CN115329203A - Content recommendation method and apparatus - Google Patents
Content recommendation method and apparatus Download PDFInfo
- Publication number
- CN115329203A CN115329203A CN202211071952.3A CN202211071952A CN115329203A CN 115329203 A CN115329203 A CN 115329203A CN 202211071952 A CN202211071952 A CN 202211071952A CN 115329203 A CN115329203 A CN 115329203A
- Authority
- CN
- China
- Prior art keywords
- user
- information
- identity information
- content
- content recommendation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000004891 communication Methods 0.000 claims description 71
- 230000004044 response Effects 0.000 claims description 2
- 230000000295 complement effect Effects 0.000 abstract description 4
- 238000012217 deletion Methods 0.000 abstract 1
- 230000037430 deletion Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本申请涉及大数据领域,特别是涉及一种内容推荐方法及装置。The present application relates to the field of big data, in particular to a content recommendation method and device.
背景技术Background technique
在产品内容推荐方面,对存量客户进行准确和精细化的运营,是客户管理的重要阶段之一。传统的产品内容推荐方式,是通过直接电销,代理人接触等简单粗暴的形式进行触达,这种方式会造成资源浪费、成本偏高、客户信息分散等不利影响。In terms of product content recommendation, accurate and refined operation of existing customers is one of the important stages of customer management. The traditional method of product content recommendation is to reach out through simple and rude forms such as direct telemarketing and agent contact. This method will cause waste of resources, high costs, and scattered customer information.
并且目前的内容推荐方式是采用内容推荐平台的内部信息对用户进行内容推荐,由于纯利用内容推荐平台的内部信息对客户进行内容推荐,拥有的客户信息会存在不明确、缺失率高的现象,导致其有内容推荐成功率不高的缺点。And the current content recommendation method is to use the internal information of the content recommendation platform to recommend content to users. Since the internal information of the content recommendation platform is purely used to recommend content to customers, the customer information will be unclear and have a high missing rate. As a result, it has the disadvantage of low content recommendation success rate.
因此,如何提高内容推荐的成功率是本领域技术人员关注的重点问题。Therefore, how to improve the success rate of content recommendation is a key issue concerned by those skilled in the art.
发明内容Contents of the invention
基于上述问题,本申请提供了一种内容推荐方法及装置,以提高内容推荐的成功率。本申请实施例公开了如下技术方案:Based on the above problems, the present application provides a content recommendation method and device to improve the success rate of content recommendation. The embodiment of the application discloses the following technical solutions:
第一方面,本申请公开了一种内容推荐方法,包括:In the first aspect, the present application discloses a content recommendation method, including:
获取内容推荐平台内部提供的第一用户身份信息和除所述内容推荐平台之外的外部平台提供的第二用户身份信息,所述第一用户身份信息和所述第二用户身份信息包括针对同一用户的不同身份信息;Acquiring first user identity information provided inside the content recommendation platform and second user identity information provided by external platforms other than the content recommendation platform, where the first user identity information and the second user identity information include Different identity information of users;
根据所述第一用户身份信息和所述第二用户身份信息确定第一目标用户;determining a first target user according to the first user identity information and the second user identity information;
对所述第一目标用户推荐所述内容推荐平台对应的内容。Content corresponding to the content recommendation platform is recommended to the first target user.
可选的,所述根据所述第一用户身份信息和所述第二用户身份信息确定第一目标用户,包括:Optionally, the determining the first target user according to the first user identity information and the second user identity information includes:
根据所述第一用户身份信息和所述第二用户身份信息生成不同资产等级对应的用户集合和不同年龄段对应的用户集合;generating user sets corresponding to different asset classes and user sets corresponding to different age groups according to the first user identity information and the second user identity information;
根据所述不同资产等级对应的用户集合和所述不同年龄段对应的用户集合确定所述第一目标用户。The first target user is determined according to the user sets corresponding to the different asset levels and the user sets corresponding to the different age groups.
可选的,还包括:Optionally, also include:
获取所述内容推荐平台提供的用户购买内容信息和用户电话沟通信息;Obtain the user's purchased content information and the user's telephone communication information provided by the content recommendation platform;
基于所述用户购买内容信息和所述用户电话沟通信息确定所需特征数据信息对应的特征数据类型;determining the feature data type corresponding to the required feature data information based on the user purchase content information and the user telephone communication information;
获取所述外部平台提供的与所述特征数据类型所对应的用户特征数据信息。Acquiring user feature data information corresponding to the feature data type provided by the external platform.
可选的,还包括:Optionally, also include:
获取所述用户特征数据信息,根据所述用户购买内容信息确定所述用户特征数据信息对应的样本购买标签,所述样本购买标签用于标识所述用户特征数据信息所对应的用户是否购买所述内容推荐平台所推荐的内容;Acquire the user characteristic data information, and determine a sample purchase tag corresponding to the user characteristic data information according to the user purchase content information, and the sample purchase tag is used to identify whether the user corresponding to the user characteristic data information purchases the Content recommended by the content recommendation platform;
将所述用户特征数据信息输入到初始用户购买率模型中,获得待定购买标签;Input the user characteristic data information into the initial user purchase rate model to obtain pending purchase tags;
根据所述样本购买标签和所述待定购买标签之间的差异,调整所述初始用户购买率模型,获得用户购买率模型。According to the difference between the sample purchase tags and the pending purchase tags, the initial user purchase rate model is adjusted to obtain the user purchase rate model.
可选的,还包括:Optionally, also include:
获取用户特征数据信息,根据所述用户电话沟通信息确定所述用户特征数据信息对应的样本电话沟通标签,所述样本电话沟通标签用于标识所述用户特征数据信息所对应的用户是否接通所述内容推荐平台所拨打的电话;Obtain user characteristic data information, and determine a sample telephone communication label corresponding to the user characteristic data information according to the user telephone communication information, and the sample telephone communication label is used to identify whether the user corresponding to the user characteristic data information is connected to the The phone number dialed by the content recommendation platform;
将所述用户特征数据信息输入到初始用户电话沟通率模型中,获得待定电话沟通标签;Inputting the user characteristic data information into the initial user telephone communication rate model to obtain a pending telephone communication label;
根据所述样本电话沟通标签和所述待定电话沟通标签之间的差异,调整所述初始用户电话沟通率模型,获得用户电话沟通率模型。According to the difference between the sample telephone communication label and the pending telephone communication label, the initial user telephone communication rate model is adjusted to obtain the user telephone communication rate model.
可选的,还包括:Optionally, also include:
获取待分析用户的目标特征数据信息;Obtain the target characteristic data information of the user to be analyzed;
将所述目标特征数据信息输入到所述用户购买率模型中,生成所述待分析用户购买所述内容推荐平台所推荐内容的概率;Input the target feature data information into the user purchase rate model to generate the probability that the user to be analyzed purchases the content recommended by the content recommendation platform;
将所述目标特征数据信息输入到所述用户电话沟通率模型中,生成所述待分析用户接通所述内容推荐平台所拨打电话的概率。The target feature data information is input into the user telephone communication rate model to generate the probability that the user to be analyzed connects to the call made by the content recommendation platform.
可选的,还包括:Optionally, also include:
响应于所述待分析用户购买所述内容推荐平台所推荐内容的概率和所述待分析用户接通所述内容推荐平台所拨打电话的概率均大于第一阈值,将所述待分析用户确定为第二目标用户;In response to the probability that the user to be analyzed purchases the content recommended by the content recommendation platform and the probability that the user to be analyzed is connected to the call made by the content recommendation platform are both greater than a first threshold, the user to be analyzed is determined to be Second target user;
对所述第二目标用户推荐所述内容推荐平台对应的内容。Content corresponding to the content recommendation platform is recommended to the second target user.
第二方面,本申请公开了一种内容推荐装置,包括:In a second aspect, the present application discloses a content recommendation device, including:
获取模块,用于获取内容推荐平台内部提供的第一用户身份信息和除所述内容推荐平台之外的外部平台提供的第二用户身份信息,所述第一用户身份信息和所述第二用户身份信息包括针对同一用户的不同身份信息;An acquisition module, configured to acquire the first user identity information provided inside the content recommendation platform and the second user identity information provided by an external platform other than the content recommendation platform, the first user identity information and the second user identity information Identity information includes different identity information for the same user;
确定模块,用于根据所述第一用户身份信息和所述第二用户身份信息确定第一目标用户;A determining module, configured to determine a first target user according to the first user identity information and the second user identity information;
推荐模块,用于对所述第一目标用户推荐所述内容推荐平台对应的内容。A recommendation module, configured to recommend content corresponding to the content recommendation platform to the first target user.
可选的,所述确定模块,包括:Optionally, the determination module includes:
生成模块,用于根据所述第一用户身份信息和所述第二用户身份信息生成不同资产等级对应的用户集合和不同年龄段对应的用户集合;A generating module, configured to generate user sets corresponding to different asset classes and user sets corresponding to different age groups according to the first user identity information and the second user identity information;
第一确定子模块,用于根据所述不同资产等级对应的用户集合和所述不同年龄段对应的用户集合确定所述第一目标用户。The first determining submodule is configured to determine the first target user according to the user sets corresponding to the different asset classes and the user sets corresponding to the different age groups.
可选的,还包括:Optionally, also include:
第一获取子模块,用于获取所述内容推荐平台提供的用户购买内容信息和用户电话沟通信息;The first obtaining sub-module is used to obtain the user's purchased content information and the user's telephone communication information provided by the content recommendation platform;
第二确定子模块,用于基于所述用户购买内容信息和所述用户电话沟通信息确定所需特征数据信息对应的特征数据类型;The second determining submodule is used to determine the characteristic data type corresponding to the required characteristic data information based on the user purchase content information and the user telephone communication information;
第二获取子模块,用于获取所述外部平台提供的与所述特征数据类型所对应的用户特征数据信息。The second obtaining sub-module is used to obtain user characteristic data information corresponding to the characteristic data type provided by the external platform.
可选的,还包括:Optionally, also include:
第三获取子模块,用于获取所述用户特征数据信息,根据所述用户购买内容信息确定所述用户特征数据信息对应的样本购买标签,所述样本购买标签用于标识所述用户特征数据信息所对应的用户是否购买所述内容推荐平台所推荐的内容;The third acquisition sub-module is used to acquire the user characteristic data information, determine the sample purchase tag corresponding to the user characteristic data information according to the user purchase content information, and the sample purchase tag is used to identify the user characteristic data information Whether the corresponding user purchases the content recommended by the content recommendation platform;
第一获得模块,用于将所述用户特征数据信息输入到初始用户购买率模型中,获得待定购买标签;The first obtaining module is used to input the user characteristic data information into the initial user purchase rate model to obtain pending purchase tags;
第一调整模块,用于根据所述样本购买标签和所述待定购买标签之间的差异,调整所述初始用户购买率模型,获得用户购买率模型。The first adjustment module is configured to adjust the initial user purchase rate model according to the difference between the sample purchase tags and the pending purchase tags to obtain the user purchase rate model.
可选的,还包括:Optionally, also include:
第四获取子模块,用于获取用户特征数据信息,根据所述用户电话沟通信息确定所述用户特征数据信息对应的样本电话沟通标签,所述样本电话沟通标签用于标识所述用户特征数据信息所对应的用户是否接通所述内容推荐平台所拨打的电话;The fourth acquisition sub-module is used to acquire user characteristic data information, and determine a sample telephone communication label corresponding to the user characteristic data information according to the user telephone communication information, and the sample telephone communication label is used to identify the user characteristic data information Whether the corresponding user connects to the call made by the content recommendation platform;
第二获得模块,用于将所述用户特征数据信息输入到初始用户电话沟通率模型中,获得待定电话沟通标签;The second obtaining module is used to input the user characteristic data information into the initial user telephone communication rate model, and obtain the pending telephone communication label;
第二调整模块,用于根据所述样本电话沟通标签和所述待定电话沟通标签之间的差异,调整所述初始用户电话沟通率模型,获得用户电话沟通率模型。The second adjustment module is configured to adjust the initial user telephone communication rate model according to the difference between the sample telephone communication label and the pending telephone communication label, so as to obtain the user telephone communication rate model.
可选的,还包括:Optionally, also include:
第五获取子模块,用于获取待分析用户的目标特征数据信息;The fifth acquisition sub-module is used to acquire the target characteristic data information of the user to be analyzed;
第一生成模块,用于将所述目标特征数据信息输入到所述用户购买率模型中,生成所述待分析用户购买所述内容推荐平台所推荐内容的概率;The first generation module is used to input the target feature data information into the user purchase rate model to generate the probability that the user to be analyzed purchases the content recommended by the content recommendation platform;
第二生成模块,用于将所述目标特征数据信息输入到所述用户电话沟通率模型中,生成所述待分析用户接通所述内容推荐平台所拨打电话的概率。The second generating module is configured to input the target feature data information into the user telephone communication rate model, and generate the probability that the user to be analyzed connects to the call made by the content recommendation platform.
可选的,还包括:Optionally, also include:
第三确定子模块,用于响应于所述待分析用户购买所述内容推荐平台所推荐内容的概率和所述待分析用户接通所述内容推荐平台所拨打电话的概率均大于第一阈值,将所述待分析用户确定为第二目标用户;The third determination submodule is configured to respond to the probability that the user to be analyzed purchases the content recommended by the content recommendation platform and the probability that the user to be analyzed connects to the call made by the content recommendation platform are greater than a first threshold, determining the user to be analyzed as a second target user;
第一子推荐模块,用于对所述第二目标用户推荐所述内容推荐平台对应的内容。The first sub-recommendation module is configured to recommend content corresponding to the content recommendation platform to the second target user.
相较于现有技术,本申请具有以下有益效果:Compared with the prior art, the present application has the following beneficial effects:
本申请首先获取内容推荐平台内部提供的第一用户身份信息和除所述内容推荐平台之外的外部平台提供的第二用户身份信息,所述第一用户身份信息和所述第二用户身份信息包括针对同一用户的不同身份信息,然后根据所述第一用户身份信息和所述第二用户身份信息确定目标用户,最后对所述目标用户推荐所述内容推荐平台对应的内容。如此,本申请根据内部平台提供的信息和外部平台提供的信息确定出目标用户,然后对目标用户进行内容推荐,其中,内部信息和外部信息之间互补,拥有的用户信息不会存在不明确、缺失率高的现象,从而提高了内容推荐的成功率。The application first obtains the first user identity information provided by the content recommendation platform and the second user identity information provided by an external platform other than the content recommendation platform, the first user identity information and the second user identity information Including different identity information for the same user, then determining a target user according to the first user identity information and the second user identity information, and finally recommending content corresponding to the content recommendation platform to the target user. In this way, the application determines the target users based on the information provided by the internal platform and the information provided by the external platform, and then recommends content to the target users. The internal information and external information complement each other, and the user information owned will not be unclear, The phenomenon of high missing rate improves the success rate of content recommendation.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present application. Those skilled in the art can also obtain other drawings based on these drawings without any creative effort.
图1为本申请实施例提供的一种内容推荐方法的流程图;FIG. 1 is a flow chart of a content recommendation method provided in an embodiment of the present application;
图2为本申请实施例提供的另一种内容推荐方法的流程图;FIG. 2 is a flow chart of another content recommendation method provided by the embodiment of the present application;
图3为本申请实施例提供的一种内容推荐装置的结构示意图。FIG. 3 is a schematic structural diagram of a content recommendation device provided by an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本申请保护范围。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only some of the embodiments of the present application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of this application.
需要说明的是,本申请提供的一种内容推荐方法及装置,用于大数据领域,上述仅为示例,并不对本申请提供的方法及装置名称的应用领域进行限定。It should be noted that the content recommendation method and device provided in this application are used in the field of big data. The above are examples only, and do not limit the application fields of the method and device names provided in this application.
正如前文描述,目前的内容推荐方式是采用内容推荐平台的内部信息对用户进行内容推荐,由于纯利用内容推荐平台的内部信息对客户进行内容推荐,拥有的客户信息会存在不明确、缺失率高的现象,导致其有内容推荐成功率不高的缺点。由此,如何提高内容推荐的成功率是本领域技术人员关注的重点问题。As described above, the current content recommendation method is to use the internal information of the content recommendation platform to recommend content to users. Since the internal information of the content recommendation platform is purely used to recommend content to customers, the customer information will be unclear and have a high missing rate. phenomenon, leading to the disadvantage of low content recommendation success rate. Therefore, how to improve the success rate of content recommendation is a key issue concerned by those skilled in the art.
所以发明人提出本申请的技术方案,本申请首先获取内容推荐平台内部提供的第一用户身份信息和除所述内容推荐平台之外的外部平台提供的第二用户身份信息,所述第一用户身份信息和所述第二用户身份信息包括针对同一用户的不同身份信息,然后根据所述第一用户身份信息和所述第二用户身份信息确定目标用户,最后对所述目标用户推荐所述内容推荐平台对应的内容。如此,本申请根据内部平台提供的信息和外部平台提供的信息确定出目标用户,然后对目标用户进行内容推荐,其中,内部信息和外部信息之间互补,拥有的用户信息不会存在不明确、缺失率高的现象,从而提高了内容推荐的成功率。Therefore, the inventor proposes the technical solution of this application. This application first obtains the first user identity information provided inside the content recommendation platform and the second user identity information provided by an external platform other than the content recommendation platform. The first user The identity information and the second user identity information include different identity information for the same user, then determine the target user according to the first user identity information and the second user identity information, and finally recommend the content to the target user Recommend content corresponding to the platform. In this way, the application determines the target users based on the information provided by the internal platform and the information provided by the external platform, and then recommends content to the target users. The internal information and external information complement each other, and the user information owned will not be unclear, The phenomenon of high missing rate improves the success rate of content recommendation.
本申请实施例提供的方法可以由终端设备上的软件执行。所述终端设备例如可以是手机、平板电脑、计算机等设备。所述软件例如可以是系统软件。The method provided in the embodiment of the present application may be executed by software on the terminal device. The terminal device may be, for example, a mobile phone, a tablet computer, a computer and other devices. The software can be, for example, system software.
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。In order to enable those skilled in the art to better understand the solution of the present application, the present application will be further described in detail below in conjunction with the drawings and specific implementation methods.
方法实施例method embodiment
以下通过一个实施例,对本申请提供的一种内容推荐方法进行说明。A method for recommending content provided by the present application will be described below through an embodiment.
参见图1,该图为本申请实施例提供的一种内容推荐方法的流程图,如图1所示,该方法可以包括:Referring to FIG. 1, this figure is a flow chart of a content recommendation method provided in the embodiment of the present application. As shown in FIG. 1, the method may include:
S101:获取内容推荐平台内部提供的第一用户身份信息和除所述内容推荐平台之外的外部平台提供的第二用户身份信息。S101: Obtain first user identity information provided by a content recommendation platform and second user identity information provided by an external platform other than the content recommendation platform.
在本步骤中,第一用户身份信息和第二用户身份信息包括针对同一用户的不同身份信息,也就是说第一用户身份信息和第二用户身份信息之间具有互补性,使同一用户的身份信息尽可能的完整。其中,第一身份用户信息是内部推荐平台所提供的,第二用户身份信息是内容推荐平台之外的外部平台提供的。还需要进行说明的是,在获取第一用户身份信息和第二用户身份信息后,进行数据清洗操作。In this step, the first user identity information and the second user identity information include different identity information for the same user, that is to say, there is complementarity between the first user identity information and the second user identity information, so that the identity of the same user The information is as complete as possible. Wherein, the first identity user information is provided by the internal recommendation platform, and the second user identity information is provided by an external platform other than the content recommendation platform. It should also be noted that after the first user identity information and the second user identity information are acquired, the data cleaning operation is performed.
S102:根据所述第一用户身份信息和所述第二用户身份信息确定第一目标用户。S102: Determine a first target user according to the first user identity information and the second user identity information.
在本步骤中,第一用户身份信息包括用户基本信息(如年龄、是否有小孩、是否结婚以及长辈等信息),第二用户身份信息也包括用户基本信息(如年龄、是否有小孩、是否结婚以及长辈等信息),然后将第一用户身份信息和第二用户身份信息结合起来,获得最终用户身份信息,最终用户身份信息用于确定目标用户,从而丰富了用户画像,进而提高了内容推荐的成功率。In this step, the first user identity information includes user basic information (such as age, whether there are children, whether married and elders, etc.), and the second user identity information also includes user basic information (such as age, whether there are children, whether married or not) and elders and other information), and then combine the first user identity information and the second user identity information to obtain the end user identity information, which is used to determine the target user, thereby enriching the user portrait and improving the content recommendation Success rate.
进一步的,根据第一用户身份信息和第二用户身份信息生成不同资产等级对应的用户集合和不同年龄段对应的用户集合,然后根据不同资产等级对应的用户集合和不同年龄段对应的用户集合确定目标用户。可以理解的是,将第一用户身份信息所对应的资产等级和第二用户身份信息所对应的资产等级作比较,选取最大的资产等级作为用户资产等级;当第一用户身份信息所对应的年龄信息缺失,选取第二用户身份信息所对应的年龄信息进行补充,获得年龄信息。Further, user sets corresponding to different asset levels and user sets corresponding to different age groups are generated according to the first user identity information and the second user identity information, and then determined according to the user sets corresponding to different asset levels and the user sets corresponding to different age groups Target users. It can be understood that the asset level corresponding to the first user identity information is compared with the asset level corresponding to the second user identity information, and the largest asset level is selected as the user asset level; when the age corresponding to the first user identity information If the information is missing, the age information corresponding to the second user identity information is selected to be supplemented to obtain the age information.
S103:对所述第一目标用户推荐所述内容推荐平台对应的内容。S103: Recommend content corresponding to the content recommendation platform to the first target user.
在本步骤中,根据确定出的目标用户推荐内容推荐平台对应的内容,由于目标用户是根据内部信息和外部信息确定出来的,用户信息的完整性高,内容推荐的成功率也会随之提高。In this step, recommend the content corresponding to the platform based on the determined target user recommendation content. Since the target user is determined based on internal and external information, the integrity of user information is high, and the success rate of content recommendation will also increase accordingly. .
可见,本可选方案主要是说明如何对确定出目标用户,并对其进行内容推荐。具体的,在本可选方案中,本申请首先获取内容推荐平台内部提供的第一用户身份信息和除所述内容推荐平台之外的外部平台提供的第二用户身份信息,所述第一用户身份信息和所述第二用户身份信息包括针对同一用户的不同身份信息,然后根据所述第一用户身份信息和所述第二用户身份信息确定目标用户,最后对所述目标用户推荐所述内容推荐平台对应的内容。It can be seen that this optional solution mainly explains how to determine target users and recommend content to them. Specifically, in this optional solution, the application first obtains the first user identity information provided inside the content recommendation platform and the second user identity information provided by an external platform other than the content recommendation platform, and the first user The identity information and the second user identity information include different identity information for the same user, then determine the target user according to the first user identity information and the second user identity information, and finally recommend the content to the target user Recommend content corresponding to the platform.
综上,在本实施例中根据内部平台提供的信息和外部平台提供的信息确定出目标用户,然后对目标用户进行内容推荐,其中,内部信息和外部信息之间互补,拥有的用户信息不会存在不明确、缺失率高的现象,从而提高了内容推荐的成功率。To sum up, in this embodiment, the target user is determined according to the information provided by the internal platform and the information provided by the external platform, and then content recommendations are made to the target user. The internal information and the external information complement each other, and the owned user information will not There is ambiguity and high missing rate, which improves the success rate of content recommendation.
参见图2,该图为本申请实施例提供的另一种内容推荐方法的流程图,如图2所示,该方法可以包括:Referring to FIG. 2, this figure is a flow chart of another content recommendation method provided in the embodiment of the present application. As shown in FIG. 2, the method may include:
S201:获取所述内容推荐平台提供的用户购买内容信息和用户电话沟通信息。S201: Obtain the user's purchased content information and the user's telephone communication information provided by the content recommendation platform.
在本步骤中,还获取内容推荐平台提供的用户购买内容信息和用户电话沟通信息,用户购买内容信息包括用户已购买内容信息和用户未购买内容信息,用户电话沟通信息包括用户接通电话信息和电话未接通电话信息。In this step, the user purchase content information and user telephone communication information provided by the content recommendation platform are also obtained. The user purchase content information includes user purchased content information and user unpurchased content information, and user telephone communication information includes user connected phone information and The phone is not connected to the call information.
S202:基于所述用户购买内容信息和所述用户电话沟通信息确定所需特征数据信息对应的特征数据类型。S202: Determine the feature data type corresponding to the required feature data information based on the user purchase content information and the user telephone communication information.
在本步骤中,根据用户购买内容信息确定所需特征数据信息对应的特征数据类型,比如,用户是否将用户所对应的手机号接收到的推荐内容屏蔽;根据用户电话沟通信息确定所需特征数据信息对应的特征数据类型,比如,用户所对应的手机号活跃的时间段。In this step, determine the feature data type corresponding to the required feature data information according to the user's purchased content information, for example, whether the user blocks the recommended content received by the mobile phone number corresponding to the user; determine the required feature data according to the user's phone communication information The characteristic data type corresponding to the information, for example, the active time period of the mobile phone number corresponding to the user.
S203:获取所述外部平台提供的与所述特征数据类型所对应的用户特征数据信息。S203: Obtain user feature data information corresponding to the feature data type provided by the external platform.
在本步骤中,在外部平台获取与特征数据类型所对应的用户特征数据信息,用户特征数据信息包括用户所对应的手机号活跃的时间段和用户所对应的手机号屏蔽的内容。如此,内容推荐平台基于活跃的时间段知道在哪些时间段给用户打电话容易被接通,内容推荐平台基于屏蔽的内容知道给用户推荐哪些内容不容易被拒绝。In this step, the user characteristic data information corresponding to the characteristic data type is acquired on the external platform, and the user characteristic data information includes the active time period of the mobile phone number corresponding to the user and the content blocked by the mobile phone number corresponding to the user. In this way, based on the active time period, the content recommendation platform knows in which time period calls to the user are easy to be connected, and the content recommendation platform knows which content to recommend to the user is not easy to be rejected based on the blocked content.
作为一种可实现的实施方式,根据用户购买内容信息、用户电话沟通信息和用户特征数据信息训练模型,模型可以为secureboost模型,在此不做具体限定。其中,外部平台和内部平台之间会搭建隐私通道来获取用户特征数据信息,以保证用户特征数据信息的安全性。具体的,首先根据用户购买内容信息确定用户特征数据信息对应的样本购买标签,样本购买标签用于标识用户特征数据信息所对应的用户是否购买内容推荐平台所推荐的内容,然后将用户特征数据信息输入到初始用户购买率模型中,获得待定购买标签,最后根据样本购买标签和待定购买标签之间的差异,调整初始用户购买率模型,获得用户购买率模型。As an implementable implementation, the model is trained according to the user's purchase content information, user telephone communication information, and user characteristic data information. The model can be a secureboost model, which is not specifically limited here. Among them, a private channel will be established between the external platform and the internal platform to obtain user characteristic data information to ensure the security of user characteristic data information. Specifically, first determine the sample purchase tag corresponding to the user characteristic data information according to the user purchase content information, the sample purchase tag is used to identify whether the user corresponding to the user characteristic data information purchases the content recommended by the content recommendation platform, and then the user characteristic data information Input it into the initial user purchase rate model to obtain pending purchase tags, and finally adjust the initial user purchase rate model according to the difference between the sample purchase tags and pending purchase tags to obtain the user purchase rate model.
作为另一种可实现的实施方式,首先获取用户特征数据信息,根据用户电话沟通信息确定用户特征数据信息对应的样本电话沟通标签,样本电话沟通标签用于标识用户特征数据信息所对应的用户是否接通内容推荐平台所拨打的电话,然后将用户特征数据信息输入到初始用户电话沟通率模型中,获得待定电话沟通标签,最后根据样本电话沟通标签和待定电话沟通标签之间的差异,调整初始用户电话沟通率模型,获得用户电话沟通率模型。还需要进行说明的是,利用AUC、KS和提升度指标评估用户购买率模型和用户电话沟通率模型的预测能力。As another achievable implementation, first obtain the user characteristic data information, determine the sample telephone communication label corresponding to the user characteristic data information according to the user telephone communication information, and the sample telephone communication label is used to identify whether the user corresponding to the user characteristic data information is Connect the call made by the content recommendation platform, and then input the user characteristic data information into the initial user telephone communication rate model to obtain the pending telephone communication label, and finally adjust the initial telephone communication label according to the difference between the sample telephone communication label and the pending telephone communication label. The user telephone communication rate model is used to obtain the user telephone communication rate model. It also needs to be explained that the predictive ability of the user purchase rate model and the user telephone communication rate model is evaluated by using AUC, KS and lift index.
进一步的,首先获取待分析用户所对应的目标特征数据信息,然后将目标特征数据信息输入到用户购买率模型中,生成待分析用户购买内容推荐平台所推荐内容的概率,并将目标特征数据信息输入到用户电话沟通率模型中,生成待分析用户接通内容推荐平台所拨打电话的概率,最后当待分析用户购买内容推荐平台所推荐内容的概率和待分析用户接通内容推荐平台所拨打电话的概率均大于第一阈值时,将待分析用户确定为目标用户。Further, first obtain the target characteristic data information corresponding to the user to be analyzed, and then input the target characteristic data information into the user purchase rate model to generate the probability that the user to be analyzed will purchase the content recommended by the content recommendation platform, and input the target characteristic data information Input it into the user telephone communication rate model to generate the probability that the user to be analyzed will connect to the call made by the content recommendation platform. Finally, when the probability of the user to be analyzed to purchase the content recommended by the content recommendation platform and the probability of the user to be analyzed to connect to the call made by the content recommendation platform When the probabilities of are greater than the first threshold, the user to be analyzed is determined as the target user.
可见,本可选方案主要是说明如何对确定出目标用户,并对其进行内容推荐。具体的,在本可选方案中,本申请首先获取所述内容推荐平台提供的用户购买内容信息和用户电话沟通信息,然后基于所述用户购买内容信息和所述用户电话沟通信息确定所需特征数据信息对应的特征数据类型,最后获取所述外部平台提供的与所述特征数据类型所对应的用户特征数据信息。It can be seen that this optional solution mainly explains how to determine target users and recommend content to them. Specifically, in this optional solution, the application first obtains the user purchase content information and user telephone communication information provided by the content recommendation platform, and then determines the required features based on the user purchase content information and the user telephone communication information The characteristic data type corresponding to the data information, and finally obtain the user characteristic data information provided by the external platform and corresponding to the characteristic data type.
综上,在本申请中根据第一用户身份信息、第二用户身份信息、用户购买率模型和用户电话沟通率模型确定出的目标用户更具有可靠性,以及内容推荐的成功率也会更高。In summary, in this application, the target users determined based on the first user identity information, the second user identity information, the user purchase rate model, and the user telephone communication rate model are more reliable, and the success rate of content recommendation will be higher. .
装置实施例Device embodiment
下面对本申请实施例提供的一种内容推荐装置进行介绍,下文描述的一种内容推荐装置与上文描述的一种内容推荐方法可相互对应参照。A content recommendation device provided in an embodiment of the present application is introduced below. The content recommendation device described below and the content recommendation method described above may be referred to in correspondence.
参见图3,该图为本申请实施例提供的一种内容推荐装置的结构示意图,如图3所示,该装置可以包括:Referring to FIG. 3, this figure is a schematic structural diagram of a content recommendation device provided in an embodiment of the present application. As shown in FIG. 3, the device may include:
获取模块100,用于获取内容推荐平台内部提供的第一用户身份信息和除所述内容推荐平台之外的外部平台提供的第二用户身份信息,所述第一用户身份信息和所述第二用户身份信息包括针对同一用户的不同身份信息;The
确定模块200,用于根据所述第一用户身份信息和所述第二用户身份信息确定第一目标用户;A determining
推荐模块300,用于对所述第一目标用户推荐所述内容推荐平台对应的内容。The
可选的,所述确定模块200,包括:Optionally, the determining
生成模块,用于根据所述第一用户身份信息和所述第二用户身份信息生成不同资产等级对应的用户集合和不同年龄段对应的用户集合;A generating module, configured to generate user sets corresponding to different asset classes and user sets corresponding to different age groups according to the first user identity information and the second user identity information;
第一确定子模块,用于根据所述不同资产等级对应的用户集合和所述不同年龄段对应的用户集合确定所述第一目标用户。The first determining submodule is configured to determine the first target user according to the user sets corresponding to the different asset classes and the user sets corresponding to the different age groups.
可选的,还包括:Optionally, also include:
第一获取子模块,用于获取所述内容推荐平台提供的用户购买内容信息和用户电话沟通信息;The first obtaining sub-module is used to obtain the user's purchased content information and the user's telephone communication information provided by the content recommendation platform;
第二确定子模块,用于基于所述用户购买内容信息和所述用户电话沟通信息确定所需特征数据信息对应的特征数据类型;The second determining submodule is used to determine the characteristic data type corresponding to the required characteristic data information based on the user purchase content information and the user telephone communication information;
第二获取子模块,用于获取所述外部平台提供的与所述特征数据类型所对应的用户特征数据信息。The second obtaining sub-module is used to obtain user characteristic data information corresponding to the characteristic data type provided by the external platform.
可选的,还包括:Optionally, also include:
第三获取子模块,用于获取所述用户特征数据信息,根据所述用户购买内容信息确定所述用户特征数据信息对应的样本购买标签,所述样本购买标签用于标识所述用户特征数据信息所对应的用户是否购买所述内容推荐平台所推荐的内容;The third acquisition sub-module is used to acquire the user characteristic data information, determine the sample purchase tag corresponding to the user characteristic data information according to the user purchase content information, and the sample purchase tag is used to identify the user characteristic data information Whether the corresponding user purchases the content recommended by the content recommendation platform;
第一获得模块,用于将所述用户特征数据信息输入到初始用户购买率模型中,获得待定购买标签;The first obtaining module is used to input the user characteristic data information into the initial user purchase rate model to obtain pending purchase tags;
第一调整模块,用于根据所述样本购买标签和所述待定购买标签之间的差异,调整所述初始用户购买率模型,获得用户购买率模型。The first adjustment module is configured to adjust the initial user purchase rate model according to the difference between the sample purchase tags and the pending purchase tags to obtain the user purchase rate model.
可选的,还包括:Optionally, also include:
第四获取子模块,用于获取用户特征数据信息,根据所述用户电话沟通信息确定所述用户特征数据信息对应的样本电话沟通标签,所述样本电话沟通标签用于标识所述用户特征数据信息所对应的用户是否接通所述内容推荐平台所拨打的电话;The fourth acquisition sub-module is used to acquire user characteristic data information, and determine a sample telephone communication label corresponding to the user characteristic data information according to the user telephone communication information, and the sample telephone communication label is used to identify the user characteristic data information Whether the corresponding user connects to the call made by the content recommendation platform;
第二获得模块,用于将所述用户特征数据信息输入到初始用户电话沟通率模型中,获得待定电话沟通标签;The second obtaining module is used to input the user characteristic data information into the initial user telephone communication rate model, and obtain the pending telephone communication label;
第二调整模块,用于根据所述样本电话沟通标签和所述待定电话沟通标签之间的差异,调整所述初始用户电话沟通率模型,获得用户电话沟通率模型。The second adjustment module is configured to adjust the initial user telephone communication rate model according to the difference between the sample telephone communication label and the pending telephone communication label, so as to obtain the user telephone communication rate model.
可选的,还包括:Optionally, also include:
第五获取子模块,用于获取待分析用户的目标特征数据信息;The fifth acquisition sub-module is used to acquire the target characteristic data information of the user to be analyzed;
第一生成模块,用于将所述目标特征数据信息输入到所述用户购买率模型中,生成所述待分析用户购买所述内容推荐平台所推荐内容的概率;The first generation module is used to input the target feature data information into the user purchase rate model to generate the probability that the user to be analyzed purchases the content recommended by the content recommendation platform;
第二生成模块,用于将所述目标特征数据信息输入到所述用户电话沟通率模型中,生成所述待分析用户接通所述内容推荐平台所拨打电话的概率。The second generating module is configured to input the target feature data information into the user telephone communication rate model, and generate the probability that the user to be analyzed connects to the call made by the content recommendation platform.
可选的,还包括:Optionally, also include:
第三确定子模块,用于响应于所述待分析用户购买所述内容推荐平台所推荐内容的概率和所述待分析用户接通所述内容推荐平台所拨打电话的概率均大于第一阈值,将所述待分析用户确定为第二目标用户;The third determination submodule is configured to respond to the probability that the user to be analyzed purchases the content recommended by the content recommendation platform and the probability that the user to be analyzed connects to the call made by the content recommendation platform are greater than a first threshold, determining the user to be analyzed as a second target user;
第一子推荐模块,用于对所述第二目标用户推荐所述内容推荐平台对应的内容。。The first sub-recommendation module is configured to recommend content corresponding to the content recommendation platform to the second target user. .
本申请实施例所提供的内容推荐装置与上述实施例提供的内容推荐方法具有相同的有益效果,因此不再赘述。The content recommendation device provided by the embodiment of the present application has the same beneficial effect as the content recommendation method provided by the above embodiment, so details are not repeated here.
需要说明的是,本申请实施例中提到的“第一”、“第二”(若存在)等名称中的“第一”、“第二”只是用来做名字标识,并不代表顺序上的第一、第二。It should be noted that the "first" and "second" in the names of "first" and "second" (if they exist) mentioned in the embodiments of this application are only used for name identification and do not represent the order First and second on the list.
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in the description is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and for the related information, please refer to the description of the method part.
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Professionals can further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two. In order to clearly illustrate the possible For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in conjunction with the embodiments disclosed herein may be directly implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.
以上对本申请所提供的一种内容推荐方法及装置进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。The content recommendation method and device provided in the present application have been introduced in detail above. In this paper, specific examples are used to illustrate the principles and implementation methods of the present application, and the descriptions of the above embodiments are only used to help understand the methods and core ideas of the present application. It should be pointed out that those skilled in the art can make some improvements and modifications to the application without departing from the principles of the application, and these improvements and modifications also fall within the protection scope of the claims of the application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211071952.3A CN115329203A (en) | 2022-09-02 | 2022-09-02 | Content recommendation method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211071952.3A CN115329203A (en) | 2022-09-02 | 2022-09-02 | Content recommendation method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115329203A true CN115329203A (en) | 2022-11-11 |
Family
ID=83930370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211071952.3A Pending CN115329203A (en) | 2022-09-02 | 2022-09-02 | Content recommendation method and apparatus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115329203A (en) |
-
2022
- 2022-09-02 CN CN202211071952.3A patent/CN115329203A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106874435B (en) | User portrait construction method and device | |
CN109514586B (en) | Method and system for realizing intelligent customer service robot | |
US20170024473A1 (en) | Systems and methods for identifying and analyzing internet users | |
CN107545451B (en) | Advertisement pushing method and device | |
CN111461827B (en) | Push method and device for product evaluation information | |
JP2019530295A (en) | Network-based advertising data traffic latency reduction | |
CN110222265A (en) | A kind of method, system, user terminal and the server of information push | |
CN111488529B (en) | Information processing method, information processing apparatus, server, and storage medium | |
CN107968953A (en) | Anti- cheating user method and device | |
EP3352121A1 (en) | Content delivery method and device | |
US20220094694A1 (en) | Systems and methods for communication between a plurality of electronic devices based on subscriber access score | |
CN113412607B (en) | Content push method, device, mobile terminal and storage medium | |
CN107634897A (en) | Group recommends method and apparatus | |
CN112291423A (en) | Intelligent response processing method and device for communication call, electronic equipment and storage medium | |
CN115470318A (en) | Customer service problem processing method and device | |
CN107807935B (en) | Using recommended method and device | |
CN106487642A (en) | A kind of method and apparatus of pushed information | |
CN109450963B (en) | Message pushing method and terminal equipment | |
WO2024174714A1 (en) | Authenticity verification method and device | |
CN111340574B (en) | Risk user identification method and device and electronic equipment | |
CN115329203A (en) | Content recommendation method and apparatus | |
CN108259451A (en) | Call method, service terminal and server with target customer | |
CN102724140A (en) | Method and device for adding instant messaging friends | |
CN117114768A (en) | Insurance product information pushing method and device, storage medium and terminal | |
CN109831417A (en) | Method, apparatus, server and the storage medium of anti-harassment processing account number |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |