CN115331970A - 一种自粘附软电极材料及其加工方法 - Google Patents

一种自粘附软电极材料及其加工方法 Download PDF

Info

Publication number
CN115331970A
CN115331970A CN202211061826.XA CN202211061826A CN115331970A CN 115331970 A CN115331970 A CN 115331970A CN 202211061826 A CN202211061826 A CN 202211061826A CN 115331970 A CN115331970 A CN 115331970A
Authority
CN
China
Prior art keywords
electrode material
self
soft electrode
metal particles
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202211061826.XA
Other languages
English (en)
Inventor
何江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhirou New Material Technology Co ltd
Original Assignee
Jiangsu Zhirou New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Zhirou New Material Technology Co ltd filed Critical Jiangsu Zhirou New Material Technology Co ltd
Priority to CN202211061826.XA priority Critical patent/CN115331970A/zh
Publication of CN115331970A publication Critical patent/CN115331970A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本发明涉及级电容器材料技术领域,具体公开了一种自粘附软电极材料及其加工方法。所述自粘附软电极材料包括支撑基体、导电填充物和金属粒子,所述的金属粒子为LiNiO2原料在酸性气氛下进行加工形成的共构体;所述的导电填充物和金属粒子相互熔融且连续的分布在支撑基体的内部;支撑基体形成包裹外层,包裹外层上开设有纳米级透孔。本发明中的LiNiO2在酸性气氛中可以Li+和Ni3+的形式存在,大大提高了离子交换反应的进程,提高了充放电效果。使用NiOOH和LiOH作为原料清洁且环保,制备工艺简单,操作条件温和,可移植性强。

Description

一种自粘附软电极材料及其加工方法
技术领域
本发明涉及超级电容器材料技术领域,具体涉及一种自粘附软电极材料及其加工方法。
背景技术
超级电容器是一种介于传统平板电容器和化学电源之间的新型储能器件,具有高功率密度、大容量、快速充放电、超长循环寿命、污染小、高可靠性等优点,其电容量可达法拉级别,在移动通讯、信息技术、电力系统、电动汽车、航空航天等方面都具有广阔的应用前景。按照储能机理,超级电容器可分为双电层电容器和赝电容器,前者是利用电极表面与电解液之间的静电吸引存储能量,此类电极材料主要是具有高比表面积的碳系材料,包括活性炭、碳气凝胶、碳纳米管、碳纤维和石墨烯等,但比电容量较低;后者是依靠电极材料与电解液之间的氧化还原反应产生法拉第电荷来存储电量,产生的电容量是双电层电容容量的10-100倍,该类电极材料有金属氧化物(如RuO2、Co3O4等),其中RuO2电极材料具有良好的导电性,是一种综合性能优异的材料,但由于其价格高昂且有毒性,因而限制RuO2的产业化应用。
发明内容
为解决上述技术问题,本发明提供一种自粘附软电极材料,所述自粘附软电极材料包括支撑基体、导电填充物和金属粒子,所述的金属粒子为LiNiO2原料在酸性气氛下进行加工形成的共构体;所述的导电填充物和金属粒子相互熔融且连续的分布在支撑基体的内部;支撑基体形成包裹外层,包裹外层上开设有纳米级透孔。
优选的:所述支撑基体、导电填充物和金属粒子的比重为:支撑基体5-15份、导电填充物40-80份,金属粒子5-55份。
优选的:所述支撑基体、导电填充物和金属粒子的比重为:支撑基体10份、导电填充物70份,金属粒子20份。
优选的:所述支撑基体是PVA、PVDF、PVB、聚氨酯中的一种或者多种组合。
优选的:所述支撑基体是PVA。
优选的:所述导电填充物是石墨烯、碳管、导电炭黑、膨胀石墨、纳米银线和碳纳米管中的一种或者多种组合。
优选的:所述支撑基体是纳米银线或碳纳米管。
本发明还提供一种自粘附软电极材料的加工方法,所述加工方法的步骤包括:
所需量的NiOOH和LiOH按照一个预先设置的摩尔比进行混合获得金属粒子混合物;
将所需量的导电填充物和金属粒子混合物混合并加入到碳酸氢铵溶液中;
在超声环境下充分搅拌,冷却后进行过滤;
将过滤物在一个预设的压力下压制成片;
然后将片状结构外表包裹支撑基体获得前驱体;
对前驱体进行煅烧使前驱体内部沉积的碳酸氢铵气化;
然后放置在PH为4-5的酸性溶液中浸泡12h,获得自粘附软电极材料。
优选的:所述NiOOH和LiOH的摩尔比是1:1.05。
优选的:所述碳酸氢铵溶液的浓度为21%。
本发明的技术效果和优点:通过LiNiO2在酸性气氛中可以Li+和Ni3+的形式存在,大大提高了离子交换反应的进程,提高了充放电效果。通过形成纳米级透孔,可以提高自粘附软电极材料的吸附能力和导电填充物、金属粒子分散的均匀性。使用NiOOH和LiOH作为原料清洁且环保,制备工艺简单,操作条件温和,可移植性强。
具体实施方式
下面结合具体实施方式对本发明作进一步详细的说明。本发明的实施例是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显而易见的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。
实施例1
将5份量的LiNiO2的原料NiOOH和LiOH按照摩尔比1:1.05进行混合获得金属粒子混合物。将80份量的纳米银线和金属粒子混合物混合并加入到碳酸氢铵溶液中。在超声环境下充分搅拌,冷却后进行过滤。将过滤物在15MPa的压力下压制成片,然后将片状结构外表包裹15份的PVA获得前驱体。对前驱体进行煅烧使前驱体内部沉积的碳酸氢铵气化,煅烧温度500℃。然后放置在PH为4的酸性溶液中浸泡12h,从而获得自粘附软电极材料。
实施例2
将55份量的LiNiO2的原料NiOOH和LiOH按照摩尔比1:1.05进行混合获得金属粒子混合物。将40份量的导电炭黑和金属粒子混合物混合并加入到碳酸氢铵溶液中。在超声环境下充分搅拌,冷却后进行过滤。将过滤物在25MPa的压力下压制成片,然后将片状结构外表包裹5份的PVDF获得前驱体。对前驱体进行煅烧使前驱体内部沉积的碳酸氢铵气化,煅烧温度600℃。然后放置在PH为5的酸性溶液中浸泡12h,从而获得自粘附软电极材料。
实施例3
将20份量的LiNiO2的原料NiOOH和LiOH按照摩尔比1:1.05进行混合获得金属粒子混合物。将70份量的碳纳米管和金属粒子混合物混合并加入到碳酸氢铵溶液中。在超声环境下充分搅拌,冷却后进行过滤。将过滤物在20MPa的压力下压制成片,然后将片状结构外表包裹10份的PVDF获得前驱体。对前驱体进行煅烧使前驱体内部沉积的碳酸氢铵气化,煅烧温度550℃。沉浸在PH为4.5的酸性溶液中浸泡12h,从而获得自粘附软电极材料。
实施例4
将20份量的LiNiO2的原料NiOOH和LiOH按照摩尔比1:1.05进行混合获得金属粒子混合物。将70份量的碳纳米管和金属粒子混合物混合在20MPa的压力下压制成片,然后将片状结构外表包裹10份的PVDF获得前驱体。对前驱体进行煅烧,煅烧温度550℃,然后放置在PH为4.5的酸性溶液中浸泡12h。获得自粘附软电极材料。
实施例5
将20份量的LiNiO2的原料NiOOH和LiOH按照摩尔比1:1.05进行混合获得金属粒子混合物。将混合物在20MPa的压力下压制成片,然后将片状结构进行煅烧,煅烧温度550℃,获得自粘附软电极材料。
对以上各个实施例获得的自粘附软电极材料进行充电比容量和放电比容量获得表1,具体内容如下:
Figure BDA0003824248770000041
由上述表1可知,实施例3中的获得的自粘附软电极材料进行充电比容量和放电比容量均是最大,可见支撑基体10份、导电填充物70份,金属粒子20份配比最优,在通过碳酸氢铵进行扩充增加分散的均匀性和比表面积大大的增加了充电比容量和放电比容量,且远远优于实施例5中的传统电极材料。由此可知LiNiO2共构体的优越性。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域及相关领域的普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。本发明中未具体描述和解释说明的结构、装置以及操作方法,如无特别说明和限定,均按照本领域的常规手段进行实施。

Claims (10)

1.一种自粘附软电极材料,其特征在于,所述自粘附软电极材料包括支撑基体、导电填充物和金属粒子,所述的金属粒子为LiNiO2原料在酸性气氛下进行加工形成的共构体;所述的导电填充物和金属粒子相互熔融且连续的分布在支撑基体的内部;支撑基体形成包裹外层,包裹外层上开设有纳米级透孔。
2.根据权利要求1所述的一种自粘附软电极材料,其特征在于,所述支撑基体、导电填充物和金属粒子的比重为:支撑基体5-15份、导电填充物40-80份,金属粒子5-55份。
3.根据权利要求2所述的一种自粘附软电极材料,其特征在于,所述支撑基体、导电填充物和金属粒子的比重为:支撑基体10份、导电填充物70份,金属粒子20份。
4.根据权利要求1所述的一种自粘附软电极材料,其特征在于,所述支撑基体是PVA、PVDF、PVB、聚氨酯中的一种或者多种组合。
5.根据权利要求4所述的一种自粘附软电极材料,其特征在于,所述支撑基体是PVA。
6.根据权利要求1所述的一种自粘附软电极材料,其特征在于,所述导电填充物是石墨烯、碳管、导电炭黑、膨胀石墨、纳米银线和碳纳米管中的一种或者多种组合。
7.根据权利要求6所述的一种自粘附软电极材料,其特征在于,所述支撑基体是纳米银线或碳纳米管。
8.一种根据权利要求1~7任一项所述的自粘附软电极材料的加工方法,其特征在于,所述加工方法的步骤包括:
所需量的NiOOH和LiOH按照一个预先设置的摩尔比进行混合获得金属粒子混合物;
将所需量的导电填充物和金属粒子混合物混合并加入到碳酸氢铵溶液中;
在超声环境下充分搅拌,冷却后进行过滤;
将过滤物在一个预设的压力下压制成片;
然后将片状结构外表包裹支撑基体获得前驱体;
对前驱体进行煅烧使前驱体内部沉积的碳酸氢铵气化;
然后放置在PH为4-5的酸性溶液中浸泡12h,获得自粘附软电极材料。
9.根据权利要求8所述的一种自粘附软电极材料的加工方法,其特征在于,所述NiOOH和LiOH的摩尔比是1:1.05。
10.根据权利要求8所述的一种自粘附软电极材料的加工方法,其特征在于,所述碳酸氢铵溶液的浓度为21%。
CN202211061826.XA 2022-08-30 2022-08-30 一种自粘附软电极材料及其加工方法 Withdrawn CN115331970A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211061826.XA CN115331970A (zh) 2022-08-30 2022-08-30 一种自粘附软电极材料及其加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211061826.XA CN115331970A (zh) 2022-08-30 2022-08-30 一种自粘附软电极材料及其加工方法

Publications (1)

Publication Number Publication Date
CN115331970A true CN115331970A (zh) 2022-11-11

Family

ID=83928491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211061826.XA Withdrawn CN115331970A (zh) 2022-08-30 2022-08-30 一种自粘附软电极材料及其加工方法

Country Status (1)

Country Link
CN (1) CN115331970A (zh)

Similar Documents

Publication Publication Date Title
Li et al. Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors
Chen et al. NiCo2S4 nanotubes anchored 3D nitrogen-doped graphene framework as electrode material with enhanced performance for asymmetric supercapacitors
Guan et al. Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode
Yan et al. Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density
CN101383231B (zh) 以单层石墨材料为电极材料的超级电容器
Zhao et al. Polyaniline-modified porous carbon tube bundles composite for high-performance asymmetric supercapacitors
Dinari et al. Construction of Ce-doped NiCo-LDH@ CNT nanocomposite electrodes for high-performance supercapacitor application
CN105780364B (zh) 一种制备超微孔柔性碳布的方法及其产品和应用
CN108807006B (zh) 一种碳基柔性电极的制备方法
KR101832663B1 (ko) 고밀도 및 고용량 특성을 갖는 3차원 그래핀 구조체, 이의 제조방법 및 이를 포함하는 전극 소재
US20130037756A1 (en) Electrodes for electrochemical capacitor and electrochemical capacitor including the same
CN109326456B (zh) 一种超级电容器及其制备方法
Tsang et al. The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials
CN109741966B (zh) 一种Ni6MnO8@碳纳米管复合材料及其制备方法和应用
Han et al. Binder assisted self-assembly of graphene oxide/Mn2O3 nanocomposite electrode on Ni foam for efficient supercapacitor application
Venkateshalu et al. Heterogeneous 3D graphene derivatives for supercapacitors
CN113659125A (zh) 一种硅碳复合材料及其制备方法
CN107394138A (zh) 锂离子电池负极材料结构、锂离子电池及其制备方法
Zhang et al. Soft fully-printed rGO/Fe2O3-based supercapacitors for wearable electronics
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
Kumbhar et al. Mesoporous design of ultrathin NiO nanosheet-coated vertically aligned hexagonal CoS nanoplate core–shell array for flexible all-solid-state supercapacitors
Wu et al. A Review on Cutting Edge Technologies of Silicon‐Based Supercapacitors
Ho et al. Polypyrrole-coated copper@ graphene core-shell nanoparticles for supercapacitor application
CN109411758B (zh) 一种锂离子电池负极用水系导电粘合剂的制备方法
CN113140410A (zh) 一种掺氮碳纳米片/MXene复合纳米材料、其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20221111