CN115330062A - 一种社区场景下的新能源汽车有序充电服务调度优化方法 - Google Patents

一种社区场景下的新能源汽车有序充电服务调度优化方法 Download PDF

Info

Publication number
CN115330062A
CN115330062A CN202210991002.6A CN202210991002A CN115330062A CN 115330062 A CN115330062 A CN 115330062A CN 202210991002 A CN202210991002 A CN 202210991002A CN 115330062 A CN115330062 A CN 115330062A
Authority
CN
China
Prior art keywords
charging
community
power grid
period
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210991002.6A
Other languages
English (en)
Inventor
焦子豪
李梦琪
张延滋
冉伦
冷建志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Beijing Institute of Technology BIT
Beijing Technology and Business University
Original Assignee
Tsinghua University
Beijing Institute of Technology BIT
Beijing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Beijing Institute of Technology BIT, Beijing Technology and Business University filed Critical Tsinghua University
Priority to CN202210991002.6A priority Critical patent/CN115330062A/zh
Publication of CN115330062A publication Critical patent/CN115330062A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明属于新能源汽车充电技术领域,具体涉及一种社区场景下的新能源汽车有序充电服务调度优化方法,首先采集用户使用电动汽车的出行时间、充电需求等基础数据,为获取用户的充电需求,需要收集包括充电时间、次日出行距离、停留时间等信息,这些信息通过用户在智能充电桩上设置以获取,并发送给充电服务商。然后根据不同电动汽车出行时间、电量需求、车辆特性等因素,以降低社区电网负荷波动和提升用户充电经济性为目标,通过使用集中调度的方式为居民电动汽车制定日前有序充电方案。最后居民电动汽车执行充电方案。

Description

一种社区场景下的新能源汽车有序充电服务调度优化方法
技术领域
本发明属于新能源汽车充电技术领域,具体涉及一种社区场景下的新能源汽车有序充电服务调度优化方法。
背景技术
随着化石能源等非可再生能源日渐枯竭和环境问题日益凸显,新能源汽车在全球各国得到快速发展及应用。截至2020年底,我国新能源汽车保有量达492万辆,已占国内汽车总量的1.75%,其增量连续三年超过100万辆,进入加速发展新阶段[1]。逐步增加的新能源汽车保有量引发更多的充电需求,大规模的新能源汽车充电并网对我国的电网可靠性、经济运行带来了新的挑战。同时,过快增长的新能源汽车充电需求带来的供需不平衡问题也导致了局部配电网出现严重的连锁反应,如“电力负荷过载”、“电力负载频繁中断”等问题。此外,以光伏、风能为主的大部分的清洁能源供能模式,具有供给间歇性和高度不确定性,逐步增加的间歇式清洁能源供给,与无序充电中的充电需求错配,产生大量无法即时消纳的“清洁电能”,引发较大的弃电率,进而产生资源浪费问题。目前,新能源汽车充电多处于无序充电阶段,用户根据自己的时间、行程计划选择相应的充电时间和充电地点。
如在社区场景下,电动汽车充电行为多数集中在用户回到社区以后,刚好与居民用电晚高峰重迭,导致高峰时段电网负荷的峰值进一步增加。为了缓解上述问题,应在不同时期,根据电网总负载、机组运行数据,动态调节充电需求的时间和地点,实现电网的削峰填谷,即有序充电的运营模式。
发明内容
本发明的目的是提供一种社区场景下的新能源汽车有序充电服务调度优化方法,以解决现有技术中的缺点。
为实现上述发明目的,本发明所采用的技术方案是:
一种社区场景下的新能源汽车有序充电服务调度优化方法,包括以下步骤:
步骤一:电动汽车返回社区时,获取电动汽车的开始时间、结束充电时间、电池剩余容量和每日充电量需求;
步骤二:计算每一时段加上电动汽车充电负荷后的社区电网总负荷情况,得到电动汽车接入后的社区电网总负荷曲线;
步骤三:将充电时段划分峰、平、谷段,其中峰段为社区电网总负荷最大的时段,平段为总负荷平稳的时段,谷段为总负荷最小的时段;
步骤四:基于用户的充电需求,以社区电网总负荷波动最小化为目标函数,构建电动汽车充电分时电价定价模型,得到峰、平、谷各时段的电价pv、pn、pp,充电服务商根据定价模型执行分时定价策略;
步骤五:充电服务商根据充电需求和分时电价定价策略,将电动汽车集群分为不充电集群Iu、无序充电集群Id和有序充电集群Io
步骤六:充电服务商通过智能充电桩分别对三类电动汽车集群执行不充电、无序充电与有序充电决策。
进一步的,所述步骤二中,采用Kmeans聚类算法对充电时段进行峰、平、谷段划分。
进一步的,所述步骤五中,当电动汽车回到社区时的剩余电量满足次日出行需求时,计入不充电不充电集群Iu
当不满足次日出行需求时,判断电动汽车停车时段时,智能充电桩均以最大功率充电是否能达到预期荷电状态,如果能达到,则计入无序充电集群Id,否则计入有序充电集群Io
进一步的,所述步骤四中,根据电动汽车用户出行与电量需求,以电动汽车充电成本最小化和电网负荷方差最小化为优化目标,通过电动汽车充电成本、社区电网容量、充电桩功率输出能力、电网收益为约束,建立多目标优化模型,并使用线性加权进行求解,得到电动汽车的充电时间和充电功率。
进一步的,所述步骤四中,以社区电网总负荷波动最小化为目标函数采用以下公式表示:
Figure BDA0003803942770000031
其中
Figure BDA0003803942770000032
为社区电网总负荷均值,
Figure BDA0003803942770000033
zt(p)为各时段社区电网总负荷,并且
Figure BDA0003803942770000034
其中
Figure BDA0003803942770000035
表示t时段社区常规用电负荷。
进一步的,电动汽车充电成本约束采用以下公式表示:
Figure BDA0003803942770000036
电网收益约束采用用以下公式表示:
Figure BDA0003803942770000037
执行分时电价定价策略后社区电网的直接收益与减少备用容量获取的间接收益大于执行分时电价定价策略前的电费收益,在间接收益中,
Figure BDA0003803942770000045
,zmax分别表示执行分时电价前后的电网总负荷峰值,收益系数表示为:
Figure BDA0003803942770000041
其中σ为电网经济周期年金系数,J表示电网单位造价。
进一步的,当以电动汽车充电成本最小化和电网负荷方差最小化为优化目标时,分别为优化目标赋予相应的加权系数,其中电网负荷波动的权重为ω1,充电成本的权重为ω2,二者之和为1,且满足以下公式:
Figure BDA0003803942770000042
其中对于社区电网系统:
Figure BDA0003803942770000043
其中对于电动汽车用户:
Figure BDA0003803942770000044
本发明具有以下有益效果:本发明站在能源需求侧管理的研究角度,以新能源汽车有序充电服务为研究主体,通过结合数据驱动的优化方法,提升有序充电服务带来的环境、经济效益,并实现如下研究目标:针对社区内大规模私人电动汽车无序接入电网带来的电网运行安全性问题,如何有序调度电动汽车充电需求,平抑电网负荷波动。具体而言,本发明:
(1)充分考虑了充电服务商运营管理的安全性和经济性需求,提出了结合负荷聚合商、价格激励、共享经济、电动汽车充电调度等多种机制的社区私人充电桩运营管理体系,为社区私人充电桩的运营管理提供新的研究视角,促进电动汽车充电基础设施体系的完善;
(2)综合运用统计建模、非线性规划、多目标优化和线性加权等运筹学理论和方法,立足现实背景下的电动汽车出行和充电特征,充分考虑在私人充电桩自用与共享情景下各方参与者的目标需求,并基于现实运营因素刻画相应约束条件,进而建立并求解各情景下的电动汽车有序充电调度优化模型;
(3)能够平衡社区电动汽车用户的充电需求与电网运行可靠性需求,促进电动汽车与电网间有序的能量交互,为社区内大规模私人电动汽车提供可行的有序充电调度方案,促进电动汽车有序接入电网。
附图说明
图1为本发明电动汽车充电调度策略决策流程图;
图2为电动汽车无序充电模式下的社区电网总负荷;
图3为电动汽车有序充电与无序充电负荷对比;
图4为不同目标权重对电网负荷方差和用户充电成本的影响。
具体实施方式
下面将结合本发明实施例中的附图1-4,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
一种社区场景下的新能源汽车有序充电服务调度优化方法,包括以下步骤:
步骤一:电动汽车返回社区时,获取电动汽车的开始时间、结束充电时间、电池剩余容量和每日充电量需求;
步骤二:计算每一时段加上电动汽车充电负荷后的社区电网总负荷情况,得到电动汽车接入后的社区电网总负荷曲线;
步骤三:将充电时段划分峰、平、谷段,其中峰段为社区电网总负荷最大的时段,平段为总负荷平稳的时段,谷段为总负荷最小的时段;
步骤四:基于用户的充电需求,以社区电网总负荷波动最小化为目标函数,构建电动汽车充电分时电价定价模型,得到峰、平、谷各时段的电价pv、pn、pp,充电服务商根据定价模型执行分时定价策略;
步骤五:充电服务商根据充电需求和分时电价定价策略,将电动汽车集群分为不充电集群Iu、无序充电集群Id和有序充电集群Io
步骤六:充电服务商通过智能充电桩分别对三类电动汽车集群执行不充电、无序充电与有序充电决策。
本发明基于充电服务商首先采集出行时间、充电需求等电动汽车基础数据,用户的充电需求包括充电时间、次日出行距离、停留时间等信息,通过用户在智能充电桩上设置以获取,并发送给充电服务商,然后根据不同电动汽车出行时间、电量需求、车辆特性等因素,以降低社区电网负荷波动和提升用户充电经济性为目标,以集中调度的方式为居民电动汽车制定日前有序充电方案,最后居民电动汽车执行充电方案。
该调度一方面能在满足居民电动汽车充电需求的情况下,利用分时电价的电价差,帮助用户节省充电成本,提升用户充电经济性。另一方面能将社区私人电动汽车充电时间段从社区用电高峰期转移至社区用电低谷期,根据充电量总体大小、时长等因素,选择部分或全部转移,降低规模化电动汽车充电对电网的冲击,实现社区负荷的削峰填谷,平抑电网负荷波动。
进一步的,所述步骤二中,采用Kmeans聚类算法对充电时段进行峰、平、谷段划分。
如图1,为本发明电动汽车充电调度策略决策流程图,其中EV表示电动汽车,通过对三类集群分类,便于对其进行不同的充电方式,具体为:在所述步骤五中,当电动汽车回到社区时的剩余电量满足次日出行需求时,计入不充电不充电集群Iu
当不满足次日出行需求时,判断电动汽车停车时段时,智能充电桩均以最大功率充电是否能达到预期荷电状态,如果能达到,则计入无序充电集群Id,否则计入有序充电集群Io
进一步的,所述步骤四中,根据电动汽车用户出行与电量需求,以电动汽车充电成本最小化和电网负荷方差最小化为优化目标,通过电动汽车充电成本、社区电网容量、充电桩功率输出能力、电网收益为约束,建立多目标优化模型,并使用线性加权进行求解,得到电动汽车的充电时间和充电功率。
进一步的,所述步骤四中,以社区电网总负荷波动最小化为目标函数采用以下公式表示:
Figure BDA0003803942770000081
其中
Figure BDA0003803942770000082
为社区电网总负荷均值,
Figure BDA0003803942770000083
zt(p)为各时段社区电网总负荷,并且
Figure BDA0003803942770000084
其中
Figure BDA0003803942770000085
表示t时段社区常规用电负荷。
此外,各时段电价取值约束为:
pmin≤pv≤p0,
p0≤pp≤pmax,
Figure BDA0003803942770000091
Figure BDA0003803942770000092
其中p0表示各时段初始电价。
进一步的,电动汽车充电成本约束采用以下公式表示:
Figure BDA0003803942770000093
电网收益约束采用用以下公式表示:
Figure BDA0003803942770000094
执行分时电价定价策略后社区电网的直接收益与减少备用容量获取的间接收益大于执行分时电价定价策略前的电费收益,在间接收益中,
Figure BDA0003803942770000097
,zmax分别表示执行分时电价前后的电网总负荷峰值,收益系数表示为:
Figure BDA0003803942770000095
其中σ为电网经济周期年金系数,J表示电网单位造价。
此外,电动汽车有序充电模型以电动汽车充电成本最小化和电网负荷方差最小化为优化目标,分别为优化目标赋予相应的加权系数,其中,电网负荷波动的权重为ω1和车主充电成本的权重为ω2,二者之和为1(ω12=1),以便在目标函数间做出权衡。
Figure BDA0003803942770000096
对于社区电网系统:
Figure BDA0003803942770000101
其中,
Figure BDA0003803942770000102
表示电网负荷包括社区常规用电负荷,
Figure BDA0003803942770000103
表示无序充电电动汽车集群充电负荷,
Figure BDA0003803942770000104
表示有序充电电动汽车集群充电负荷,日均负荷
Figure BDA0003803942770000105
对于电动汽车用户:
Figure BDA0003803942770000106
电动汽车电池荷电状态约束,
Figure BDA0003803942770000107
表示第i辆电动汽车预期荷电状态,
Figure BDA0003803942770000108
表示其当日返回社区时的荷电状态,Wi,第i辆电动汽车的百公里耗电量,Bi表示第i辆电动汽车的电池剩余容量,
Figure BDA0003803942770000109
Figure BDA00038039427700001010
表示第i辆电动汽车预期荷电状态,
Figure BDA00038039427700001011
表示其当日返回社区时的荷电状态,Wi表示第i辆电动汽车的百公里耗电量,Bi表示第i辆电动汽车的电池剩余容量。
社区变压器功率限制:Llimit表示社区变压器功率限制,
zt(e)≤Llimit,
电动汽车充电功率约束:当未返回小区期间,电动汽车无法充电,充电功率始终为0,私人充电桩保持闲置状态:
Figure BDA00038039427700001012
下面通过三个实验例说明本发明的优点:
实验例1:电动汽车分时电价策略
模型分别在电动汽车渗透率为20%、30%、40%的情况下执行100次蒙特卡洛模拟,取平均值得到电动汽车充电负荷的社区电网总负荷,如图2所示:
在模拟的基础上,使用分时机制对电价进行划分,具体而言,电动汽车渗透率为20%时,负荷峰值、峰谷差、负荷方差分别降低3.95%、16.08%、32.48%,负荷谷值提升6.28%;电动汽车渗透率为为30%时,负荷峰值、峰谷差、负荷方差分别降低5.63%、23.73%、48.21%,负荷提升降低11.52%;电动汽车渗透率为40%时,负荷峰值、峰谷差、负荷方差分别降低8.02%、32.34%、61.14%,负荷谷值提升16.78%。可见,通过采用分时电价机制引导电动汽车的有序充电,能够显著降低社区电网的峰谷差与负荷方差,提升社区电网运行安全性。
实验例2:电动汽车有序充电调度
如图1,为了验证策略有效性,本节首先设置电动汽车渗透率为40%,即社区内具有160辆配建私人充电桩的电动汽车,同时令ω1=ω2=0.5。结果显示电动汽车总充电成本从641.37元降低至364.67元,可以发现,本发明提出的电动汽车有序充电策略能够在满足电动汽车充电需求的前提下,将在无序充电模式下发生于电价高峰时段的充电负荷转移至电价低谷时段,电动汽车无序充电与有序充电模式下的充电时间与充电总功率如图3所示,基于此,可得出如下结论:电动汽车有序充电策略能够降低电动汽车用户的充电成本,从而降低电动汽车的使用成本。
同时,计算各时段电动汽车有序充电负荷之和,然后与社区常规用电负荷、电动汽车无序充电负荷累加,得到社区电网总负荷。如图3所示。根据对比结果,相较于电动汽车无序充电模式,执行有序充电策略后电网负荷峰值降低12.65%,负荷谷值提升了21.02%,峰谷差降低了47.93%,负荷方差降低了65.92%;值得注意的是,相较于常规用电负荷,执行有序充电策略后电网负荷峰谷差也降低了28.96%,负荷方差降低了49.54%。由此可见,电动汽车采取有序充电模式不仅能够有效缓解电动汽车无序充电对电网造成的负荷冲击,显著降低负荷峰谷差与负荷方差,起到削峰填谷与平抑负荷波动的效果,还能作为可调度的充电负荷,在负荷聚合商的作用下,参与电网平抑负荷波动的需求响应过程。
此外,虽然执行电动汽车有序充电策略后电网直接收益从641.37元降低至364.67元,但此时电网负荷峰值降低了128.98kW,根据第3章介绍的电网间接收益计算方式可求出此时电网的间接收益为386.94元,总收益为751.61元。可见,有序充电策略同样能够增加电网运行的经济性。总结来说,电动汽车有序充电策略能够有效实现社区电网的削峰填谷,降低电动汽车接入电网带来的负荷波动,增强电网运行的安全性,并提高电网运行的经济效益。
实验例3:不同目标权重对模型的影响
分别赋予电网负荷方差最小化f1与用户充电成本最小化f2两个目标函数不同的权重系数,并将结果绘制为图4,以表示电网负荷波动最小化的权重系数ω1分别取0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1时对两个目标函数取值的影响。可以看出,随着电网负荷方差最小化权重系数ω1的增加,电网负荷方差呈降低趋势,取值范围分布在7700-7750kW2间,用户充电成本呈上升趋势,取值范围分布在362-374元间,但二者整体改变程度均不大。
当ω1=0,即完全不考虑电网负荷方差时,此时电网负荷方差最大(7746.88kW2),用户充电成本最小(362.74元),但电网负荷方差相较于电动汽车无序充电时的负荷方差(14091.12kW2),已有较大幅度的降低,这是因为电动汽车充电电价较低的时段本就是社区居民用电低谷期,仅以用户充电成本最小化作为目标函数,也能够实现电网负荷方差的降低。同理,当ω1=1,此时用户充电成本最大(373.43元),电网负荷方差最(7028.12kW2),但用户充电成本相较于电动汽车无序充电时的充电成本(641.37元),也有较大幅度的降低,这是因为社区居民用电低谷期,本就是电动汽车充电电价较低的时段,仅以电网负荷方差最小化作为目标函数,也能够实现用户充电成本的降低。
接着,随着ω1从0增加至0.1,电网负荷方差便从7746.88kW2降低至7185.06kW2,但此时用户充电成本相较于仅考虑用户充电成本时并未相应增加,说明仅将电动汽车的充电时间段在相同电价时段内转移便能起到降低电网负荷方差的效果,也表明电动汽车有序充电优化模型采用多目标规划的必要性。然后,当ω1取值在0.1-0.4范围内,电网负荷方差与用户充电成本变动程度均不大。而当ω1=0.5时,即电网负荷方差最小化与用户充电成本最小化两个目标函数权重相同时,电网负荷方差继续降低至7110.30kW2,用户充电成本增加至364.67元。随后,当ω1取值从0.8变化为0.9时,用户充电成本增长幅度最大,达到373.05元。根据上文分析,可得出如下电动汽车有序充电调度优化模型相关结论:仅考虑电网负荷方差最小化或用户充电成本最小化的单目标优化模型能够实现电网负荷方差与用户充电成本的共同降低,但同时以二者作为目标函数,并合理设置目标权重,能够更好的实现电网运行安全性与用户充电经济性诉求间的权衡。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形、变型、修改、替换,均应落入本发明权利要求书确定的保护范围内。

Claims (7)

1.一种社区场景下的新能源汽车有序充电服务调度优化方法,其特征在于,包括以下步骤:
步骤一:电动汽车返回社区时,获取电动汽车的开始时间、结束充电时间、电池剩余容量和每日充电量需求;
步骤二:计算每一时段加上电动汽车充电负荷后的社区电网总负荷情况,得到电动汽车接入后的社区电网总负荷曲线;
步骤三:将充电时段划分峰、平、谷段,其中峰段为社区电网总负荷最大的时段,平段为总负荷平稳的时段,谷段为总负荷最小的时段;
步骤四:基于用户的充电需求,以社区电网总负荷波动最小化为目标函数,构建电动汽车充电分时电价定价模型,得到峰、平、谷各时段的电价pv、pn、pp,充电服务商根据定价模型执行分时定价策略;
步骤五:充电服务商根据充电需求和分时电价定价策略,将电动汽车集群分为不充电集群Iu、无序充电集群Id和有序充电集群Io
步骤六:充电服务商通过智能充电桩分别对三类电动汽车集群执行不充电、无序充电与有序充电决策。
2.根据权利要求1所述的一种社区场景下的新能源汽车有序充电服务调度优化方法,其特征在于:所述步骤二中,采用Kmeans聚类算法对充电时段进行峰、平、谷段划分。
3.根据权利要求1所述的一种社区场景下的新能源汽车有序充电服务调度优化方法,其特征在于:所述步骤五中,当电动汽车回到社区时的剩余电量满足次日出行需求时,计入不充电不充电集群Iu
当不满足次日出行需求时,判断电动汽车停车时段时,智能充电桩均以最大功率充电是否能达到预期荷电状态,如果能达到,则计入无序充电集群Id,否则计入有序充电集群Io
4.根据权利要求1所述的一种社区场景下的新能源汽车有序充电服务调度优化方法,其特征在于:所述步骤四中,根据电动汽车用户出行与电量需求,以电动汽车充电成本最小化和电网负荷方差最小化为优化目标,通过电动汽车充电成本、社区电网容量、充电桩功率输出能力、电网收益为约束,建立多目标优化模型,并使用线性加权进行求解,得到电动汽车的充电时间和充电功率。
5.根据权利要求4所述的一种社区场景下的新能源汽车有序充电服务调度优化方法,其特征在于:所述步骤四中,以社区电网总负荷波动最小化为目标函数采用以下公式表示:
Figure FDA0003803942760000021
其中
Figure FDA0003803942760000022
为社区电网总负荷均值,
Figure FDA0003803942760000023
zt(p)为各时段社区电网总负荷,并且
Figure FDA0003803942760000024
其中
Figure FDA0003803942760000025
表示t时段社区常规用电负荷。
6.根据权利要求4所述的一种社区场景下的新能源汽车有序充电服务调度优化方法,其特征在于:
电动汽车充电成本约束采用以下公式表示:
Figure FDA0003803942760000026
电网收益约束采用用以下公式表示:
Figure FDA0003803942760000027
执行分时电价定价策略后社区电网的直接收益与减少备用容量获取的间接收益大于执行分时电价定价策略前的电费收益,在间接收益中,
Figure FDA0003803942760000031
zmax分别表示执行分时电价前后的电网总负荷峰值,收益系数表示为:
Figure FDA0003803942760000032
其中σ为电网经济周期年金系数,J表示电网单位造价。
7.根据权利要求4所述的一种社区场景下的新能源汽车有序充电服务调度优化方法,其特征在于:当以电动汽车充电成本最小化和电网负荷方差最小化为优化目标时,分别为优化目标赋予相应的加权系数,其中电网负荷波动的权重为ω1,充电成本的权重为ω2,二者之和为1,且满足以下公式:
Figure FDA0003803942760000033
其中对于社区电网系统:
Figure FDA0003803942760000034
其中对于电动汽车用户:
Figure FDA0003803942760000035
CN202210991002.6A 2022-08-18 2022-08-18 一种社区场景下的新能源汽车有序充电服务调度优化方法 Pending CN115330062A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210991002.6A CN115330062A (zh) 2022-08-18 2022-08-18 一种社区场景下的新能源汽车有序充电服务调度优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210991002.6A CN115330062A (zh) 2022-08-18 2022-08-18 一种社区场景下的新能源汽车有序充电服务调度优化方法

Publications (1)

Publication Number Publication Date
CN115330062A true CN115330062A (zh) 2022-11-11

Family

ID=83925348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210991002.6A Pending CN115330062A (zh) 2022-08-18 2022-08-18 一种社区场景下的新能源汽车有序充电服务调度优化方法

Country Status (1)

Country Link
CN (1) CN115330062A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826814A (zh) * 2023-08-28 2023-09-29 深圳海辰储能控制技术有限公司 基于电池簇的电能管理方法、能源管理器及相关介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116826814A (zh) * 2023-08-28 2023-09-29 深圳海辰储能控制技术有限公司 基于电池簇的电能管理方法、能源管理器及相关介质
CN116826814B (zh) * 2023-08-28 2023-12-22 深圳海辰储能控制技术有限公司 基于电池簇的电能管理方法、能源管理器及相关介质

Similar Documents

Publication Publication Date Title
CN107169273B (zh) 计及延时和v2g充电模式的电动汽车充电功率预测方法
CN105024432B (zh) 一种基于虚拟电价的电动汽车充放电优化调度方法
CN103679299B (zh) 兼顾车主满意度的电动汽车最优峰谷分时电价定价方法
Erol-Kantarci et al. Prediction-based charging of PHEVs from the smart grid with dynamic pricing
Gan et al. A probabilistic evaluation method of household EVs dispatching potential considering users’ multiple travel needs
CN103269107B (zh) 一种电动汽车充换电站充换电控制方法
CN108596667B (zh) 一种基于车联网的电动汽车实时充电电价计算方法
CN111310966A (zh) 含电动汽车充电站的微电网选址及优化配置方法
CN103241130A (zh) 一种电动公交车充换电站的能量管理方法及系统
CN108573317B (zh) 一种换电站充放电策略优化控制的方法
CN109948823B (zh) 一种光储充电塔自适应鲁棒日前优化调度方法
CN112183882B (zh) 一种基于电动汽车快充需求的智慧充电站充电优化方法
CN101901945A (zh) 一种插电式混合动力车的集中智能调度充电方法
Guner et al. Impact of car arrival/departure patterns on EV parking lot energy storage capacity
Yu et al. Quantifying energy flexibility of commuter plug-in electric vehicles within a residence–office coupling virtual microgrid. Part II: Case study setup for scenario and sensitivity analysis
CN109910670B (zh) 一种配电网电动汽车时空充放电电价制定方法
CN109672199B (zh) 一种基于能量平衡的电动汽车削峰填谷能力估计方法
Yi et al. Power demand side response potential and operating model based on EV mobile energy storage
CN116632896A (zh) 一种多光储充电站的电动汽车充放电协同调度方法及系统
CN115330062A (zh) 一种社区场景下的新能源汽车有序充电服务调度优化方法
CN110861508B (zh) 居民区直流充电机共享充电控制方法、系统及存储介质
Hai-Ying et al. Optimal control strategy of vehicle-to-grid for modifying the load curve based on discrete particle swarm algorithm
CN110334903B (zh) 基于背包算法的电动汽车充电调度方法
CN116811628A (zh) 一种含电动汽车充电的综合能源系统及有序充电方法
CN116054286A (zh) 一种考虑多元弹性资源的居民台区容量优化配置方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination