CN115326651A - 一种页岩密闭孔隙可压裂性的测定方法 - Google Patents

一种页岩密闭孔隙可压裂性的测定方法 Download PDF

Info

Publication number
CN115326651A
CN115326651A CN202210852055.XA CN202210852055A CN115326651A CN 115326651 A CN115326651 A CN 115326651A CN 202210852055 A CN202210852055 A CN 202210852055A CN 115326651 A CN115326651 A CN 115326651A
Authority
CN
China
Prior art keywords
rock
particle size
closed
apparent density
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210852055.XA
Other languages
English (en)
Other versions
CN115326651B (zh
Inventor
韩元佳
肖磊
刘飞
杨智
潘松圻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exploration And Development Research Institute Of China National Petroleum Corp
China University of Geosciences
Original Assignee
Exploration And Development Research Institute Of China National Petroleum Corp
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exploration And Development Research Institute Of China National Petroleum Corp, China University of Geosciences filed Critical Exploration And Development Research Institute Of China National Petroleum Corp
Priority to CN202210852055.XA priority Critical patent/CN115326651B/zh
Priority claimed from CN202210852055.XA external-priority patent/CN115326651B/zh
Publication of CN115326651A publication Critical patent/CN115326651A/zh
Application granted granted Critical
Publication of CN115326651B publication Critical patent/CN115326651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种页岩密闭孔隙可压裂性的测定方法,通过逐级碎样,称取每一级粒径下样品的质量,并测量该质量下的视骨架体积,根据密度公式求得每一级粒径下的岩石骨架视密度。在岩石被粉碎的过程中,其密闭孔隙会逐渐被打开,随着粉碎程度的增加,被打开的密闭孔隙越来越多,对应样品的视密度也逐渐增大,且两者表现出较好的相关性。据此,首先建立样品粒径与视密度的数学方程获取更准确的岩石密度,然后结合有机碳含量和全岩XRD衍射数据判定所求岩石密度的可靠性,最后根据视密度和密闭孔隙的对应关系获取岩石的密闭孔隙度和可压裂性参数。

Description

一种页岩密闭孔隙可压裂性的测定方法
技术领域
本发明涉及地质勘探领域,尤其涉及一种页岩密闭孔隙可压裂性的测定方法。
背景技术
岩石孔隙是油气的赋存空间,岩石总孔隙又可分为开放孔和密闭孔。目前孔隙体积测定方法较多,常用的有气体吸附法,高压压汞法和氦气孔隙度法,以上方法仅能测量开放孔的孔体积。小角散射系列实验利用X射线或中子在穿过介质与弥散分布于其中的散射体(孔隙)发生的相干散射现象,测定样品中孔隙的孔径分布,微-纳米CT利用X射线穿过物质后强度的衰减作用研究物质内部的结构特征,能对岩石孔隙或裂隙进行三维重构,研究三维空间内岩石孔隙的孔径分布、孔隙形状等特征,饱水核磁共振通过测定流体信号进行岩石全孔径表征,以上方法能测定岩石中的总孔隙体积。因此多种孔隙测定方法结合能反应密闭孔体积。然而联用多种方法使得操作繁琐,成本较高,且不同方法对样品规格有要求。密闭孔中也赋存油气,其对油气资源评价的影响是不可忽视的。可压裂性研究目前集中于从矿物组成和力学参数方面对岩石进行评价,密闭孔的可压裂性受控于密闭孔隙发育程度,孔隙类型等多种因素的影响,研究密闭孔隙的可压裂性能为后续压裂开采提供理论支撑,目前尚没有参数表征密闭孔隙的可压裂性。
岩石密度是岩石重要的基本物理参数之一,它与岩石中的密闭孔隙存在对应关系。岩石密度测量方法较多,例如有密度仪法和蜡封法。密度仪法通过高精度天平分别测出样品在空气中和水中的重量,根据重量差等于物体排开水的重量建立等式,进而求得样品密度。蜡封法是用刚过熔点的石蜡在样品表面均匀的涂一层蜡膜,分别在空气中和水中测量其重量,同样根据重量差与物体排开水的重量建立等式,求得样品密度。上述方案在测量过程中并未完全考虑孔隙,特别是密闭孔隙对测量结果的影响。因此目前需要一种能更准确测量岩石密度的方法,以便进一步分析岩石中的密闭孔隙,进而为油气资源评价提供依据。
发明内容
为了解决上述问题,本发明提供了一种页岩密闭孔隙可压裂性的测定方法,具体实施步骤如下:
S101:将样品粉碎至某一粒径i,称取该粒径下样品的质量mi
S102:根据波义尔定律测得该粒径下样品的视骨架体积vi
S103:根据公式
Figure BDA0003755012450000021
计算出该粒径下岩石的视密度;
S104:重复上述S101~S103步骤N次,每次重复时,当前粒径需小于上次粒径,得到N组视密度与粒径数据;
S105:对视密度-粒径关系进行拟合,得到拟合曲线;并根据拟合曲线,获取粒径阈值imin下的岩石视密度
Figure BDA0003755012450000022
S106:根据有机碳含量和全岩XRD衍射数据,计算单位质量岩石骨架体积为
Figure BDA0003755012450000023
再通过
Figure BDA0003755012450000024
计算岩石真密度范围;若岩石视密度
Figure BDA0003755012450000025
处于岩石真密度范围,则表明岩石视密度
Figure BDA0003755012450000026
可靠,进入步骤S107;否则表示岩石视密度
Figure BDA0003755012450000027
不可靠,结束计算;
S107:利用公式
Figure BDA0003755012450000028
计算不同粒径下单位质量岩石中密闭孔的体积,并计算密闭孔隙度
Figure BDA0003755012450000029
S108:建立密闭孔隙度与粒径的关系,利用曲线斜率K评价密闭孔的可压裂性。
与现有技术相比,本发明的有益效果包括:能够更好分析岩石中的密闭孔隙,进而为油气资源评价提供依据。
附图说明
图1是本发明方法的流程图;
图2页1视密度随粒径的变化;
图3是不同岩石中粒径与密闭孔隙度关系;
图4是页1剖孔率随粒径的变化。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参考图1,图1是本发明方法的流程图;具体包括以下步骤:
S101:将样品粉碎至某一粒径i,称取该粒径下样品的质量mi
S102:根据波义尔定律测得该粒径下样品的视骨架体积vi
S103:根据公式
Figure BDA0003755012450000031
计算出该粒径下岩石的视密度;
S104:重复上述S101~S103步骤N次,每次重复时,当前粒径需小于上次粒径,得到N组视密度与粒径数据;
S105:对视密度-粒径关系进行拟合,得到拟合曲线;并根据拟合曲线,获取粒径阈值imin下的岩石视密度
Figure BDA0003755012450000032
S106:根据有机碳含量和全岩XRD衍射数据,计算单位质量岩石骨架体积为
Figure BDA0003755012450000033
再通过
Figure BDA0003755012450000034
计算岩石真密度范围;若岩石视密度
Figure BDA0003755012450000035
处于岩石真密度范围,则表明岩石视密度
Figure BDA0003755012450000036
可靠,进入步骤S107;否则表示岩石视密度
Figure BDA0003755012450000037
不可靠,结束计算;
S107:利用公式
Figure BDA0003755012450000038
计算不同粒径下单位质量岩石中密闭孔的体积,并计算密闭孔隙度
Figure BDA0003755012450000039
S108:建立密闭孔隙度与粒径的关系,利用曲线斜率K评价密闭孔的可压裂性。
对于上述发明实施例的步骤,下面举例说明:
本发明实施例选取3块页岩样品(页1、页2、页3),视密度的测量及密闭孔隙度,剖孔率和可压裂性评价参数的计算以页1样品为例,将样品分别粉碎至15mm、10mm、6mm、4mm、2mm、1mm、60~80目(247.21~185.41um)、150~200目(98.88~74.16um)、>200目(<74.16um)[最大粒径不限于15mm],称取不同粒径样品的质量,利用波义耳定律测得不同粒径样品的视骨架体积,计算出不同粒径样品的骨架视密度。通过逐级打开样品内的密闭孔隙,得到的密度值也更接近样品的真实骨架密度。对视密度-粒径关系进行拟合[不限于对数关系],粒径下限imin取甲烷分子直径(0.38nm)[不限于甲烷分子直径,如可取氦气、二氧化碳等],利用拟合公式外推岩石密度为2.756g/cm3;通过有机碳含量和全岩XRD衍射数据计算ρ密度范围为2.593~2.781g/cm3,判断外推的密度是在此范围内,因此所推密度可靠;在此定义密闭孔隙度为:单位质量岩石中密闭孔体积占岩石视骨架体积之比,利用公式
Figure BDA0003755012450000041
即可获得样品在不同粒径下的密闭孔体积,进而求得密闭孔隙度;假设页岩颗粒为球状,则单位质量不同粒径下的颗粒表面积可由s=4×πr2×n(颗粒数目)计算,在此定义剖孔率为:随粒径减小,单位面积密闭孔隙度的变化量,利用公式
Figure BDA0003755012450000042
获得不同粒径下的剖孔率,结果显示剖孔率随粒径的减小而减小;建立密闭孔隙度与粒径的对数关系,在对数坐标下所建立的直线斜率可表示密闭孔的可压裂性,斜率越大表明密闭孔在岩石破碎的过程中被打开的越多,越易,其可压裂性也越好。由图3示例可知样品密闭孔的可压裂性参数为:页2=0.6506、页3=0.5677、页1=0.2562,其密闭孔的可压裂性依次为:页2>页3>页1。下面是本发明实施例中的相关数据,见表1、2、3。
表1页1不同粒径下的骨架视密度和密闭孔隙度
粒径/um 质量/g 视骨架体积/cm<sup>3</sup> 视密度/g·cm<sup>3</sup> 密闭孔体积/cm<sup>3</sup>·g 密闭孔隙度/%
15000 8.997 3.422 2.629 0.018066 4.749939
10000 8.655 3.284 2.635 0.017214 4.535973
6000 8.362 3.169 2.639 0.016699 4.406371
4000 5.827 2.204 2.643 0.016011 4.232572
2000 11.664 4.400 2.651 0.014896 3.949441
1000 10.626 3.996 2.659 0.013747 3.655997
247.21~185.41 9.673 3.632 2.663 0.013197 3.514709
98.88~74.16 9.095 3.411 2.667 0.012732 3.395157
<74.16 8.820 3.304 2.669 0.012339 3.293720
0.00038(甲烷) 2.756 0 0
表2利用有机碳含量和全岩XRD衍射数据计算1g页1ρ范围
Figure BDA0003755012450000051
各矿物参考密度(根据地区实际情况):有机碳:1.54~1.64g/cm3;蒙脱石:2~2.7g/cm3;伊利石:2.6~2.9g/cm3;高岭石:2.54~2.6g/cm3;绿泥石:2.6~2.85g/cm3;石英:2.65g/cm3;斜长石:2.61~2.76g/cm3;方解石:2.6~2.8g/cm3;白云石:2.8~2.9g/cm3;黄铁矿:4.9~5.2g/cm3
表3页1不同粒径下的剖孔率
Figure BDA0003755012450000052
Figure BDA0003755012450000061
本发明的有益效果是:能够更好分析岩石中的密闭孔隙,进而为油气资源评价提供依据。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

Claims (1)

1.一种页岩密闭孔隙可压裂性的测定方法,其特征在于:包括以下步骤:
S101:将样品粉碎至某一粒径i,称取该粒径下样品的质量mi
S102:根据波义尔定律测得该粒径下样品的视骨架体积vi
S103:根据公式
Figure FDA0003755012440000011
计算出该粒径下岩石的视密度;
S104:重复上述S101~S103步骤N次,每次重复时,当前粒径需小于上次粒径,得到N组视密度与粒径数据;
S105:对视密度-粒径关系进行拟合,得到拟合曲线;并根据拟合曲线,获取粒径阈值imin下的岩石视密度ρimin
S106:根据有机碳含量和全岩XRD衍射数据,计算单位质量岩石骨架体积为
Figure FDA0003755012440000012
再通过
Figure FDA0003755012440000013
计算岩石真密度范围;若岩石视密度
Figure FDA0003755012440000014
处于岩石真密度范围,则表明岩石视密度
Figure FDA0003755012440000015
可靠,进入步骤S107;否则表示岩石视密度
Figure FDA0003755012440000016
不可靠,结束计算;
S107:利用公式
Figure FDA0003755012440000017
计算不同粒径下单位质量岩石中密闭孔的体积,并计算密闭孔隙度
Figure FDA0003755012440000018
S108:建立密闭孔隙度与粒径的关系,利用曲线斜率K评价密闭孔的可压裂性。
CN202210852055.XA 2022-07-20 一种页岩密闭孔隙可压裂性的测定方法 Active CN115326651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210852055.XA CN115326651B (zh) 2022-07-20 一种页岩密闭孔隙可压裂性的测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210852055.XA CN115326651B (zh) 2022-07-20 一种页岩密闭孔隙可压裂性的测定方法

Publications (2)

Publication Number Publication Date
CN115326651A true CN115326651A (zh) 2022-11-11
CN115326651B CN115326651B (zh) 2024-06-11

Family

ID=

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442950A (en) * 1993-10-18 1995-08-22 Saudi Arabian Oil Company Method and apparatus for determining properties of reservoir rock
CN102811951A (zh) * 2010-10-01 2012-12-05 研磨剂与耐火品研究与开发中心C.A.R.R.D.有限公司 基于熔融氧化铝的多晶Al2O3体
CN103439238A (zh) * 2013-09-03 2013-12-11 中国地质大学(北京) 煤页岩中封闭孔隙度的测量方法
CN103674802A (zh) * 2013-11-05 2014-03-26 中国石油天然气股份有限公司 岩石封闭孔隙度测定方法
CN103788935A (zh) * 2012-11-05 2014-05-14 安东柏林石油科技(北京)有限公司 一种油气井半渗封隔颗粒及其制备方法
SG11201403404WA (en) * 2011-12-19 2014-09-26 Praxair Technology Inc Aqueous slurry for the production of thermal and environmental barrier coatings and processes for making and applying the same
CN104453873A (zh) * 2014-10-23 2015-03-25 中国石油天然气股份有限公司 页岩油气经济有效层段的评价方法
CN112816392A (zh) * 2021-03-11 2021-05-18 厦门厦钨新能源材料股份有限公司 晶态物质的闭孔孔隙率的分析测试方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442950A (en) * 1993-10-18 1995-08-22 Saudi Arabian Oil Company Method and apparatus for determining properties of reservoir rock
CN102811951A (zh) * 2010-10-01 2012-12-05 研磨剂与耐火品研究与开发中心C.A.R.R.D.有限公司 基于熔融氧化铝的多晶Al2O3体
SG11201403404WA (en) * 2011-12-19 2014-09-26 Praxair Technology Inc Aqueous slurry for the production of thermal and environmental barrier coatings and processes for making and applying the same
CN103788935A (zh) * 2012-11-05 2014-05-14 安东柏林石油科技(北京)有限公司 一种油气井半渗封隔颗粒及其制备方法
CN103439238A (zh) * 2013-09-03 2013-12-11 中国地质大学(北京) 煤页岩中封闭孔隙度的测量方法
CN103674802A (zh) * 2013-11-05 2014-03-26 中国石油天然气股份有限公司 岩石封闭孔隙度测定方法
CN104453873A (zh) * 2014-10-23 2015-03-25 中国石油天然气股份有限公司 页岩油气经济有效层段的评价方法
CN112816392A (zh) * 2021-03-11 2021-05-18 厦门厦钨新能源材料股份有限公司 晶态物质的闭孔孔隙率的分析测试方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHIYE GAO 等: "effect of shale sample particle size on pore strucutre obtained from high pressure mercury intrusion porosimetry", GEOFLUIDS, 3 September 2021 (2021-09-03), pages 1 - 13 *
蒋昌波;刘易庄;肖政;: "多孔混凝土内部孔隙特征研究", 硅酸盐通报, no. 04, 15 April 2015 (2015-04-15) *
邹才能;潘松圻;荆振华;高金亮;杨智;吴松涛;赵群;: "页岩油气革命及影响", 石油学报, no. 01, 15 January 2020 (2020-01-15) *

Similar Documents

Publication Publication Date Title
Zhang et al. Heterogeneity characterization of the lower Silurian Longmaxi marine shale in the Pengshui area, South China
Lai et al. Insight into the pore structure of tight sandstones using NMR and HPMI measurements
Nooruddin et al. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples
Gao et al. Characterizing the pore structure of low permeability Eocene Liushagang Formation reservoir rocks from Beibuwan Basin in northern South China Sea
Hou et al. Investigation on pore structure and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements
Zhang et al. Nanoscale Pore Structure Characterization and Permeability of Mudrocks and Fine‐Grained Sandstones in Coal Reservoirs by Scanning Electron Microscopy, Mercury Intrusion Porosimetry, and Low‐Field Nuclear Magnetic Resonance
Bian et al. Pore structure fractal characterization and permeability simulation of natural gas hydrate reservoir based on CT images
Zhang et al. Impact of de-ionized water on changes in porosity and permeability of shales mineralogy due to clay-swelling
Duan et al. Characterization and classification of pore structures in deeply buried carbonate rocks based on mono-and multifractal methods
Li et al. Multifractal behavior of the micro-and mesopore structures of brittle tectonically deformed coals and its influence on methane adsorption capacity
Lu et al. Quantitative characterization and differences of the pore structure in lacustrine siliceous shale and argillaceous shale: A case study of the Upper Triassic Yanchang Formation shales in the southern Ordos Basin, China
AU2020101583A4 (en) A Method for Shale Gas Reservoirs Exploration and its System
CN115326651A (zh) 一种页岩密闭孔隙可压裂性的测定方法
CN115326651B (zh) 一种页岩密闭孔隙可压裂性的测定方法
Wang et al. Classifications of the Reservoir Space of Tight Sandstone Based on Pore Structure, Connectivity, and Fractal Character: A Case Study from the Chang 7 Member of the Triassic Yanchang Formation in the Ordos Basin, China
Matthews et al. Use of a void network model to correlate porosity, mercury porosimetry, thin section, absolute permeability, and NMR relaxation time data for sandstone rocks
Liang et al. Preliminary experimental study of methane adsorption capacity in shale after brittle deformation under uniaxial compression
Liu et al. Characterization of shale pore structure by multitechnique combination and multifractal analysis and its significance
Song et al. Quantitative evaluation of pore connectivity of shales with a type H3 sorption hysteresis loop
Martus et al. Improved methodology development for assessing the reservoir collector properties by the quantitative reservoir characterization tools
Zhang et al. Pore structure and fractal characteristics of ultralow-permeability sandstone reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin
CN112069444A (zh) 一种利用测井资料计算储集层试井渗透率方法及计算机
CN113945497A (zh) 油气藏储层流体的可动性的评价方法
Wang et al. Micro-nano pore throat structure and occurrence characteristics of tight sandstone gas: a case study in the Ordos Basin, China
Wopara et al. Prediction of flow and transport properties in porous media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant