CN115326601B - Dynamic impact test and evaluation method of anchor-net coupling support rock mass - Google Patents
Dynamic impact test and evaluation method of anchor-net coupling support rock mass Download PDFInfo
- Publication number
- CN115326601B CN115326601B CN202211256429.8A CN202211256429A CN115326601B CN 115326601 B CN115326601 B CN 115326601B CN 202211256429 A CN202211256429 A CN 202211256429A CN 115326601 B CN115326601 B CN 115326601B
- Authority
- CN
- China
- Prior art keywords
- rock mass
- anchor
- test piece
- impact
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011435 rock Substances 0.000 title claims abstract description 111
- 230000008878 coupling Effects 0.000 title claims abstract description 51
- 238000010168 coupling process Methods 0.000 title claims abstract description 51
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 51
- 238000009863 impact test Methods 0.000 title claims abstract description 26
- 238000011156 evaluation Methods 0.000 title claims abstract description 23
- 238000012360 testing method Methods 0.000 claims abstract description 57
- 238000012544 monitoring process Methods 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 28
- 230000000694 effects Effects 0.000 claims abstract description 15
- 238000004873 anchoring Methods 0.000 claims abstract description 14
- 238000010521 absorption reaction Methods 0.000 claims abstract description 13
- 230000006872 improvement Effects 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 3
- 230000006378 damage Effects 0.000 claims abstract 3
- 238000005507 spraying Methods 0.000 claims abstract 2
- 238000006073 displacement reaction Methods 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 239000012634 fragment Substances 0.000 claims 3
- 238000012216 screening Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 9
- 230000035939 shock Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 14
- 238000005553 drilling Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 229910000937 TWIP steel Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/30—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
- G01N2203/0067—Fracture or rupture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0676—Force, weight, load, energy, speed or acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/067—Parameter measured for estimating the property
- G01N2203/0682—Spatial dimension, e.g. length, area, angle
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
Abstract
Description
技术领域technical field
本发明涉及岩石力学领域,具体涉及锚网耦合支护岩体动力冲击试验与评价方法。The invention relates to the field of rock mechanics, in particular to a rock mass dynamic impact test and evaluation method supported by anchor-network coupling.
背景技术Background technique
随着煤炭资源开采深度的不断增加,冲击地压、巷道围岩大变形等深部工程灾害日益增多,给深部资源的高效开采造成了很大的威胁。冲击地压是采掘工作面岩体集聚的弹性变形能突然释放,产生强烈振动,造成岩体剧烈破坏的动力灾害。With the continuous increase of the mining depth of coal resources, deep engineering disasters such as rock burst and large deformation of roadway surrounding rocks are increasing, which pose a great threat to the efficient mining of deep resources. Rock burst is a dynamic disaster in which the accumulated elastic deformation energy of the rock mass in the mining face is released suddenly, resulting in strong vibration and severe damage to the rock mass.
锚杆(索)-网耦合支护是一种经济有效的支护方式,锚网可将锚杆(索)预紧力的点荷载转化为面荷载,扩大主动支护有效面积,提高围岩的自承能力,从而提高围岩抵抗动力扰动与冲击的能力。为了测试锚杆锚网耦合后的抗冲击性能,需要可以模拟支护岩体剧烈破坏现象和过程的测试装置。现有的实验室测试设备均是将锚杆一端固定,对锚杆的另一端直接施加冲击荷载,这样实际测得的锚杆抗冲击性能包括锚杆全部长度受拉伸长所吸收的能量,测试得到的结果与锚杆现场特性有较大差别,目前的试验设备不能真实反映锚杆锚网-围岩之间的相互作用,即锚杆锚网承受的冲击荷载与现场实际情况不一致,而且不能直接反映在冲击荷载作用下锚杆锚网耦合体对围岩的加固作用,同时,岩体剧烈破坏时为高应变率破坏,对于锚网耦合支护岩体高应变率下动力测试难以进行,缺乏相应的测试方法,难以得到锚杆锚网与岩体之间的相互耦合作用机理。Anchor (cable)-net coupling support is an economical and effective support method. The anchor net can convert the point load of the anchor (cable) pre-tightening force into a surface load, expand the effective area of active support, and improve the quality of the surrounding rock. self-supporting capacity, thereby improving the ability of the surrounding rock to resist dynamic disturbance and impact. In order to test the impact resistance performance of bolt and anchor network coupling, a test device that can simulate the violent failure phenomenon and process of supporting rock mass is needed. The existing laboratory testing equipment fixes one end of the anchor rod and directly applies an impact load to the other end of the anchor rod, so that the actual measured impact resistance of the anchor rod includes the energy absorbed by the entire length of the anchor rod when stretched. The results obtained by the test are quite different from the field characteristics of the bolt. The current test equipment cannot truly reflect the interaction between the bolt and the anchor net-surrounding rock, that is, the impact load on the anchor bolt and the anchor net is inconsistent with the actual situation on site, and It cannot directly reflect the reinforcement effect of the bolt-bolt-network coupling body on the surrounding rock under the action of impact load. At the same time, when the rock mass is severely damaged, it is a high-strain rate failure. , the lack of corresponding test methods, it is difficult to obtain the mutual coupling mechanism between the bolt anchor network and the rock mass.
发明内容Contents of the invention
本发明的目的是针对现有技术存在的缺陷,提供锚网耦合支护岩体动力冲击试验与评价方法,通过对布置有锚杆锚网的耦合岩体试样进行高应变率冲击试验,并配置相应的监测组件对冲击试验过程进行监测,设定评价指标对处理后的参数进行评价,辅助研究锚杆锚网耦合体与岩体之间的作用机理。The purpose of the present invention is to aim at the defects existing in the prior art, and provide the rock mass dynamic impact test and evaluation method of the anchor net coupling support, by carrying out the high strain rate impact test to the coupled rock mass sample arranged with the bolt anchor net, and Configure corresponding monitoring components to monitor the impact test process, set evaluation indicators to evaluate the processed parameters, and assist in the study of the mechanism of action between the bolt-bolt-network coupling body and the rock mass.
锚网耦合支护岩体动力冲击试验与评价方法,采用以下方案:The dynamic impact test and evaluation method of anchor-net coupling supporting rock mass adopts the following scheme:
包括:include:
对立方体岩体试件非冲击面布置锚网和锚杆并预紧,对试件表面喷涂散斑,获取耦合试件;Arrange anchor nets and bolts on the non-impact surface of the cube rock mass specimen and pre-tighten them, spray speckle on the surface of the specimen to obtain the coupled specimen;
对耦合试件布置监测组件,并施加高应变率冲击载荷;Arrange monitoring components on the coupling test piece, and apply high strain rate impact load;
通过监测组件获取耦合试件在冲击下的数据,收集岩体碎屑;Obtain the data of the coupling test piece under impact through the monitoring component, and collect rock debris;
对获取的数据进行处理分析,依据指标对锚固效果进行评价;Process and analyze the acquired data, and evaluate the anchoring effect according to the indicators;
其中,锚固效果指标包括:岩体表面应变、裂纹演化特征、岩体破坏强度、锚杆变形量、吸能能力提高系数和岩体碎屑分布特征。Among them, the anchoring effect index includes: rock mass surface strain, crack evolution characteristics, rock mass failure strength, bolt deformation, energy absorption capacity improvement coefficient and rock mass debris distribution characteristics.
进一步地,所述锚杆布置在试件侧面的四角位置,该侧面四角位置分别设有贯穿试件的锚杆,布置锚网后,对锚杆施加预紧力。Further, the anchor rods are arranged at the four corners of the side of the test piece, the four corners of the side are respectively provided with anchor rods penetrating the test piece, and after the anchor net is arranged, a pre-tightening force is applied to the anchor rods.
进一步地,所述锚网围绕试件非冲击面连续布置,包裹试件并避让锚杆,锚杆两端安装压力监测元件。Further, the anchor net is continuously arranged around the non-impact surface of the test piece, wraps the test piece and avoids the anchor rod, and pressure monitoring elements are installed at both ends of the anchor rod.
进一步地,所述试件上锚杆的预紧力可调节,对不同试样配置不同预紧力分别获取冲击试验数据,对比分析不同预紧力下试样的抗冲击能力。Further, the pre-tightening force of the anchor rod on the test piece can be adjusted, and different pre-tightening forces are configured for different samples to obtain impact test data, and the impact resistance capabilities of the samples under different pre-tightening forces are compared and analyzed.
进一步地,所述监测组件包括压力监测元件、应力应变监测元件、位移监测元件及图像采集元件;压力监测元件布置于锚杆,应力应变监测元件布置于耦合试件,位移监测元件布置于耦合试件侧面,以监测岩体、锚网及锚杆位移,图像采集元件获取冲击试验时的图像。Further, the monitoring component includes a pressure monitoring element, a stress and strain monitoring element, a displacement monitoring element and an image acquisition element; the pressure monitoring element is arranged on the anchor rod, the stress and strain monitoring element is arranged on the coupling test piece, and the displacement monitoring element is arranged on the coupling test piece. The side of the component is used to monitor the displacement of the rock mass, anchor net and bolt, and the image acquisition component acquires images during the impact test.
进一步地,对耦合试件表面变形前后的散斑图像灰度进行相关性计算,获取试件的位移和应变参数,计算耦合试件岩体表面应变分布。Further, the correlation calculation is performed on the gray scale of the speckle image before and after the surface deformation of the coupled specimen, the displacement and strain parameters of the specimen are obtained, and the strain distribution on the rock mass surface of the coupled specimen is calculated.
进一步地,采用盒维数法进行测量,采用不同码尺的正方形格子覆盖所测量区域,给定格子的码尺并计算出覆盖图像所需的方格的数目,进行拟合获取岩石裂纹分形维数,计算裂纹演化特征。Furthermore, the box dimension method is used for measurement, and square grids of different yardages are used to cover the measured area. The yardage of the grid is given and the number of grids required to cover the image is calculated, and the fractal dimension of rock cracks is obtained by fitting. number to calculate the crack evolution characteristics.
进一步地,利用布置在锚杆上的动态压力传感器监测得到压力随时间变化曲线,定义曲线峰值点为岩体破坏强度;利用激光引伸计实时测量锚杆位移,并计算锚杆的延伸率,得到锚杆变形量。Further, the dynamic pressure sensor arranged on the bolt is used to monitor the pressure versus time curve, and the peak point of the curve is defined as the failure strength of the rock mass; the laser extensometer is used to measure the displacement of the bolt in real time, and the elongation of the bolt is calculated to obtain Anchor deformation.
进一步地,分别计算耦合试件吸收的能量和无支护岩体试件吸收的能量,吸能能力提高系数等于耦合试件吸收的总能量与无支护岩体试件吸收的总能量之比;Further, the energy absorbed by the coupled specimen and the energy absorbed by the unsupported rock mass specimen are calculated separately, and the energy absorption capacity improvement coefficient is equal to the ratio of the total energy absorbed by the coupled specimen to the total energy absorbed by the unsupported rock mass specimen ;
将锚网耦合支护岩体破坏后的碎屑按照粒径大小进行筛分,获取粒径不同的多组碎屑,计算每组碎屑质量占总质量的比值。The broken debris of anchor-mesh coupling supporting rock mass is screened according to particle size to obtain multiple groups of debris with different particle sizes, and the ratio of the mass of each group of debris to the total mass is calculated.
进一步地,所述评价包括以下步骤:Further, the evaluation includes the following steps:
将各个评价指标进行标准化处理;Standardize each evaluation index;
采用主客观综合赋权方法求取各个指标的权重;The subjective and objective comprehensive weighting method is used to obtain the weight of each index;
利用模糊综合评价法对岩体锚固效果进行评价。The fuzzy comprehensive evaluation method is used to evaluate the anchorage effect of rock mass.
与现有技术相比,本发明具有的优点和积极效果是:Compared with prior art, the advantages and positive effects that the present invention has are:
(1)针对目前锚杆锚网耦合支护岩体的抗冲击性能不便获取的问题,通过对布置有锚杆锚网的耦合岩体试样进行高应变率冲击试验,并配置相应的监测组件对冲击试验过程进行监测,设定评价指标对处理后的参数进行评价,模拟现场工况,获取耦合试样的抗冲击性能。(1) In view of the inconvenient acquisition of the impact resistance performance of the rock mass supported by the coupling of the bolt and anchor net, the high strain rate impact test is carried out on the coupled rock mass sample with the bolt and anchor net, and the corresponding monitoring components are configured. The impact test process is monitored, evaluation indicators are set to evaluate the processed parameters, and the on-site working conditions are simulated to obtain the impact resistance of the coupled samples.
(2)根据锚网耦合支护岩体表面应变分布、裂纹分形维数、岩体破坏强度、锚杆轴向变形、吸能能力提高系数、岩体碎屑分布特征六个指标,采用“层次分析法+熵权法”主客观综合赋权方法求取各个指标的权重,利用模糊综合评价法对岩体锚固效果进行评价,辅助研究锚杆锚网耦合体与岩体之间的作用机理。(2) According to the six indexes of rock mass surface strain distribution, crack fractal dimension, rock mass failure strength, bolt axial deformation, energy absorption capacity improvement coefficient, and rock debris distribution characteristics of anchor network coupling support, the "level Analytical method + entropy weight method" subjective and objective comprehensive weighting method to obtain the weight of each index, use the fuzzy comprehensive evaluation method to evaluate the rock mass anchoring effect, and assist in the study of the mechanism of action between the bolt bolt network coupling body and the rock mass.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention.
图1为本发明实施例1中锚网耦合支护岩体动力冲击试验与评价方法的流程图。Fig. 1 is a flow chart of the rock mass dynamic impact test and evaluation method of anchor-net coupling support rock mass in Example 1 of the present invention.
图2为本发明实施例1中锚网耦合支护岩体冲击试验设备的示意图。Fig. 2 is a schematic diagram of the impact test equipment for anchor-net coupling supporting rock mass in Example 1 of the present invention.
图3为本发明实施例1中锚网耦合支护岩体试件的示意图。Fig. 3 is a schematic diagram of a rock mass specimen supported by anchor-net coupling in Example 1 of the present invention.
图4为本发明实施例1中锚网耦合支护岩体锚固效果评价层次结构模型示意图。Fig. 4 is a schematic diagram of a hierarchical structure model for evaluating the anchoring effect of rock mass coupled with anchor nets in Example 1 of the present invention.
图中,1 霍普金森动力加载系统;2 子弹;3 激光测速计;4 入射杆;5 防护罩;6摄像机;7 耦合试件;8 透射杆;9 激光引伸计;10 应变片;11 托盘;12 锁具;13 动态压力传感器;14 锚杆;15 岩体试件冲击面;16 岩体试件;17 锚网。In the figure, 1 Hopkinson dynamic loading system; 2 bullet; 3 laser velocimeter; 4 incident rod; 5 protective cover; 6 camera; 7 coupling specimen; 8 transmission rod; 9 laser extensometer; 10 strain gauge; 12 lock; 13 dynamic pressure sensor; 14 bolt; 15 impact surface of rock mass specimen; 16 rock mass specimen; 17 anchor net.
具体实施方式Detailed ways
实施例1Example 1
本发明的一个典型实施例中,如图1-图4所示,给出一种锚网耦合支护岩体动力冲击试验与评价方法。In a typical embodiment of the present invention, as shown in Fig. 1-Fig. 4, a dynamic impact test and evaluation method of rock mass coupled with anchor net is provided.
步骤一:根据岩体动力学测试标准制备立方体岩体试件16,对岩体试件16进行钻孔,钻孔垂直岩面打设并穿透试件,然后向钻孔内导入锚杆14和锚固剂。待锚固剂凝固后,铺设锚网17,并依次安装托盘11、锁具12、动态压力传感器13,并施加预紧力,在岩体表面喷涂散斑,完成锚杆14锚网17耦合支护岩体后得到耦合试件7。Step 1: Prepare a cubic rock
步骤二:将耦合试件7布置于霍普金森动力加载系统1,设置防护罩5,耦合试件7夹持在入射杆4和透射杆8中间,在入射杆4和透射杆8上粘贴应变片10,将应变片10与超动态应变仪连接,仪器调试完成后开始冲击试验。Step 2: Arrange the
步骤三:在霍普金森压杆与冲击杆之间放置激光测速计3,测量子弹2速度。Step 3: Place a
步骤四:高压气体作为冲击动力源,发射管内嵌于压缩空气室的排气口,子弹2内置于发射管内,释放高压气体驱动子弹2作用于入射杆4,入射杆4作用于岩体试件冲击面15,完成动力冲击加载。Step 4: High-pressure gas is used as the impact power source, the launch tube is embedded in the exhaust port of the compressed air chamber, the
步骤五:利用监测系统记录耦合试件7在动力冲击条件下的应力、应变、位移等数据。试验完成后,收集岩体碎屑。Step 5: Use the monitoring system to record the stress, strain, displacement and other data of the
步骤六:综合岩体表面应变、裂纹演化特征、岩体破坏强度、锚杆14变形、吸能能力提高系数和岩体碎屑分布特征对岩体锚固效果进行评价。Step 6: Evaluate the anchoring effect of the rock mass based on the rock mass surface strain, crack evolution characteristics, rock mass failure strength,
如图1、图3所示,步骤一的岩体试件16钻孔打设,钻孔直径略大于锚杆14材料直径,保证锚杆14与托盘11能够合理安装,四个钻孔呈方形布置,保证锚网17材料合理固定。As shown in Figure 1 and Figure 3, the rock
同时,如图3所示,步骤一的锚网17材料铺设,首先制作合适尺寸的锚网17材料,锚网17宽度与非冲击面宽度相等,将锚网17从钻孔岩面开始围绕岩体裹紧,然后将锚杆14材料穿过锚网17与岩体试件16,并在两端依次安装托盘11、动态压力传感器13和锁具12,形成锚网耦合支护岩体。Simultaneously, as shown in Figure 3, the anchor net 17 material laying of
锚网耦合支护岩体的锚杆14和锚网17材料采用理想弹塑性材料,具有可施加高预应力、高恒阻、高吸能、高延伸率特性。锚固材料包括NPR(Negative Poisson Ratio,负泊松比)材料、TWIP(Twinning Induced Plasticity Steel,孪生诱发塑性钢)高强高韧材料和其他理想塑性材料。The material of the
需要指出的是,试件上锚杆14的预紧力可调节,对不同试样配置不同预紧力分别获取冲击试验数据,对比分析不同预紧力下试样的抗冲击能力;同样的,对于锚杆14和锚网17,对不同试样可以配置不同的长度规格、不同的直径规格的锚固材料,也可以配置为不同的材料,同样,对不同配置下的锚固材料分别获取试验数据,对比分析不同配置下试样的抗冲击能力。It should be pointed out that the pre-tightening force of the
另外,对于岩体试件16上的钻孔参数,也可以进行调节,对不同试样配置不同数量、不同间距、不同布置、不同孔径的钻孔,并分别获取冲击试验数据,分析不同钻孔配置下试样的抗冲击能力。In addition, the drilling parameters on the rock
如图1和图2所示,对于监测组件,包括压力监测元件、应力应变监测元件、位移监测元件及高速摄像系统。压力监测元件由动态压力传感器13和电荷放大器组成,应力应变监测元件由应变片10及动态应变采集仪组成。位移监测元件由激光引伸计9构成,垂直于冲击方向且在耦合试件7一侧放置,监测岩体试件16、锚网17及锚杆14位移。As shown in Figure 1 and Figure 2, the monitoring components include pressure monitoring components, stress and strain monitoring components, displacement monitoring components and high-speed camera systems. The pressure monitoring element is composed of a
压力监测元件布置于锚杆14,应力应变监测元件布置于耦合试件7,图像采集元件获取冲击试验时的图像,图像采集元件可以采用高速摄像机6。The pressure monitoring element is arranged on the
如图1所示,计算耦合试件7表面的应变分布。As shown in FIG. 1 , the strain distribution on the surface of the
利用数字图像相关方法对试件表面变形前后的散斑图像灰度进行相关性计算,从而获得试件的位移和应变等参数。首先计算变形图像上一定范围内的所有点与变形前图像参考点的相关系数,然后将相关系数最大的点作为目标点。在此基础上,通过计算参考点和目标点的坐标差值可以得出变形前后的位移,进而计算出岩体的应变。The digital image correlation method is used to calculate the correlation of the speckle image gray level before and after the surface deformation of the specimen, so as to obtain the displacement and strain parameters of the specimen. First, calculate the correlation coefficient between all points on the deformed image within a certain range and the reference point of the image before deformation, and then use the point with the largest correlation coefficient as the target point. On this basis, the displacement before and after deformation can be obtained by calculating the coordinate difference between the reference point and the target point, and then the strain of the rock mass can be calculated.
如图1所示,计算耦合试件7表面裂纹分形维数。As shown in Fig. 1, calculate the fractal dimension of the crack on the surface of
分形维数表征裂纹图形的不规则和复杂程度。岩体裂纹分形维数采用盒维数法进行测量,采用不同码尺的正方形格子(a*a)去覆盖所测量区域,给定格子的码尺即可计算出覆盖图像所需的方格的数目,然后进行拟合。The fractal dimension characterizes the irregularity and complexity of the crack pattern. The fractal dimension of rock mass cracks is measured by the box dimension method. Square grids (a*a) with different yardages are used to cover the measured area. The grid size required to cover the image can be calculated for a given grid size. number, and fit it.
式中,a为方格的码尺,N(a)为相应的方格数,D为盒维数,A为相应的系数。In the formula, a is the yardstick of the grid, N(a) is the corresponding grid number, D is the box dimension, and A is the corresponding coefficient.
如图1所示,计算耦合试件7破坏强度。As shown in Fig. 1, the failure strength of
利用动态压力传感器13监测得到压力随时间变化曲线,定义曲线峰值点为岩体破坏强度。The
如图1所示,计算锚杆14轴向变形。As shown in FIG. 1 , the axial deformation of the
利用激光引伸计9实时测量锚杆14位移,并计算锚杆14的延伸率。The displacement of the
如图1所示,计算吸能能力提高系数。As shown in Figure 1, calculate the energy absorption capacity improvement coefficient.
通过动态压力传感器13获得锚杆14轴力F随时间t的变化曲线,通过激光引伸计9获得锚杆14变形x随时间t的变化曲线,从而得到轴力F=f(x)随位移变形的变化曲线,进一步得到冲击过程中锚杆14吸收的能量ΔE B ,Obtain the change curve of the axial force F of the
式中ΔE B 为锚杆14吸收的冲击能量,S为锚杆14的最终位移,f(x)为锚杆14轴力,x为锚杆14的位移变形。In the formula, ΔE B is the impact energy absorbed by the
利于能量守恒定律可知:According to the law of conservation of energy, we know that:
式中ΔE tot 为耦合试件7总吸收能量,ΔE B 为锚杆14吸收的冲击能量,ΔE R 为岩体吸收的冲击能量,ΔE W 为锚网17吸收的冲击能量,O(ΔE)为冲击过程中以热能、声能等其他形式耗散的微量能量,m为子弹2体质量,v为子弹初速度。where ΔE tot is the total absorbed energy of the
通过激光测速机得到子弹2的初速度,结合岩体质量计算得到耦合试件7吸收的冲击能量ΔE tot 。The initial velocity of the
进一步求解可知锚杆14能量吸收率η为锚杆14吸收的能量ΔE B 与耦合试件7总吸收能量ΔE tot 比值的百分比。Further calculation shows that the energy absorption rate η of the
通过对比无支护岩体在动力冲击下总吸收能量ΔE non ,建立锚网17耦合吸能能力提高系数α,锚网17耦合吸能能力提高系数α等于耦合试件7吸收的能量ΔE tot 与无支护岩体试件吸收的能量ΔE non 比值的百分比:By comparing the total absorbed energy ΔE non of the unsupported rock mass under dynamic impact, the improvement coefficient α of the coupling energy absorption capacity of the
如图1所示,计算耦合试件7碎屑分布特征。As shown in Fig. 1, the debris distribution characteristics of
将耦合试件7破坏后的碎屑进行筛分,粒径大小分为粗粒碎屑(粒径>30mm)、中粒碎屑(5~30mm)、细粒碎屑(0.075-5mm)和微粒碎屑(<0.075mm)4个粒组。称量每个粒组筛分出的岩体碎屑的质量,计算每个粒组碎屑质量占总质量的比值。The debris after the
如图4所示,首先,将耦合试件7表面应变分布、裂纹分形维数、岩体破坏强度、锚杆14轴向变形、吸能能力提高系数、岩体碎屑分布特征六个指标进行标准化处理。As shown in Figure 4, firstly, the six indicators of the
其次,采用“层次分析法+熵权法”主客观综合赋权方法求取各个指标的权重。Secondly, the subjective and objective comprehensive weighting method of "analytic hierarchy process + entropy weight method" is used to obtain the weight of each index.
通过层次分析法引入专家实践经验,确定出各类指标所占比重w aj 。将岩体锚固效果作为层次分析的目标层,将优、良好、合格和不合格作为方案层,将表面平均应变、裂纹分形维数、岩体破坏强度、锚杆14延伸率、吸能能力提高系数、不同粒径碎屑质量占比作为准则层,构建岩体锚固效果评价层次结构模型。The practical experience of experts is introduced through the analytic hierarchy process, and the proportion w aj of various indicators is determined. The anchoring effect of rock mass is taken as the target layer of hierarchical analysis, and excellent, good, qualified and unqualified are taken as the scheme layer, and the surface average strain, crack fractal dimension, rock mass failure strength,
为了弥补层次分析法的主观性,然后利用熵权法确定各类指标权重w bj 。综合上述两种方法的权重计算结果,提出指标的综合权重,综合权重w j 表达式为:In order to make up for the subjectivity of the AHP, the entropy weight method is used to determine the weight w bj of various indicators. Combining the weight calculation results of the above two methods, the comprehensive weight of the index is proposed. The expression of the comprehensive weight w j is:
式中:a—权重w aj 的系数;b—权重w bj 的系数;w aj 为层次分析法求取的权重;w bj 为熵权法求取的权重。In the formula: a —coefficient of weight w aj ; b —coefficient of weight w bj ; w aj is weight obtained by AHP; w bj is weight obtained by entropy weight method.
最终,利用模糊综合评价法对岩体锚固效果进行评价。Finally, the fuzzy comprehensive evaluation method is used to evaluate the rock mass anchorage effect.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211256429.8A CN115326601B (en) | 2022-10-14 | 2022-10-14 | Dynamic impact test and evaluation method of anchor-net coupling support rock mass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211256429.8A CN115326601B (en) | 2022-10-14 | 2022-10-14 | Dynamic impact test and evaluation method of anchor-net coupling support rock mass |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115326601A CN115326601A (en) | 2022-11-11 |
CN115326601B true CN115326601B (en) | 2023-02-03 |
Family
ID=83913864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211256429.8A Active CN115326601B (en) | 2022-10-14 | 2022-10-14 | Dynamic impact test and evaluation method of anchor-net coupling support rock mass |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115326601B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116399725B (en) * | 2023-03-03 | 2023-12-05 | 中煤科工开采研究院有限公司 | Anchor cable dynamic mechanical property testing method and system |
CN117272457B (en) * | 2023-09-07 | 2024-06-07 | 山东高速基础设施建设有限公司 | Comprehensive evaluation method for highway tunnel supporting system |
CN117874405B (en) * | 2024-03-11 | 2024-05-28 | 中国矿业大学(北京) | Anchor rod processing method and device based on shear test and electronic equipment |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10415387B2 (en) * | 2016-07-08 | 2019-09-17 | Shandong University | High-strength confined concrete support system for underground tunnel |
CN109738311A (en) * | 2018-11-23 | 2019-05-10 | 河南理工大学 | A method for determining the crack propagation velocity and fractal dimension of rock I-type fractures |
CN110274831B (en) * | 2019-07-05 | 2020-07-07 | 山东科技大学 | Device and method for testing anchor rod (cable) supporting structure and comprehensively testing performance of anchor system |
CN111259542B (en) * | 2020-01-15 | 2024-03-08 | 中国矿业大学 | Calculation method for impact resistance of tunnel roof anchoring support |
CN111855343B (en) * | 2020-06-28 | 2023-01-17 | 东南大学 | An indoor experimental device and method for the dynamic mechanical properties of rock joints and their wave propagation laws |
CN111929020A (en) * | 2020-08-14 | 2020-11-13 | 王�琦 | Method and system for testing impact resistance of underground engineering anchoring system |
CN112464340A (en) * | 2020-11-25 | 2021-03-09 | 中国矿业大学 | Rock burst roadway support design method based on comprehensive impact risk index evaluation |
-
2022
- 2022-10-14 CN CN202211256429.8A patent/CN115326601B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115326601A (en) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115326601B (en) | Dynamic impact test and evaluation method of anchor-net coupling support rock mass | |
CN103994928B (en) | A kind of mechanics acoustics joint test method of rock orientation extrusion fracture process | |
Wang et al. | Experimental study on damage evolution characteristics of segment structure of shield tunnel with cracks based on acoustic emission information | |
CN111157372A (en) | Drop hammer impact test system and method for simulating engineering rock mass layer cracking instability process | |
CN103335747B (en) | Prestress wire stretching force intelligent detecting method | |
Schumacher et al. | Estimating operating load conditions on reinforced concrete highway bridges with b-value analysis from acoustic emission monitoring | |
Altunisik et al. | Non-destructive modal parameter identification of historical timber bridges using ambient vibration tests after restoration | |
Manchao et al. | Laboratory study of unloading rate effects on rockburst | |
CN116205089B (en) | Rock Burst Control and Design Method | |
Ercan et al. | Estimation of seismic damage propagation in a historical masonry minaret | |
Lulić et al. | Review of the flat-jack method and lessons from extensive post-earthquake research campaign in Croatia | |
Li et al. | Influence of moisture on ultrasonic propagation, acoustic emission activity, and failure mechanism in concrete media | |
Zhao et al. | Acoustic emission behaviors of the Beishan granite under uniaxial and triaxial compression conditions | |
Lu et al. | Effect of particle size on the compressive behavior of dry sand under confinement at high strain rates | |
Binda et al. | Knowledge of the building, on site investigation and connected problems | |
CN115544794B (en) | Design parameter selection method of braced steel frame based on fatigue life prediction | |
CN113652980B (en) | Damage monitoring method for stone wall structure | |
CN113532544B (en) | Real-time testing device for strain stiffness and stress state of soil body and construction testing method thereof | |
Cadoni | Mechanical characterization of rock materials at high strain-rate | |
Rhazi | Evaluation of concrete structures by the acoustic tomography technique | |
Than Soe | Vibration-based finite element model updating and structural damage identification | |
CN115326602B (en) | Method for monitoring and evaluating dynamic performance of anchored rock mass | |
CN211856194U (en) | Drop-weight impact test system for simulating cracking and destabilizing process of engineering rock mass | |
Bayrak et al. | Preliminary Analysis Of A Representative Historical Minaret For Preparation To Shake Table Tests | |
Griffin et al. | Evaluation of in situ characterization techniques for pavement applications of portland cement-stabilized soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |