CN115327518A - 一种基于解析模型的海洋激光雷达多次散射衰减校正方法 - Google Patents

一种基于解析模型的海洋激光雷达多次散射衰减校正方法 Download PDF

Info

Publication number
CN115327518A
CN115327518A CN202211090049.1A CN202211090049A CN115327518A CN 115327518 A CN115327518 A CN 115327518A CN 202211090049 A CN202211090049 A CN 202211090049A CN 115327518 A CN115327518 A CN 115327518A
Authority
CN
China
Prior art keywords
lidar
coefficient
laser radar
water body
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211090049.1A
Other languages
English (en)
Inventor
刘�东
陈亚佟
刘群
崔晓宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202211090049.1A priority Critical patent/CN115327518A/zh
Publication of CN115327518A publication Critical patent/CN115327518A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开了一种基于解析模型的海洋激光雷达多次散射衰减校正方法,包括:基于准单次散射小角度近似理论构建海洋激光雷达辐射传输解析模型,模拟不同水体环境和激光雷达硬件条件下的回波信号;构建激光雷达有效衰减系数与雷达参数和水体固有光学特性之间的数值关系,并利用漫射衰减系数系数的经验表达式构建多次散射衰减校正方法;根据海洋激光雷达的探测体制,选择不同的反演算法计算随深度分布的激光雷达有效衰减系数,利用激光雷达有效衰减系数数值模型反演水体固有光学特性,消除多次散射效应在深度上的影响,获得高精度的水体光学特性垂直剖面。利用本发明,能够大幅提高提升海洋水体组分的反演精度。

Description

一种基于解析模型的海洋激光雷达多次散射衰减校正方法
技术领域
本发明属于海洋激光雷达技术领域,尤其是涉及一种基于解析模型的海洋激光雷达多次散射衰减校正方法。
背景技术
激光雷达技术能够探测水体光学特性(如吸收特性和散射特性等)的垂直分布,是获取水体生物组分信息的重要手段,在全球海洋生态系统立体观测和生物地球化学以及海洋碳循环的研究中发挥重要作用。
如公开号为CN113219496A一种星载海洋大气参数激光雷达探测系统,包括:激光雷达信息获取模块、探测试验模块、水层衰减系数获取模块、后向散射系数获取模块、中央控制模块、总吸收系数获取模块、反演参数模型构建模块、相对误差模型构建模块、最优双波长确定模块、激光雷达探测模块。该系统使用双波长海洋高光谱分辨率激光雷达进行探测,获取激光雷达的信息以及通过探测得到水层衰减系数、后向散射系数,从而实现总吸收系数的获取;择优选取海洋激光雷达的两个波长,提高叶绿素和CDOM吸收系数的反演精度,可以实现大范围的探测海洋上空的大气温度、湿度、密度参数分布信息的准确获取。
然而,在海水介质中,激光的传输伴随着复杂的多次散射过程。在多次散射效应的作用下,激光雷达有效衰减系数与水体光学特性之间的关系将变得复杂,这使得激光雷达反演水体光学特性的精度受到很大影响。
现有研究表明,在假定激光雷达有效衰减系数为常数的情况下,当水体的光束衰减系数与接收视场的海面脚斑半径之间的乘积大于5时,激光雷达有效衰减系数将趋近于漫射衰减系数。然而在实际探测中,由于激光脉冲受多次散射效应影响,在时间和空间上均会发生展宽,即便在均匀水体中,不同水深处的激光雷达有效衰减系数也并不一致。简单将其等同于漫射衰减系数会给水体光学特性垂直剖面的反演带来不可忽视的误差。
因此,亟需发展一种能够校正多次散射对不同深度处激光雷达有效衰减系数影响的方法,从而实现水体光学特性剖面的准确反演,提升激光雷达对于海洋水体的探测能力,增进对全球海洋光学特性的认知。
发明内容
针对现有海洋激光雷达中多次散射效应影响水体光学特性垂直剖面反演精度的问题,本发明提供了一种基于解析模型的海洋激光雷达多次散射衰减校正方法,能够大幅提高船载激光雷达反演水体光学特性剖面的精度。
一种基于解析模型的海洋激光雷达多次散射衰减校正方法,包括:
(1)根据激光雷达系统参数,基于准单次散射小角度近似理论,构建海洋激光雷达的辐射传输解析模型,用于模拟得到激光雷达回波信号;
(2)设置多组不同的海水固有光学特性IOPs参数,分别固定吸收系数a和散射系数b,利用步骤(1)中的辐射传输解析模型模拟得到相应的激光雷达回波信号;
(3)求解步骤(2)中不同信号的激光雷达有效衰减系数klidar,分析水体参数对于激光雷达有效衰减系数的影响;拟合激光雷达有效衰减系数klidar与水体固有光学特性IOPs及水深z之间的数值关系,确定klidar-IOPs-z的数值模型表达式;
(4)利用klidar-IOPs-z数值模型拟合不同水体光学特性下的模型未知参数m1、m2、m3;将m1、m2、m3考虑为后向散射系数bb的函数,计算不同水体对应的m1、m2、m3与bb之间的关系;
(5)设置非均匀水体验证组,对klidar-IOPs-z数值模型进行验证,对比仿真的衰减系数与模型拟合的衰减系数,计算两者之间的相关性,确保klidar-IOPs-z数值模型的有效性;
(6)对不同体制的激光雷达实测信号进行反演,计算激光雷达有效衰减系数klidar及水体后向散射系数bb;针对高光谱分辨率激光雷达和米散射激光雷达分别采用HSRL反演方法和Fernald反演方法;
(7)利用反演所得的有效衰减系数klidar及后向散射系数bb,代入klidar-IOPs-z的数值模型,计算水体的吸收系数a;
(8)基于反演所得的水体吸收系数a与后向散射系数bb,结合水体固有光学特性IOPs与漫射衰减系数Kd之间的经验关系,计算水体的漫射衰减系数Kd
本发明中,基于准单次散射小角度近似方法构建海洋激光雷达辐射传输解析模型,模拟不同水体环境和激光雷达硬件条件下的回波信号。构建激光雷达有效衰减系数与雷达参数和水体固有光学特性之间的数值关系,并利用漫射衰减系数系数的经验表达式构建多次散射衰减校正方法。根据海洋激光雷达的探测体制,选择不同的反演算法计算随深度分布的激光雷达有效衰减系数,利用激光雷达有效衰减系数数值模型反演水体固有光学特性,消除多次散射效应在深度上的影响,获得高精度的水体光学特性垂直剖面。
进一步地,步骤(1)中,模拟得到激光雷达回波信号的公式为:
Figure BDA0003836639350000031
其中,P(z)代表深度z处的激光雷达回波信号,W0代表发射激光光强,bz代表了深度z处的水体散射系数,v代表水中的光速,βb(z,|n'-n”|)代表后向散射相函数,Isrc(z,r,n')和Irec(z,r,n”)分别代表光源和接收器在点(z,r)处的辐射角谱分布,其中接收器为虚拟光源。
步骤(3)中,klidar-IOPs-z的数值模型表达式如下:
Figure BDA0003836639350000041
其中,m1、m2、m3为参数项,z为水体的深度。
步骤(4)中,klidar-IOPs-z数值模型中的系数m1、m2、m3与后向散射系数bb之间的关系如下所示:
m1=f1(bb);m2=f2(bb);m3=f3(bb)。
步骤(6)中,针对高光谱分辨率激光雷达,采用HSRL反演方法,通过混合通道和分子通道的信号求解水体后向散射系数bb和激光雷达有效衰减系数klidar,如下所示:
Figure BDA0003836639350000042
Figure BDA0003836639350000043
其中,χ为转换因子,TB为透射率,PC(z)为激光雷达的混合通道信号,PM(z)为激光雷达的分子通道信号,bbw为水分子的后向散射系数。
针对米散射激光雷达,采用Fernald方法求解激光雷达有效衰减系数klidar与水体后向散射系数bb,如下式所示:
Figure BDA0003836639350000044
Figure BDA0003836639350000045
其中,P(z)为激光雷达的回波信号,klidar,w为水分子有效衰减系数,klidar,p为颗粒有效衰减系数,R为颗粒物激光雷达比Rp与水分子激光雷达比Rw的比值,zc代表边界深度,P0(z)为稳定信号项,βπ0为稳定180°体散射系数,Φ(z)如下所示
Figure BDA0003836639350000046
步骤(7)中,吸收系数的反演公式如下所示:
Figure BDA0003836639350000051
其中,a为水体吸收系数,bb为后向散射系数,m1、m2、m3为klidar-IOPs-z数值模型中的系数,与后向散射系数bb之间有关。
步骤(8)中,计算水体的漫射衰减系数Kd的公式如下:
Kd=a+4.18(1-0.52e-10.8a)bb
与现有技术相比,本发明具有以下有益效果:
1、本发明利用海洋激光雷达辐射传输方程与准单次小角度近似理论,构建了激光雷达回波信号的解析模型,能够设置不同的激光雷达系统参数,仿真多种水体的回波信号,计算相应的有效衰减系数,并进一步反演水体吸收系数a、后向散射系数bb和漫射衰减系数Kd
2、本发明建立了klidar-IOPs-z数值模型,能够消除多次散射效应在深度上对激光雷达回波信号有效衰减系数的影响,提升了海洋激光雷达对水体吸收系数a和漫射衰减系数Kd的反演精度。
3、本发明能够应用于多种探测机制的海洋激光雷达系统,可针对实际测量情况选择合适的反演算法,从而获取高精度的水体光学特性剖面。
附图说明
图1为本发明一种基于解析模型的海洋激光雷达多次散射衰减校正方法的流程示意图;
图2为本发明实施例中船载激光雷达数据的测量站点;
图3为本发明实施例中反演的水体吸收系数分布图;
图4为本发明实施例中反演的水体漫射衰减系数分布图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
一种基于解析模型的海洋激光雷达多次散射衰减校正方法,利用klidar-IOPs-z模型去除多次散射对于激光雷达回波信号有效衰减系数的影响,实现多种水体光学特性的精确反演。
具体流程如图1所示,基于准单次小角度散射近似,搭建船载海洋激光雷达解析模型,仿真不同水体环境下的激光雷达回波信号,建立理论有效衰减系数、水体固有光学特性、水深之间的数值模型,即klidar-IOPs-z数值模型,利用这一模型消除多次散射效应对于有效衰减系数的影响,反演水体固有光学特性,并进一步反演不同深度处的水体漫射衰减系数。
图2展示了船载激光雷达数据的探测站点,激光雷达的测量高度为5m,接收器的视场直径和视场角分别为50.8mm和200mrad,探测时的倾斜角为40°。
通过以下步骤实现基于解析模型的海洋激光雷达水体光学特性反演:
第一步,构建船载海洋激光雷达的解析模型,计算对应的雷达回波信号强度,根据准单次小角度散射近似求解水深z处的激光雷达回波信号,如下式所示:
Figure BDA0003836639350000061
其中,z为水体深度,W0为激光雷达的激光光强,bz为z处的散射系数,v为水中的光速,βb(z,|n'-n”|)为后向散射相函数,设置为FF相函数,Isrc(z,r,n')和Irec(z,r,n”)为光源和接收器在点(z,r)处的辐射角谱分布,n'和n”分别为光束入射及散射方向。Isrc(z,r,n')和Irec(z,r,n”)可分别通过单位光源的空间角分布
Figure BDA0003836639350000062
和接收器(虚拟光源)的空间角分布
Figure BDA0003836639350000063
进行计算。
第二步,仿真不同水体光学特性对应的激光雷达回波信号,考虑水体为均匀水体,分别固定吸收系数a和散射系数b如表1所示。利用仿真信号计算不同水体对应的激光雷达有效衰减系数,结果表明,吸收系数a仅影响激光雷达有效衰减系数的常数项,散射系数b则同时影响激光雷达有效衰减系数的形状和数值。在固定后向散射比B的情况下,将散射系数b转换为后向散射系数bb进行考虑,而后向散射系数bb能够通过激光雷达回波信号直接反演,是直观有效的数据参量。
表1
Figure BDA0003836639350000071
第三步,基于对激光雷达有效衰减系数klidar受水体固有光学特性影响的分析,总结klidar-IOPs-z的模型,发现klidar则随深度呈现负指数分布,且水体固有光学特性决定了指数关系式的系列参数,如下式所示:
Figure BDA0003836639350000072
其中,m1、m2、m3为与后向散射系数bb有关的参数,z为水体的深度,a为水体的吸收系数。
第四步,利用第三步的公式拟合表1中数组水体对应的激光雷达有效衰减系数,Case1-Case7对应的m1、m2、m3如表2所示。
表2
Figure BDA0003836639350000073
可见m1、m2、m3的数值仅与bb相关,而不受吸收系数影响。总结m1、m2、m3与bb之间的关系,如下式所示:
m1=-12.37×bb-0.0003383
Figure BDA0003836639350000081
m3=11.85×bb+0.001378
第五步,设置数组验证组水体如表3所示,利用解析模型仿真相应的理论回波信号,计算对应的有效衰减系数,同时依据第四步的公式拟合该水体参数下的理论衰减系数。针对船载海洋激光雷达系统,仿真衰减系数与拟合衰减系数之间的相关性达到了0.995,这证明klidar-IOPs-z的经验模型具有良好的可靠性。
表3
Figure BDA0003836639350000082
第六步,根据船载激光雷达的探测机制,反演激光雷达有效衰减系数klidar及水体后向散射系数bb。针对实施例,采取HSRL反演方法,利用下式计算不同水深处的后向散射系数bb和激光雷达有效衰减系数klidar
Figure BDA0003836639350000083
Figure BDA0003836639350000084
式中,χ为转换因子,TB为透射率,PC(z)为激光雷达的混合通道信号,PM(z)为激光雷达的分子通道信号,bbw为水分子的后向散射系数。
第七步,利用klidar-IOPs-z经验模型,通过反演得到的有效衰减系数klidar及后向散射系数bb,计算水体的吸收系数,如下式所示:
Figure BDA0003836639350000085
式中的m1、m2、m3依据反演所得的后向散射系数bb和第四步的理论关系式进行计算,反演的吸收系数a如图3所示。
第八步,利用反演得到的水体吸收系数a与后向散射系数bb,计算水体的漫射衰减系数Kd,如下式所示:
Kd=a+4.18(1-0.52e-10.8a)bb
实施例Kd的计算结果如图4所示,相较于直接将激光雷达有效衰减系数视为Kd,采用计算的结果与原位值之间的相对误差能够降低60%。这对于海水理化特性分析具有重要意义,能够帮助更加准确的计算水下光场分布、推演水体组分、认知海洋水体。
本发明利用准单次小角度近似理论构建了船载海洋激光雷达回波信号的仿真模型,建立了相应的klidar-IOPs-z数值模型,能够反演吸收系数a、后向散射系数bb和水体漫射衰减系数Kd,其反演结果与原位值之间具有良好的一致性,表明了本发明的可靠性。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换,均应包含在本发明的保护范围之内。

Claims (8)

1.一种基于解析模型的海洋激光雷达多次散射衰减校正方法,其特征在于,包括:
(1)根据激光雷达系统参数,基于准单次散射小角度近似理论,构建海洋激光雷达的辐射传输解析模型,用于模拟得到激光雷达回波信号;
(2)设置多组不同的海水固有光学特性IOPs参数,分别固定吸收系数a和散射系数b,利用步骤(1)中的辐射传输解析模型模拟得到相应的激光雷达回波信号;
(3)求解步骤(2)中不同信号的激光雷达有效衰减系数klidar,分析水体参数对于激光雷达有效衰减系数的影响;拟合激光雷达有效衰减系数klidar与水体固有光学特性IOPs及水深z之间的数值关系,确定klidar-IOPs-z的数值模型表达式;
(4)利用klidar-IOPs-z数值模型拟合不同水体光学特性下的模型未知参数m1、m2、m3;将m1、m2、m3考虑为后向散射系数bb的函数,计算不同水体对应的m1、m2、m3与bb之间的关系;
(5)设置非均匀水体验证组,对klidar-IOPs-z数值模型进行验证,对比仿真的衰减系数与模型拟合的衰减系数,计算两者之间的相关性,确保klidar-IOPs-z数值模型的有效性;
(6)对不同体制的激光雷达实测信号进行反演,计算激光雷达有效衰减系数klidar及水体后向散射系数bb;针对高光谱分辨率激光雷达和米散射激光雷达分别采用HSRL反演方法和Fernald反演方法;
(7)利用反演所得的有效衰减系数klidar及后向散射系数bb,代入klidar-IOPs-z的数值模型,计算水体的吸收系数a;
(8)基于反演所得的水体吸收系数a与后向散射系数bb,结合水体固有光学特性IOPs与漫射衰减系数Kd之间的经验关系,计算水体的漫射衰减系数Kd
2.根据权利要求1所述的基于解析模型的海洋激光雷达多次散射衰减校正方法,其特征在于,步骤(1)中,模拟得到激光雷达回波信号的公式为:
Figure FDA0003836639340000021
其中,P(z)代表深度z处的激光雷达回波信号,W0代表发射激光光强,bz代表了深度z处的水体散射系数,v代表水中的光速,βb(z,|n'-n"|)代表后向散射相函数,Isrc(z,r,n')和Irec(z,r,n")分别代表光源和接收器在点(z,r)处的辐射角谱分布,其中接收器为虚拟光源。
3.根据权利要求1所述的基于解析模型的海洋激光雷达多次散射衰减校正方法,其特征在于,步骤(3)中,klidar-IOPs-z的数值模型表达式如下:
Figure FDA0003836639340000022
其中,m1、m2、m3为参数项,z为水体的深度。
4.根据权利要求1所述的基于解析模型的海洋激光雷达多次散射衰减校正方法,其特征在于,步骤(4)中,klidar-IOPs-z数值模型中的系数m1、m2、m3与后向散射系数bb之间的关系如下所示:
m1=f1(bb);m2=f2(bb);m3=f3(bb)。
5.根据权利要求1所述的基于解析模型的海洋激光雷达多次散射衰减校正方法,其特征在于,步骤(6)中,针对高光谱分辨率激光雷达,采用HSRL反演方法,通过混合通道和分子通道的信号求解水体后向散射系数bb和激光雷达有效衰减系数klidar,如下所示:
Figure FDA0003836639340000023
Figure FDA0003836639340000024
其中,χ为转换因子,TB为透射率,PC(z)为激光雷达的混合通道信号,PM(z)为激光雷达的分子通道信号,bbw为水分子的后向散射系数。
6.根据权利要求1所述的基于解析模型的海洋激光雷达多次散射衰减校正方法,其特征在于,步骤(6)中,针对米散射激光雷达,采用Fernald方法求解激光雷达有效衰减系数klidar与水体后向散射系数bb,如下式所示:
Figure FDA0003836639340000031
Figure FDA0003836639340000032
其中,P(z)为激光雷达的回波信号,klidar,w为水分子有效衰减系数,klidar,p为颗粒有效衰减系数,R为颗粒物激光雷达比Rp与水分子激光雷达比Rw的比值,zc代表边界深度,P0(z)为稳定信号项,βπ0为稳定180°体散射系数,Φ(z)如下所示
Figure FDA0003836639340000033
7.根据权利要求1所述的基于解析模型的海洋激光雷达多次散射衰减校正方法,其特征在于,步骤(7)中,吸收系数的反演公式如下所示:
Figure FDA0003836639340000034
其中,a为水体吸收系数,bb为后向散射系数,m1、m2、m3为klidar-IOPs-z数值模型中的系数,与后向散射系数bb之间有关。
8.根据权利要求1所述的基于解析模型的海洋激光雷达多次散射衰减校正方法,其特征在于,步骤(8)中,计算水体的漫射衰减系数Kd的公式如下:
Kd=a+4.18(1-0.52e-10.8a)bb
CN202211090049.1A 2022-09-07 2022-09-07 一种基于解析模型的海洋激光雷达多次散射衰减校正方法 Pending CN115327518A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211090049.1A CN115327518A (zh) 2022-09-07 2022-09-07 一种基于解析模型的海洋激光雷达多次散射衰减校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211090049.1A CN115327518A (zh) 2022-09-07 2022-09-07 一种基于解析模型的海洋激光雷达多次散射衰减校正方法

Publications (1)

Publication Number Publication Date
CN115327518A true CN115327518A (zh) 2022-11-11

Family

ID=83929452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211090049.1A Pending CN115327518A (zh) 2022-09-07 2022-09-07 一种基于解析模型的海洋激光雷达多次散射衰减校正方法

Country Status (1)

Country Link
CN (1) CN115327518A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980773A (zh) * 2023-03-20 2023-04-18 中国海洋大学 一种海洋中尺度涡旋内部碳循环的估算及演化分析方法
CN116430353A (zh) * 2023-06-13 2023-07-14 水利部交通运输部国家能源局南京水利科学研究院 一种水体激光雷达信号模拟方法
CN116757102A (zh) * 2023-08-21 2023-09-15 中国科学院南海海洋研究所 基于固有光学特性的表观光学特性剖面分布估算方法
CN117991298A (zh) * 2024-01-02 2024-05-07 武汉大学 一种激光测雾雷达能见度估测方法及计算机可读介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238698A1 (en) * 2015-02-17 2016-08-18 Florida Atlantic University Underwater sensing system
CN107831485A (zh) * 2017-10-19 2018-03-23 中国科学院海洋研究所 船载多视场激光雷达探测多个水体光学特征参数的方法
CN114295585A (zh) * 2022-01-04 2022-04-08 浙江大学 一种基于解析模型的多视场海洋激光雷达数据正则化反演方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238698A1 (en) * 2015-02-17 2016-08-18 Florida Atlantic University Underwater sensing system
CN107831485A (zh) * 2017-10-19 2018-03-23 中国科学院海洋研究所 船载多视场激光雷达探测多个水体光学特征参数的方法
CN114295585A (zh) * 2022-01-04 2022-04-08 浙江大学 一种基于解析模型的多视场海洋激光雷达数据正则化反演方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHOU YD等: "6-Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties", LIGHT SCIENCE & APPLICATIONS, vol. 11, 2 September 2022 (2022-09-02), pages 1 - 13 *
徐沛拓;刘东;周雨迪;刘群;白剑;刘志鹏;吴兰;沈亦兵;刘崇;: "海洋激光雷达多次散射回波信号建模与分析", 遥感学报, no. 02, 25 February 2020 (2020-02-25), pages 142 - 148 *
李晓龙;李杰;张冰;陈永华;赵朝方;刘智深;: "激光雷达探测水体光学特征参数的方法分析", 大气与环境光学学报, no. 01, 15 January 2018 (2018-01-15), pages 59 - 64 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980773A (zh) * 2023-03-20 2023-04-18 中国海洋大学 一种海洋中尺度涡旋内部碳循环的估算及演化分析方法
CN116430353A (zh) * 2023-06-13 2023-07-14 水利部交通运输部国家能源局南京水利科学研究院 一种水体激光雷达信号模拟方法
CN116430353B (zh) * 2023-06-13 2023-08-25 水利部交通运输部国家能源局南京水利科学研究院 一种水体激光雷达信号模拟方法
CN116757102A (zh) * 2023-08-21 2023-09-15 中国科学院南海海洋研究所 基于固有光学特性的表观光学特性剖面分布估算方法
CN116757102B (zh) * 2023-08-21 2024-02-02 中国科学院南海海洋研究所 基于固有光学特性的表观光学特性剖面分布估算方法
CN117991298A (zh) * 2024-01-02 2024-05-07 武汉大学 一种激光测雾雷达能见度估测方法及计算机可读介质

Similar Documents

Publication Publication Date Title
CN115327518A (zh) 一种基于解析模型的海洋激光雷达多次散射衰减校正方法
Lee et al. A new method for the measurement of the optical volume scattering function in the upper ocean
Lurton Swath bathymetry using phase difference: Theoretical analysis of acoustical measurement precision
CN101194182B (zh) 鱼类聚集群及其习性的连续地大陆架规模监测
Banner et al. Wavenumber spectra of short gravity waves
CN110673108B (zh) 一种基于迭代Klett的机载海洋激光雷达信号处理方法
JP2008545991A5 (zh)
CN114295585B (zh) 一种基于解析模型的多视场海洋激光雷达数据正则化反演方法
Xu et al. Optical flow-based detection of gas leaks from pipelines using multibeam water column images
Sweeney et al. Centimeter-level positioning of seafloor acoustic transponders from a deeply-towed interrogator
Guenther et al. Laser applications for near-shore nautical charting
Gallaudet et al. High-frequency volume and boundary acoustic backscatter fluctuations in shallow water
CN107907591B (zh) 多组分固液两相混合物组分浓度的超声检测系统和方法
Zhu et al. Metering method and measurement uncertainty evaluation of underwater positioning system in six degrees of freedom space
CN114675298B (zh) 一种海气边界层气溶胶的通量反演方法、装置及介质
Budyn On the use of the geometric median in delay-and-sum ultrasonic array imaging
Menze et al. Estimating the spatial distribution of vocalizing animals from ambient sound spectra using widely spaced recorder arrays and inverse modelling
Graupe et al. An automated framework for long-range acoustic positioning of autonomous underwater vehicles
Dosso et al. Array element localization accuracy and survey design
Furusawa Volume scattering and echo integration in fisheries acoustics revisited
Holland Mapping seabed variability: Rapid surveying of coastal regions
Cadalli et al. Three-dimensional tomographic imaging of ocean mines from real and simulated lidar returns
Mikhalevsky et al. Continuous wave and M‐sequence transmissions across the Arctic
CN116430353B (zh) 一种水体激光雷达信号模拟方法
CN116679320B (zh) 一种气溶胶和风场的同时测量方法、装置、设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination