CN115332920A - 一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器 - Google Patents

一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器 Download PDF

Info

Publication number
CN115332920A
CN115332920A CN202210920310.XA CN202210920310A CN115332920A CN 115332920 A CN115332920 A CN 115332920A CN 202210920310 A CN202210920310 A CN 202210920310A CN 115332920 A CN115332920 A CN 115332920A
Authority
CN
China
Prior art keywords
fiber
laser
refractive index
gain medium
index gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210920310.XA
Other languages
English (en)
Inventor
姜守振
孙新
刁光浩
韩运奥
樊维宇
李亚男
江希宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lingkang Medical Instrument Co ltd
Original Assignee
Zhejiang Lingkang Medical Instrument Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lingkang Medical Instrument Co ltd filed Critical Zhejiang Lingkang Medical Instrument Co ltd
Priority to CN202210920310.XA priority Critical patent/CN115332920A/zh
Publication of CN115332920A publication Critical patent/CN115332920A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器。所述激光器包括:激光二极管,提供976nm泵浦光;光纤布拉格光栅对,选择并放大1080nm受激辐射光;光纤环形镜,全反射逆向传输的1080nm受激辐射光和各阶斯托克斯光;合束器,将两束泵浦光耦合进一根光纤中;双包层掺镱光纤,产生1080nm受激辐射光;折射率渐变多模光纤,为拉曼增益介质,产生各阶斯托克斯光,并直接从折射率渐变多模光纤末端进行输出。本发明所述随机光纤激光器采用半开腔结构,采用由光纤环形镜组成的全反射结构,使用折射率渐变多模光纤作为拉曼增益介质,具有高转换效率的同时具有全光纤结构,保证了激光器的空间紧凑性。

Description

一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器
技术领域
本发明涉及激光技术领域,具体为一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器。
背景技术
近年来,一种新型的颠覆常规光纤激光器谐振腔结构的随机光纤激光器引起了人们的广泛关注。其利用光纤中固有的或人为引入的随机散射作为激光的形成的反馈机制,无需常规光纤激光器中界限明确的谐振腔,从而降低了对光纤激光器腔体设计的要求。随机光纤激光器具有结构更加简单、可靠性更高、设计更加灵活等突出优点,可望成为新一代的光纤激光器,在光通信、光传感、光成像以及高功率激光源等领域发挥重要的作用。利用随机光纤激光技术可用于公共交通的照明、恶劣环境下的传感以及医疗等。
基于短腔的随机光纤激光器具有输出效率很高的特点,已成为高功率光纤激光器研究的一个新的方向,相关成果被美国光学学会评选为2014年度重要光学进展。基于随机光纤激光器的分布式放大技术也已应用于长距离光传输或传感系统中,表明其在信息光子学领域也具有重要的应用前景。此外,光纤随机激光的激射具有丰富的物理内涵,随机光纤激光器将光场束缚在一维空间中,且具有无纵模模式特性,从而为非线性光学及无序光学的科学研究提供了新的平台。
随机光纤激光器领域研究最广泛的反馈机制是基于光纤本身瑞利散射带来的分布式随机反馈,本论文的研究主体也是这类基于光纤中瑞利散射反馈的随机光纤激光器。最早报道的该类随机激光器利用标准单模光纤中的随机瑞利散射及拉曼放大产生随机激光,无需任何谐振腔。由于光纤中本身存在的折射率微小起伏造成的瑞利散射,在光纤中传播的光子经过瑞利散射后,绝大多数都会从纤芯中逸出,只有极少部分光子被后向散射且仍受光纤的束缚,这部分光子即为后向瑞利散射光。
为了进一步促进随机激光器的发展,本专利进行了基于折射率渐变多模光纤制作了一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器激光器。
发明内容
针对现有技术的不足,本发明提供了一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,解决了背景技术中提到的问题。
一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,方案如下:
所述激光器包括激光二极管、光纤环形镜、光纤布拉格光栅、合束器、双包层掺镱光纤和拉曼增益介质。
所述激光二极管为两个976nm激光二极管,分别与合束器的两个泵浦光输入端相连;合束器的信号光输入端与光纤布拉格光栅的高反射输入端相连;光纤环形镜的输入端与光纤布拉格光栅的透射端相连;合束器的输出端与双包层掺镱光纤的一端相连;双包层掺镱光纤的另一端与拉曼增益介质折射率渐变多模光纤的一端相连;拉曼增益介质折射率渐变多模光纤的另一端作为激光器的输出端,并作斜角切割,消除腔内激光反射。
当激光二极管的976nm泵浦光通过合束器的泵浦光输入端耦合入射到双包层掺镱光纤中,镱离子发生粒子数反转,产生1080nm受激辐射光。1080nm激光作为拉曼增益介质折射率渐变多模光纤的泵浦光入射其中,当功率密度达到受激拉曼散射阈值时,发生受激拉曼散射效应,产生多波段的拉曼散射光,由于所述激光器具有由高反光纤布拉格光栅和光纤环形镜组成的全反射结构,将泵浦激光、泵浦掺镱光纤所产生的受激发射光、受激拉曼散射效应产生的多波段拉曼散射光进行全反射,激光器可实现拉曼散射光的高转换效率。
如上述的一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,其中,
优选的是,所述激光二极管的工作波长为976nm,尾纤数值孔径为0.22。
优选的是,所述光纤环形镜由输出比为50:50的输出耦合器的两根输出端光纤相连而成,输出耦合器的工作范围为1030-1400nm。
优选的是,所述光纤布拉格光栅的中心波长为1080nm,反射率大于99.9%。
优选的是,所述合束器为(2+1)×1型合束器,泵浦波长信号范围为780-1000nm,信号波长范围为1020-1080nm。
优选的是,所述双包层掺镱光纤的型号为Nufern,长度为15m,纤芯直径为10μm,内包层直径为130μm。
优选的是,所述拉曼增益介质为折射率渐变多模光纤,其长度可在100-500m范围选取,纤芯直径为62.5μm,包层直径为125μm,输出端作8°斜角切割。
本发明与现有技术相比具备以下有益效果:
本发明激光器采用高反光纤布拉格光栅和光纤环形镜组合而成的全反射镜,从而具有半开腔结构,采用折射率渐变光纤作为拉曼增益介质,实现了具有高转换效率的多波段拉曼散射光输出,同时,选用双包层掺镱光纤作为增益光纤和选用折射率渐变多模光纤作为拉曼增益介质使本发明激光器具有全光纤结构,空间紧凑型好,散热快,性能稳定。
附图说明
图1为本发明一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器的结构示意图;
图2为本发明激光器的输出光谱图;
图中:1、激光二极管;2、光纤环形镜;3、光纤布拉格光栅;4、合束器;5、双包层掺镱光纤;6、拉曼增益介质。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
请参阅图1,本发明提供一种技术方案:一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,包括激光二极管1、光纤环形镜2、光纤布拉格光栅3、合束器4、双包层掺镱光纤5、拉曼增益介质6。
所述激光二极管1为两个976nm激光二极管,分别与合束器4的两个泵浦光输入端相连;合束器4的信号光输入端与光纤布拉格光栅3的高反射输入端相连;光纤环形镜2的输入端与光纤布拉格光栅3的透射端相连;合束器4的输出端与双包层掺镱光纤5的一端相连;双包层掺镱光纤5的另一端与拉曼增益介质6折射率渐变多模光纤的一端相连;拉曼增益介质6折射率渐变多模光纤的另一端作为激光器的输出端,并作斜角切割,消除有害反射。
当激光二极管1的976nm泵浦光通过合束器4的泵浦光输入端耦合入射到双包层掺镱光纤5中,镱离子发生粒子数反转,产生1080nm受激辐射光。1080nm激光作为拉曼增益介质6折射率渐变多模光纤的泵浦光入射其中,当功率密度达到受激拉曼散射阈值时,发生受激拉曼散射效应,产生多阶斯托克斯光,由于所述激光器具有由高反光纤布拉格光栅3和光纤环形镜2组成的全反射结构,将泵浦激光、泵浦掺镱光纤所产生的受激发射光、受激拉曼散射效应产生的多阶斯托克斯光进行全反射,激光器可实现拉曼散射光的高转换效率。
在本实施例中,所述激光二极管1的工作波长为976nm,尾纤数值孔径为0.22。所述光纤环形镜2由输出比为50:50的输出耦合器的两根输出端光纤相连而成,输出耦合器的工作范围为1030-1400nm。所述光纤布拉格光栅3的中心波长为1080nm,反射率大于99.9%。合束器4为(2+1)×1型合束器,泵浦波长信号范围为780-1000nm,信号波长范围为1020-1080nm。所述双包层掺镱光纤5的型号为Nufern,10/130,纤芯直径为10μm,内包层直径为130μm。所述拉曼增益介质6为折射率渐变多模光纤,在本实施例中其长度为300m,纤芯直径为62.5μm,包层直径为125μm,输出端作斜角切割,在本实施例中作8°切割,但不只限于8°斜角,只需消除腔内激光反射即可。将上述器件进行熔接时,其熔接点连接损耗应控制在0.03dB以内。
图2本发明拉曼光纤激光器的输出光谱。如图2所示,双包层掺镱光纤经泵浦后,所产生的基频激光的中心波长为1079.52nm,一阶斯托克斯光中心波长为1133.92nm,二阶斯托克斯光中心波长为1195.12nm,三阶斯托克斯光中心波长为1259.04nm,四阶斯托克斯光中心波长为1331.12nm。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,其特征在于:所述激光器包括激光二极管(1)、光纤环形镜(2)、光纤布拉格光栅(3)、合束器(4)、双包层掺镱光纤(5)和拉曼增益介质(6)。
所述激光二极管(1)为两个976nm激光二极管,分别与合束器(4)的两个泵浦光输入端相连;合束器(4)的信号光输入端与光纤布拉格光栅(3)的高反射输入端相连;光纤环形镜(2)的输入端与光纤布拉格光栅(3)的透射端相连;合束器(4)的输出端与双包层掺镱光纤(5)的一端相连;双包层掺镱光纤(5)的另一端与拉曼增益介质(6)折射率渐变多模光纤的一端相连;拉曼增益介质(6)折射率渐变多模光纤的另一端作为激光器的输出端,并作斜角切割,消除腔内激光反射。
当激光二极管(1)的976nm泵浦光通过合束器(4)的泵浦光输入端耦合入射到双包层掺镱光纤(5)中,镱离子发生粒子数反转,产生1080nm受激辐射光。1080nm激光作为拉曼增益介质(6)折射率渐变多模光纤的泵浦光入射其中,当功率密度达到受激拉曼散射阈值时,发生受激拉曼散射效应,随泵浦功率提升产生多阶斯托克斯光,由于所述激光器具有由高反射率光纤布拉格光栅(3)和光纤环形镜(2)组成的全反射结构,将泵浦激光、泵浦掺镱光纤所产生的受激发射光、受激拉曼散射效应产生的多阶斯托克斯光进行全反射,激光器可实现拉曼散射光的高转换效率。
2.根据权利要求1所述的一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,其特征在于:所述激光二极管(1)的工作波长为976nm,尾纤数值孔径为0.22。
3.根据权利要求1所述的一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,其特征在于:所述光纤环形镜(2)由输出比为50:50的输出耦合器的两根输出端光纤相连而成,输出耦合器的工作范围为1030-1400nm。
4.根据权利要求1所述的一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,其特征在于:所述光纤布拉格光栅(3)的中心波长为1080nm,反射率大于99.9%。
5.根据权利要求1所述的一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,其特征在于:合束器(4)为(2+1)×1型合束器,泵浦波长信号范围为780-1000nm,信号波长范围为1020-1080nm。
6.根据权利要求1所述的一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,其特征在于:所述双包层掺镱光纤(5)的型号为Nufern,长度为15m,纤芯直径为10μm,内包层直径为130μm。
7.根据权利要求1所述的一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器,其特征在于:所述拉曼增益介质(6)为折射率渐变多模光纤,其长度可在100-500m范围选取,纤芯直径为62.5μm,包层直径为125μm,输出端作斜角切割,消除腔内激光反射。
CN202210920310.XA 2022-08-09 2022-08-09 一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器 Withdrawn CN115332920A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210920310.XA CN115332920A (zh) 2022-08-09 2022-08-09 一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210920310.XA CN115332920A (zh) 2022-08-09 2022-08-09 一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器

Publications (1)

Publication Number Publication Date
CN115332920A true CN115332920A (zh) 2022-11-11

Family

ID=83920355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210920310.XA Withdrawn CN115332920A (zh) 2022-08-09 2022-08-09 一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器

Country Status (1)

Country Link
CN (1) CN115332920A (zh)

Similar Documents

Publication Publication Date Title
US6370180B2 (en) Semiconductor-solid state laser optical waveguide pump
JP3247292B2 (ja) 光通信システム
US8094370B2 (en) Cladding pumped fibre laser with a high degree of pump isolation
Babin et al. Multimode fiber Raman lasers directly pumped by laser diodes
CN103022866A (zh) Mopa型随机光纤激光器
US8982452B2 (en) All-in-one raman fiber laser
CN210640479U (zh) 一种基于双端输出振荡器的级联泵浦光纤激光器
KR101698143B1 (ko) 2㎛ 범위 내에서 동작하는 파장용 고출력 단일모드 광섬유 레이저 시스템
JPWO2003067723A1 (ja) マルチモード光ファイバ、ファイバレーザ増幅器およびファイバレーザ発振器
CN212935129U (zh) 无熔接点光纤激光器
CN212935127U (zh) 一种激光器
WO1995010869A1 (en) A diode pumped, cw operating, single-mode optical fiber laser emitting at 976 nm
CN115173217A (zh) 一种半开腔式多波段随机拉曼光纤激光器
CN214478413U (zh) 基于光纤随机光栅的2μm波段柱矢量光纤随机激光器
CN115241722A (zh) 一种基于Sagnac环的1.1-1.6微米全光纤随机拉曼激光器
US20050168804A1 (en) High power 938 nanometer fiber laser and amplifier
CN115332920A (zh) 一种基于折射率渐变多模光纤的半开腔式拉曼光纤激光器
CN114825007A (zh) 一种基于复合腔内驻波条件筛选方案的窄线宽光纤激光器
CN111446612A (zh) 一种基于倾斜光纤光栅的2um波段随机光纤激光器
CN211743659U (zh) 一种基于泵浦纤芯的大功率双向泵浦光纤激光器
Jang et al. Cladding-pumped continuous-wave Raman fiber laser
Abedin et al. Cladding-pumped hybrid single-and higher-order-mode (HOM) amplifier
WO2019021565A1 (ja) ファイバレーザ装置
CN212485783U (zh) 激光系统
CN115241723A (zh) 一种基于Raman Optical Fiber的半开腔多波长随机拉曼光纤激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20221111