasma flame temperature in the high-temperature plasma reactor is 1800°C, the reaction time is less than 1s, and the jet flow rate of the high-purity aluminum sol is 350g/min.
③、骤冷系统冷却、分级收集系统收集③, quenching system cooling, classification collection system collection
在高温等离子体反应器的反应腔体中生成的纳米氧化铝微粒快速下落,经过骤冷系统冷却避免纳米颗粒聚集,减少团聚,最后通过分级收集系统,制备得到气相法纳米氧化铝。The nano-alumina particles generated in the reaction chamber of the high-temperature plasma reactor fall rapidly, and are cooled by a quenching system to avoid the aggregation of nanoparticles and reduce agglomeration. Finally, the gas-phase method nano-alumina is prepared through a graded collection system.
实施例3Example 3
一种气相法纳米氧化铝的制备方法,步骤如下:A method for preparing nano-alumina by gas phase method, the steps are as follows:
①、铝溶胶粗品提纯处理,制备高纯铝溶胶。①. Purify the crude aluminum sol to prepare high-purity aluminum sol.
(1)、在真空加热的条件下蒸发铝溶胶粗品浆液,直至水含量达到20%后冷却至室温。(1) Evaporate the crude aluminum sol slurry under vacuum heating until the water content reaches 20%, and then cool to room temperature.
(2)、向浆液中加入无水乙醇,超声分散均匀,接着加入硅烷偶联剂KH550,升温至60℃搅拌2h。浆液、无水乙醇、硅烷偶联剂KH550的添加重量比为1:2:0.6。(2) Add absolute ethanol to the slurry, ultrasonically disperse evenly, then add silane coupling agent KH550, heat up to 60°C and stir for 2 hours. The weight ratio of slurry, absolute ethanol, and silane coupling agent KH550 is 1:2:0.6.
(3)、再次在真空加热的条件下蒸发直至水-乙醇含量达到5%后冷却至室温,得到高纯铝溶胶。(3) Evaporate again under vacuum heating until the water-ethanol content reaches 5%, then cool to room temperature to obtain high-purity aluminum sol.
②、采用高压喷射的方法喷进高温等离子体反应器中瞬间反应制备纳米氧化铝。②. Use high-pressure spraying method to spray into high-temperature plasma reactor for instantaneous reaction to prepare nano-alumina.
采用高压喷射的方法,利用泵将高纯铝溶胶喷入高温等离子体反应器的反应腔体中,高温等离子体反应器的等离子激发气体为氮气或氩气,铝溶胶接触到高温瞬间汽化,裂解、解聚、聚合成纳米氧化铝微粒。Using the high-pressure injection method, the high-purity aluminum sol is sprayed into the reaction chamber of the high-temperature plasma reactor by using a pump. The plasma excitation gas of the high-temperature plasma reactor is nitrogen or argon, and the aluminum sol is instantly vaporized and cracked when exposed to high temperature. , depolymerization, and polymerization into nano-alumina particles.
其中,高温等离子体反应器中等离子体焰流温度为2200℃可调,反应时间低于1s,高纯铝溶胶的喷射流速为450g/min。Among them, the plasma flame temperature in the high-temperature plasma reactor is adjustable at 2200°C, the reaction time is less than 1s, and the jet flow rate of high-purity aluminum sol is 450g/min.
③、骤冷系统冷却、分级收集系统收集③, quenching system cooling, classification collection system collection
在高温等离子体反应器的反应腔体中生成的纳米氧化铝微粒快速下落,经过骤冷系统冷却避免纳米颗粒聚集,减少团聚,最后通过分级收集系统,制备得到气相法纳米氧化铝。The nano-alumina particles generated in the reaction chamber of the high-temperature plasma reactor fall rapidly, and are cooled by a quenching system to avoid the aggregation of nanoparticles and reduce agglomeration. Finally, the gas-phase method nano-alumina is prepared through a graded collection system.
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。The above content is only an example and description of the concept of the present invention. Those skilled in the art make various modifications or supplements to the described specific embodiments or replace them in similar ways, as long as they do not deviate from the concept of the invention Or beyond the scope defined in the claims, all should belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211134491.XA CN115340113B (en) | 2022-09-19 | 2022-09-19 | A kind of preparation method of vapor phase nano-alumina |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211134491.XA CN115340113B (en) | 2022-09-19 | 2022-09-19 | A kind of preparation method of vapor phase nano-alumina |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115340113A true CN115340113A (en) | 2022-11-15 |
CN115340113B CN115340113B (en) | 2023-11-14 |
Family
ID=83955532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211134491.XA Active CN115340113B (en) | 2022-09-19 | 2022-09-19 | A kind of preparation method of vapor phase nano-alumina |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115340113B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102531009A (en) * | 2010-12-28 | 2012-07-04 | 上海华明高技术(集团)有限公司 | Nanoscale high-purity aluminum oxide preparation method |
CN103043692A (en) * | 2012-12-27 | 2013-04-17 | 西安迈克森新材料有限公司 | Preparation method for high-purity aluminum oxide powder material |
RU2493102C1 (en) * | 2012-04-23 | 2013-09-20 | Общество с ограниченной ответственностью "НОРМИН" | Method of obtaining nano-size powder of aluminium gamma-oxide |
WO2018040998A1 (en) * | 2016-08-29 | 2018-03-08 | 四川行之智汇知识产权运营有限公司 | Method for preparing new ultra-pure spherical alumina powder |
CN110963516A (en) * | 2019-12-24 | 2020-04-07 | 苏州纳迪微电子有限公司 | Preparation method of spherical α -alumina powder |
CN112723399A (en) * | 2020-12-10 | 2021-04-30 | 合肥中航纳米技术发展有限公司 | Plasma arc flame combustion reaction system and method for preparing high-purity gamma-Al by using same2O3Method (2) |
CN113056080A (en) * | 2021-03-17 | 2021-06-29 | 合肥中航纳米技术发展有限公司 | Plasma arc vapor phase method production system for preparing nano powder |
CN114751450A (en) * | 2022-03-30 | 2022-07-15 | 合肥中航纳米技术发展有限公司 | Method for preparing gas-phase nano titanium dioxide by high-temperature plasma combustion method |
-
2022
- 2022-09-19 CN CN202211134491.XA patent/CN115340113B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102531009A (en) * | 2010-12-28 | 2012-07-04 | 上海华明高技术(集团)有限公司 | Nanoscale high-purity aluminum oxide preparation method |
RU2493102C1 (en) * | 2012-04-23 | 2013-09-20 | Общество с ограниченной ответственностью "НОРМИН" | Method of obtaining nano-size powder of aluminium gamma-oxide |
CN103043692A (en) * | 2012-12-27 | 2013-04-17 | 西安迈克森新材料有限公司 | Preparation method for high-purity aluminum oxide powder material |
WO2018040998A1 (en) * | 2016-08-29 | 2018-03-08 | 四川行之智汇知识产权运营有限公司 | Method for preparing new ultra-pure spherical alumina powder |
CN110963516A (en) * | 2019-12-24 | 2020-04-07 | 苏州纳迪微电子有限公司 | Preparation method of spherical α -alumina powder |
CN112723399A (en) * | 2020-12-10 | 2021-04-30 | 合肥中航纳米技术发展有限公司 | Plasma arc flame combustion reaction system and method for preparing high-purity gamma-Al by using same2O3Method (2) |
CN113056080A (en) * | 2021-03-17 | 2021-06-29 | 合肥中航纳米技术发展有限公司 | Plasma arc vapor phase method production system for preparing nano powder |
CN114751450A (en) * | 2022-03-30 | 2022-07-15 | 合肥中航纳米技术发展有限公司 | Method for preparing gas-phase nano titanium dioxide by high-temperature plasma combustion method |
Non-Patent Citations (1)
Title |
---|
P.V. ANANTHAPADMANABHAN ET AL.: "Formation of nano-sized alumina by in-flight oxidation of aluminium powder in a thermal plasma reactor", SCRIPTA MATERIALIA, pages 143 * |
Also Published As
Publication number | Publication date |
---|---|
CN115340113B (en) | 2023-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Karthikeyan et al. | Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors | |
CN101269834B (en) | Method for producing nano-ITO powder with plasma electrical arc one-step method | |
CN109647310B (en) | Spray pyrolysis device with microwave heating function and method for preparing ternary precursor by using spray pyrolysis device | |
CN104891542B (en) | A kind of preparation method of superfine α-Al2O3 powder | |
WO2010078821A1 (en) | Method for preparing subsphaeroidal barium sulfate by sulfuric acid process and its use in copper foil substrate | |
CN102910630A (en) | Production method of nano silicon powder | |
CN108557770A (en) | A method of preparing nanometer metal oxide powder | |
CN103588211A (en) | Preparation method of spherical zirconium silicate nano aggregate powder | |
CN108046268A (en) | The method that plasma enhanced chemical vapor synthetic method prepares high-purity nm boron carbide powder | |
CN115340113B (en) | A kind of preparation method of vapor phase nano-alumina | |
CN114289722B (en) | A kind of preparation method of fine-grained spherical tungsten powder | |
CN114477969A (en) | Preparation method of high-purity superfine alumina for ceramic tube | |
CN106976883A (en) | A kind of situ-combustion synthesis prepares B4The method of C nano powder | |
CN211078490U (en) | A production device for preparing spherical silicon micropowder by ultrasonic atomization | |
CN103693646B (en) | Method for spheroidizing and purifying silicon carbide micropowder | |
CN110014165B (en) | Preparation method of high-purity micron-sized spherical molybdenum powder | |
CN101637824A (en) | Preparation method of ultrafine cobalt powder | |
CN108928822A (en) | The method that gaseous reduction molybdenum oxide prepares molybdenum carbide | |
CN102671577B (en) | Hydro-thermal reaction device is used in inorganic nano-particle synthesis | |
Bensebaa | Dry production methods | |
TWI388507B (en) | Method and apparatus for forming zinc oxide | |
TW202016023A (en) | A fabirication method of fine spherical alumina powder | |
CN103723739B (en) | Method for preparing nano tourmaline powder on kilogram scale | |
CN110423494B (en) | Preparation method of coupling agent gas phase modified graphite nanosheet composite powder | |
CN1295152C (en) | Electric arc spraying reaction synthesis system and process of preparing nano alumina powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: No. 45 Xingye Avenue, Xinqiao International Industrial Park, Shouxian County, Huainan City, Anhui Province, China 232221 Patentee after: Anhui AVIC Nanotechnology Development Co.,Ltd. Country or region after: China Address before: 231139 Gangji Town Industrial Park, Changfeng County, Hefei City, Anhui Province Patentee before: HEFEI ZHONGHANG NANOMETER TECHNOLOGY DEVELOPMENT Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |