CN115317448B - 一种用于负载挥发油类药物的纳米乳剂及其制备方法 - Google Patents

一种用于负载挥发油类药物的纳米乳剂及其制备方法 Download PDF

Info

Publication number
CN115317448B
CN115317448B CN202211076722.6A CN202211076722A CN115317448B CN 115317448 B CN115317448 B CN 115317448B CN 202211076722 A CN202211076722 A CN 202211076722A CN 115317448 B CN115317448 B CN 115317448B
Authority
CN
China
Prior art keywords
protein
oil
bsa
polysaccharide
dex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211076722.6A
Other languages
English (en)
Other versions
CN115317448A (zh
Inventor
陈艺
巩仔鹏
彭剑青
徐金转
张季源
周佳
张莉莉
徐珊
周正莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Medical University
Original Assignee
Guizhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Medical University filed Critical Guizhou Medical University
Priority to CN202211076722.6A priority Critical patent/CN115317448B/zh
Publication of CN115317448A publication Critical patent/CN115317448A/zh
Application granted granted Critical
Publication of CN115317448B publication Critical patent/CN115317448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了一种用于负载挥发油类药物的纳米乳剂及其制备方法,具体是在多糖‑蛋白纳米乳剂的基础上,利用鱼精蛋白与多糖‑蛋白中的蛋白成分发生相互作用,使多糖‑蛋白中的多糖分子能够向水相伸展,进一步通过紫外照射的方式使得界面膜上的蛋白/蛋白发生变性交联形成稳定界面膜,从而得到一种能有效负载挥发油类药物的纳米乳剂。本发明所得纳米乳剂,不仅载药量大,粒径约50nm左右,并具有良好的稳定性;其制备方法简单,易于工业化放大生产;加固的油水界面能够更好的保护乳剂油相中所负载的药物,可作为中药挥发油类药物的良好载体。

Description

一种用于负载挥发油类药物的纳米乳剂及其制备方法
技术领域
本发明属于纳米乳剂技术领域,具体涉及一种用于负载挥发油类药物的纳米乳剂及其制备方法。
背景技术
中药挥发油主要来源于芳香类中药,是一类可随水蒸气蒸馏得到的与水不相混溶的挥发性油状成分的总称。挥发油主要是由萜类和芳香族化合物以及它们的含氧衍生物如醇、醛、酮、酚、醚、内脂等组成,此外还包括含氮及含硫化合物。它是一种无色或淡黄色的透明油状液体,在常温下就能挥发,涂在纸上挥发且不留油迹,有较强的折光性和旋光性。例如,桉叶油醇(1,8-Cineole,CIN)又名桉叶醇、桉树脑、桉叶油素等,是无色油状透明液体,广泛存在于天然芳香油中,为桉叶油的主要成分。桉叶油醇有樟脑气息和清凉的草药味道,具有杀菌和杀虫作用,多用于医药和食品香料,还常用作防腐剂。桉叶油醇属于挥发油类药物,存在挥发性强以及热、光和氧条件下的不稳定问题。并且,人体具有复杂的消化系统,如胃肠道中剧烈的pH变化、各类蛋白酶以及微生物的存在等等,这导致挥发油类药物在体内容易被降解和代谢清除,在胃肠道中滞留时间较短,口服生物利用度较低。因此,桉叶油醇可作为代表性的挥发油类药物,用于研究负载挥发油类药物的纳米乳剂的制备方法。
对于挥发油的不稳定问题,传统制剂工艺主要采取以下措施,一是处方含有挥发油较多的药材,制成丸剂或散剂,现配现用。这两种剂型均为药材原粉入药,由于在粉碎过程中不破坏药材的细胞结构,可以使挥发油保存在药材细胞中,很大程度上可以延缓挥发油的散失和氧化。二是如采用汤剂治疗,则规定含挥发油的药材“后下”,即在其它药材煎煮到一定程度后,加入含挥发油药材,稍微煎煮后出药服用,这样可使较多的挥发油共溶在药液中而保证疗效。然而,上述制剂工艺无法满足现代中药剂型的定量要求,且仍存在稳定性问题,不利于贮存和运输。近年来,报道了多种药物递送体系用于解决挥发油类药物的难溶性和不稳定性问题,包括纳米乳、脂质体、环糊精、固体脂质纳米粒或聚合物纳米粒等。其中,纳米乳因其具有制备工艺简单、易于工业化生产等优点引起了广泛关注。纳米乳对挥发油类药物的包载具有天然的优势,水包油型乳液可将挥发油负载在油相内核中,提高挥发油的溶解性和稳定性,保护其在氧化、光照、酶解、酸碱破坏等外界环境中不被降解。牛血清白蛋白(Bovine serum albumin,BSA)是一种常用的蛋白质类乳化剂,相比于常用乳化剂,如吐温类和山梨醇类等,具有良好的生物相容性,被广泛用于纳米乳的制备。通常情况下,蛋白分子可缓慢扩散到油水界面,一旦到达油水界面,蛋白构象发生改变,将疏水区域暴露并富集到油相,亲水部分伸展在界面膜外侧,形成较为粘弹的界面膜。然而,大部分蛋白界面膜较薄,同时带有一定量的电荷,因而蛋白乳液受包括pH、离子强度、加热等环境因素的影响较大。大多数多糖可以在水相中形成伸展的空间网络结构,产生空间位阻,常作为纳米制剂的稳定剂,提高体系的稳定性。
此外,有研究表明多糖-蛋白乳液经过加热处理后,界面膜上的蛋白发生变性交联并将多糖不可逆地固定在界面膜上,保证复合物乳液在多种环境因素下的长期稳定性。但由于挥发油类药物具有较强的挥发性,加热过程中可加快药物的挥发泄露,使得负载在乳剂中的挥发油类药物含量减少;同时,对于具有热不稳定性的挥发油类药物,加热可能干扰破坏药物分子的空间结构,使得药物的药用功能下降或消失。因此,加热处理虽然可以增加多糖-蛋白乳液的稳定性,但对负载其中的挥发油类药物的含量及活性均可产生一定的影响,通过加热这种方式增加负载挥发油类药物的多糖-蛋白乳液的稳定性存在明显不足。
发明内容
发明目的:针对现有技术的不足,本发明提供了一种用于负载挥发油类药物的纳米乳剂及其制备方法。
技术方案:为了解决上述技术问题,本发明公开了一种用于负载挥发油类药物的纳米乳剂的制备方法,利用鱼精蛋白同多糖-蛋白发生相互作用,作为复合乳化剂形成纳米乳,进一步利用紫外照射的冷处理方式使得界面膜上的蛋白/蛋白发生变性交联,得到了具有稳定界面膜,可抵抗各种环境因素且长时间稳定的乳液,具体制备方式包括以下步骤:
(1)取多糖和蛋白通过物理或化学反应合成多糖-蛋白聚合物;
(2)取多糖-蛋白聚合物,加去离子水配制成溶液,与鱼精蛋白按一定比例混合,得到的溶液调节到适宜pH、混匀,作为水相;
(3)挥发油类药物和油混合作为油相;
(4)将油相和水相混合,超声,得初乳液;
(5)将上述初乳液进一步分散减小粒径,紫外线照射,最后稀释,过滤,即得纳米乳剂。
优选的,步骤(1)中,所述多糖选自透明质酸、硫酸软骨素、肝素、葡聚糖、壳聚糖、纤维素、淀粉等多糖中的一种或几种。
优选的,步骤(1)中,所述蛋白包括动物蛋白或植物蛋白,如牛血清白蛋白、玉米蛋白、大豆蛋白、豌豆蛋白等中的一种或几种。
优选的,步骤(1)中,所述多糖和蛋白的摩尔比为(5~7):1,更优选6:1。
优选的,步骤(2)中,所述调节到适宜pH,是调整pH至4~10,从而使多糖蛋白中的蛋白分子能够与鱼精蛋白发生静电吸引,更优选调整pH至7。所述鱼精蛋白与多糖-蛋白聚合物中蛋白的摩尔比(0.8~3.2):1,更优选为1.6:1。
优选的,步骤(3)中,所述挥发油类药物主要来源于芳香类中药,如桉叶油醇(CIN)、艳山姜挥发油、生姜挥发油、白芷挥发油等中药挥发油中的一种或几种。
优选的,步骤(3)中,所述油来源于天然或合成的油脂,如中链脂肪酸甘油三酯、大豆油、玉米油、花生油、蓖麻油等中的一种或几种。
优选的,步骤(4)中,油相和水相的混合的体积比为1:2~1:5,更优选为1:4。
优选的,步骤(5)中,所述初乳液进一步分散,采用的工艺方法包括采用超声、高压均质、微射流等工艺技术中的一种或几种,更优选为微射流。
优选的,步骤(5)中,所述紫外线照射的辐射波长为253.7nm,功率5~36W,更优选36W,照射时间为30~360min,更优选为90min。
本发明是在多糖-蛋白纳米乳剂的基础上,利用鱼精蛋白(Protamine,PTM)与多糖-蛋白中的蛋白成分发生相互作用,使多糖-蛋白中的多糖分子能够向水相伸展。进一步通过紫外照射的方式使得界面膜上的蛋白/蛋白发生变性交联形成稳定界面膜,从而得到一种能有效负载挥发油类药物的纳米乳剂。具体而言,PTM的等电点在pH10~12,是一种富含精氨酸的正电荷蛋白。另一方面,取牛血清白蛋白(Bovine serum albumin,BSA)和葡聚糖(Dextran,DEX)通过物理或化学反应合成多糖-蛋白聚合物(DEX-BSA);当溶液pH值高于4.8时,DEX-BSA中BSA带负电荷。因此,在一定pH范围内DEX-BSA可以通过静电相互作用与PTM结合形成复合物,并进一步形成纳米复合乳。为此,发明人通过考察各制剂组的粒径电位变化、荧光素释放等,证明了在一定pH范围内DEX-BSA可以通过静电相互作用与PTM结合形成多糖-蛋白/蛋白复合物。紫外照射是一种经济、环保和非加热的蛋白质结构物理修饰技术。本发明利用了紫外照射的冷处理方式使得多糖-蛋白/蛋白复合物界面膜上的蛋白/蛋白发生变性交联,得到了具有稳定界面膜,可抵抗各种环境因素破坏且长时间稳定的纳米复合乳液。为此,研究了不同纳米乳在室温放置条件下的稳定性,观测了纳米乳在三个月内的粒径及其分布、电位、载药量、包封率的变化。证明了PTM可以与DEX-BSA形成静电复合物,改变乳液表面带电情况,增加乳滴界面膜的厚度,因而负载桉叶油醇的CIN@DEX-BSA/PTM乳剂的稳定性更佳。最后,通过观察FRET强度的变化来检测乳剂在人工胃肠液中的稳定性,小鼠胃肠道荧光成像观察乳剂在胃肠道中的稳定性,并通过药代动力学实验对比测定了Free CIN,CIN@DEX-BSA和CIN@DEX-BSA/PTM的在小鼠体内的药动学参数。结果表明,@DEX-BSA/PTM在人工胃肠液中的稳定性较高,可以持续地向肠道输送负载的药物,这将有助于药物在小肠保留比较长的时间并被肠上皮细胞有效吸收,提高口服吸收效果。
有益效果:本发明所得纳米乳剂,不仅载药量大,粒径约50nm左右,并具有良好的稳定性;其制备方法简单,易于工业化大生产;加固的油水界面能够更好的保护乳剂油相中所负载的药物,可作为中药挥发油类药物的良好载体,提高挥发油类药物的利用率。
附图说明
图1是本发明多糖-蛋白的制备及表征。
图2是本发明@DEX5k-BSA的油水相混合比例考察结果。
图3是本发明多糖-蛋白乳液受紫外照射后的结构变化。
图4是本发明多糖-蛋白乳液紫外照射工艺考察结果。
图5是本发明@DEX5k-BSA/PTM的处方工艺筛选结果图。
图6是本发明CIN@DEX5k-BSA/PTM的表征结果图。
图7是本发明CIN@DEX5k-BSA/PTM在胃肠道环境中的稳定性实验结果图。
图8是本发明CIN@DEX5k-BSA/PTM的药动学实验结果图。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,实施例中所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的发明。
实施例1合成具有不同接枝率的DEXn-BSA接枝物
实验方法:蛋白质糖基化反应可使BSA与DEX发生共价偶联。将BSA与DEX(MW 5、10、20kDa)按一定比例加入水中,调节pH至6、7、8,随后取反应液进行冷冻干燥,将冻干粉至于含饱和KBr的密闭容器中,60℃加热24h,获得不同接枝率的DEXn-BSA接枝物,通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)法、邻苯二甲醛(OPA)法对上述所制备的DEXn-BSA进行分子量、接枝率表征。利用上述材料制备乳剂包载尼罗红(Nile red,NR)后,通过NR泄漏率筛选出最稳定的乳剂材料,即pH 6条件下制备的DEX5k-BSA进行后续考察。
实验结果:合成DEXn-BSA接枝物的接枝结果见图1。图1A为各蛋白多糖材料进行物理混合后冻干产物的电泳条带,图1B为蛋白多糖材料溶解、调pH、冻干再反应24h后所得产物的电泳条带。结果表明混合冻干不会改变BSA的条带位置,而反应产物的条带出现变宽且上移,表明反应会生成分子量更大的DEXn-BSA接枝物,且不同分子量的DEX与BSA接枝后产物分子量也不相同。图1C展示了不同分子量的DEX和BSA在不同pH条件下生成DEXn-BSA接枝物的接枝率,三种DEX中小分子量的DEX更容易与BSA结合。当溶液环境pH=6时,更有利于多糖蛋白的结合。载NR纳米乳的稳定性情况如图1D所示,接枝率更高的DEX-BSA对应制备的NR纳米乳表现出更少的药物泄漏率。综上所述,DEX5k-BSA在pH=6的反应条件下接枝率较高,制备得到的纳米乳更加稳定,对药物的包载也更有优势。
实施例2考察多糖-蛋白乳液的油水相混合体积比
实验方法:称取DEX5k-BSA冻干粉末,加入去离子水配制成一定浓度的溶液作为水相。量取适量的中链脂肪酸甘油三酯作为油相,分别按照油水体积比1:2、1:3、1:4、1:5进行混合,经超声后得初乳液,再利用微射流高压均质机进行均质。观测不同油水体积比混合得到的纳米乳的粒径及其分布情况,分析不同纳米乳的稳定性和均一性,筛选出最优的油水体积比。
实验结果:结果如图2所示,当油相和水相以体积比1:2或1:3的比例混合时,所得乳液的粒径较大,乳液稳定性较低;当油相和水相以体积比1:4或1:5混合时,均可获得粒径较小、稳定性较高的乳液。相比之下,油相和水相以体积比1:5混合时得到的乳液粒径分布过宽,不能得到均一的纳米乳液。因此,综合各实验结果,本发明的油相和水相的混合体积比为1:4。
实施例3考察多糖-蛋白乳液受紫外照射的影响
实验方法:称取一定量的BSA或DEX5k-BSA冻干粉末,加入去离子水配制成一定浓度的溶液作为水相。量取适量的中链脂肪酸甘油三酯作为油相,分别按照油水体积比1:4进行混合,经超声后得初乳液,再利用微射流高压均质机进行均质。采用不同功率的紫外灯进行照射,通过SDS-PAGE检测@DEX5k-BSA经不同功率的紫外灯照射相同时间后的结构变化,筛选出照射@DEX5k-BSA的最优的紫外灯功率。利用该功率的紫外灯,照射@DEX5k-BSA不同的时间,通过SDS-PAGE检测@DEX5k-BSA经不同的紫外照射时间后的结构变化,筛选出紫外照射@DEX5k-BSA的最优的时间范围。
实验结果:图3A显示了@DEX5k-BSA使用不同功率的紫外灯照射的SDS-PAGE图谱。相比于@BSA,@DEX5k-BSA均出现了条带变宽的现象,说明多糖修饰改变了蛋白的分子量。此外,@DEX5k-BSA的SDS-PAGE条带颜色的变化可以反映出紫外线诱导的蛋白质多糖的交联程度。这是由于紫外照射诱导蛋白多糖聚合物交联聚集后,部分形成了高分子量的聚集体,从而难以穿透流动的凝胶,主要沉积在分离胶的顶部和浓缩胶的底部,在凝胶对应分子量位置上最终表现出较浅的SDS-PAGE条带。因此,@DEX5k-BSA的SDS-PAGE条带颜色越浅,则表明蛋白质多糖的交联度越高。结果表明,在0~36W内,随着紫外灯功率增大,@DEX5k-BSA的SDS-PAGE条带颜色变化不明显。因而,我们在最大功率条件下,继续考察光照时间的影响(图3B)。结果表明,随着照射时间的延长,30min时@DEX5k-BSA的SDS-PAGE条带颜色开始变浅,在360min时@DEX5k-BSA的SDS-PAGE条带颜色最浅。说明延长照射时间,可以诱导蛋白质交联。后续实验,使用功率为36W的紫外灯对@DEX5k-BSA进行照射,照射的时间为30~360min。
实施例4考察多糖-蛋白乳液紫外照射工艺
实验方法:称取一定量的DEX5k-BSA冻干粉末,加入去离子水配制成一定浓度的溶液作为水相。称取一定量CIN溶于中链脂肪酸甘油三酯作为油相,分别按照油水体积比1:4进行混合,经超声后得初乳液,再利用微射流高压均质机进行均质。采用紫外灯照射不同时间,通过热成像仪测定紫外照射不同时间后乳剂温度的变化;并用HPLC监测CIN含量。再以NR为模型药物,以DEX5k-BSA为材料制备纳米乳,考察经紫外照射不同时间后的乳剂,在模拟人工胃肠液中的释放情况。
实验结果:图中4A~C表明紫外照射2h以内不会造成乳剂温度变化,从而不会导致挥发油类药物的含量改变。释放情况如图4D~F,随着波长253.7nm、功率为36W的紫外照射不同时间,释放减缓、粒径增幅下降,制剂稳定性提高。其中紫外照射90min后,在人工胃肠液中表现出缓慢的释药行为,12h的释放量仅有22.14±0.83%,粒径增长最少,PDI变化较小。因此,综合各实验结果,本发明中对乳剂的紫外照射时间为90min。
实施例5筛选@DEX-BSA/PTM的处方工艺
实验方法:将PTM和BSA(DEX5k-BSA中的BSA)分别按摩尔比0.8:1、1.6:1、3.2:1溶解于去离子水中,调节pH至2~9,形成静电复合物溶液(DEX5k-BSA/PTM),并进一步形成纳米乳,测定PTM插入纳米乳前后的Zeta电位值。此外,利用荧光标记的PTM-FITC在pH=7的条件下制备@DEX5k-BSA/PTM-FITC纳米乳,部分纳米乳经紫外照射,固化界面膜。高速离心超滤纳米乳,分离并定量未结合的PTM-FITC,计算未结合的PTM-FITC(I0)与总PTM-FITC(I1)的比值。通过监测具有不同PTM插入量的乳液在放置过程中的粒径变化,以评估乳液的稳定性。最后,以NR为模型药物,制备NR@DEX5k-BSA/PTM,经紫外照射固化界面,在模拟人工胃肠液中考察乳剂的释放情况。
实验结果:如图5A所示,在pH 5.0~9.0的范围内,@DEX5k-BSA所带的负电荷不断增加。在pH=7时,随着PTM的插入量提高,乳剂整体电位值上调至近中性,提示该条件下PTM与DEX5k-BSA可能通过静电吸引形成静电复合物DEX5k-BSA/PTM。通过超滤法考察PTM与@DEX5k-BSA的结合情况,图5B结果表明大部分PTM已经成功地插入到了@DEX5k-BSA乳滴的界面上,并当PTM与BSA的摩尔比为1.6:1时达到饱和。进一步采用紫外照射能够加固界面,使PTM不易与制剂分离,因此后续操作均采用紫外工艺固化界面。图5C的数据显示,插入PTM并经紫外照射后形成的乳剂,其中PTM与BSA的摩尔比达到1.6:1时,可以显著提高乳液的放置稳定性。此外,图5D~F显示,插入PTM还能不同程度的延缓NR的释放,并避免乳滴粒径增大。其中,PTM与BSA摩尔比为1.6:1时,在人工胃肠液中,粒径在12h内增长较少,释放量也只有10.10±1.21%。综上,本发明确立了制剂的最佳处方工艺条件为:在pH=7条件下制备乳剂,PTM与BSA(DEX5k-BSA中的BSA)的最佳摩尔比为1.6:1,成乳后通过紫外照射固化乳滴界面。
实施例6CIN@DEX5k-BSA/PTM的表征
实验方法:按已优化的条件,制备CIN@DEX5k-BSA和CIN@DEX5k-BSA/PTM。观测纳米乳在三个月内的粒径及其分布、电位、含药量的变化,研究不同纳米乳在室温条件下密封放置的稳定性。最后,考察乳剂在人工胃肠液中的释放情况。
实验结果:结果如图6A~C所示,CIN@DEX5k-BSA粒径增长较快,而CIN@DEX5k-BSA/PTM粒径增长较缓,且粒径分布在90天内均较窄。从药物含量随时间变化的结果来看,FreeCIN组泄露比较明显,90天内药物含量从140.46±3.74mg下降至10.00±1.05mg。而CIN@DEX5k-BSA和CIN@DEX5k-BSA/PTM显著延缓了CIN的泄露,特别在90天时,CIN@DEX5k-BSA/PTM组CIN的剩余含量分别为Free CIN组和CIN@DEX5k-BSA组的10.29和1.49倍,表现出较好的稳定性。释放情况如图6D所示,CIN@DEX5k-BSA/PTM相比于CIN@DEX5k-BSA释放更缓慢,在24小时的累计释放度仅为40.78±3.38%,这表明CIN@DEX5k-BSA/PTM在胃肠液中更稳定。
实施例7本发明CIN@DEX5k-BSA/PTM在胃肠道环境中的稳定性实验结果
实验方法:以NR和3-羟基异喹啉(HIQ)作为FRET对,通过FRET现象的改变,研究负载FRET对的各制剂组在SGF和SIF中的降解情况。首先,在试管中加入Free NR、Free HIQ、Free NR+HIQ、NR/HIQ@DEX5k-BSA、NR/HIQ@DEX5k-BSA/PTM和NR/HIQ@DEX5k-BSA/PTM(80μg/mLHIQ和200μg/mL NR),再在每根试管中加入18mL SGF或SIF。各样品组在37℃恒温摇床中以100rpm避光孵育不同时间后,通过荧光成像系统观测不同样品的FRET现象变化。
保持制剂在胃肠道中的结构稳定并延长其滞留时间,才能使制剂顺利到达吸收部位,以改善药物的口服吸收。制备负载DiR的DiR@DEX5k-BSA和DiR@DEX5k-BSA/PTM样品溶液。采用在体成像的方法确定口服后制剂在胃肠道滞留的情况。取健康KM小鼠随机分组,禁食12小时后,灌胃给药。在给药后0.5、2、6和12h时间点处死实验小鼠,解剖取出胃肠器官,利用小动物活体成像系统拍摄器官的荧光图像并测量相应的荧光强度。再取小肠进行固定切片,考察Free DiR,DiR@DEX5k-BSA,DiR@DEX5k-BSA/PTM在小鼠小肠部位的吸收及分布情况。
实验结果:如图7A所示,HIQ在λ=450nm被激发后会存在两种过程:(1)HIQ在480~540nm范围内辐射蓝光;(2)当HIQ与NR距离小于10nm时,激发能通过FRET过程从HIQ转移到NR,从而在635nm观察到NR的发射红光,并且HIQ的蓝光发射将减弱或消失。选取HIQ作为FRET试剂的供体,而NR作为FRET试剂的受体,将二者同时包载于纳米乳的油相中,可观察到强烈的FRET现象,说明可通过观察FRET强度的变化来检测乳剂的稳定性。如图7B所示,HIQ/NR@DEX5k-BSA组的FRET强度在人工胃肠液中随着时间的推移迅速下降,而HIQ/NR@DEX5k-BSA/PTM组的FRET强度在人工胃肠液中下降的速度较缓慢,表明HIQ/NR@DEX5k-BSA/PTM有更好的胃肠道稳定性。
由图7C~H可知,DiR@DEX5k-BSA/PTM在胃中滞留的时间较DiR@DEX5k-BSA长,且两者均高于Free DiR。给药2h后,Free DiR组在小肠部位的总体荧光强度明显降低,而两个乳剂组都不同程度的保留了在小肠段的荧光强度,特别是DiR@DEX5k-BSA/PTM组,这可能是由于DiR@DEX5k-BSA/PTM在胃、肠液中具有较强的抗酶解能力和缓慢释药的行为,有利于药物在胃部和小肠段的滞留。在6h时间点,两个乳剂组尤其是DiR@DEX5k-BSA/PTM在小肠的总体荧光强度相比Free DiR明显提高。此外,通过激光共聚焦显微镜观测DiR制剂的小肠吸收情况如图7I所示。Free DiR组在小肠切片中的信号均十分微弱,说明绝大部分的Free DiR不能到达小肠微绒毛附近并被吸收。相比之下,DiR@DEX5k-BSA/PTM组在小肠绒毛内有明显的信号分布。上述结果表明DiR@DEX5k-BSA/PTM组可以持续地向肠道输送负载的药物,在小肠保留比较长的时间并被肠上皮细胞有效吸收,这将有助于负载的药物发挥更加持久的药效。
实施例8本发明CIN@DEX5k-BSA/PTM的药动学研究
实验方法:取健康KM小鼠,随机分组。实验分为Free CIN组、CIN@DEX5k-BSA组、CIN@DEX5k-BSA/PTM组。灌胃给药后,小鼠可自由进食饮水,分别在给药后不同时间点麻醉并解剖小鼠,通过小鼠腹主动脉取0.5mL的血液,并置于EDTA预处理的离心管中,全血离心后取上层血浆,加乙酸乙酯提取CIN,并用GC-MS定量检测血药浓度,绘制血药浓度经时曲线,计算口服药动学参数。
实验结果:健康KM小鼠灌胃给与Free CIN、CIN@DEX5k-BSA、CIN@DEX5k-BSA/PTM后的血药浓度-时间曲线如图8所示。将血药浓度-时间曲线采用软件处理,按非房室拟合后的药动学参数见表1。与Free CIN组相比,CIN@DEX5k-BSA和CIN@DEX5k-BSA/PTM组的血药浓度-时间曲线下面积AUC0-∞得到大幅提高,分别为Free CIN组的2.22和4.09倍。CIN@DEX5k-BSA和CIN@DEX5k-BSA/PTM组表现出较慢的血浆清除率CL,分别仅为Free CIN组的42.2%和24.2%。Free CIN与CIN@DEX5k-BSA组的消除半衰期T1/2差异不大,而CIN@DEX5k-BSA/PTM组的T1/2明显延长,为Free CIN组的1.44倍。同样地,Free CIN与CIN@DEX5k-BSA组的平均滞留时间MRT相近,而CIN@DEX5k-BSA/PTM组的MRT显著增加,延长至Free CIN组的1.28倍。上述结果说明:经口服给药后,CIN乳剂尤其是CIN@DEX5k-BSA/PTM有利于提高药物的口服生物利用度,并延长了药物在血液中循环时间。
表1口服各CIN制剂组后药动学参数(n=4)
vs Free CIN*
vs:CIN@DEX5k-BSA#。

Claims (6)

1.一种用于负载挥发油类药物的纳米乳剂的制备方法,其特征在于,包括以下步骤:
(1)取多糖和蛋白通过化学反应合成多糖-蛋白聚合物;所述多糖选自葡聚糖,其分子量为5 kDa;所述蛋白选自牛血清白蛋白;所述多糖和蛋白在溶液环境pH=6的条件下通过化学反应合成多糖-蛋白聚合物;
(2)取多糖-蛋白聚合物,加去离子水配制成溶液,与鱼精蛋白按一定比例混合,得到的溶液调节pH至7.0、混匀,作为水相;所述鱼精蛋白与多糖-蛋白聚合物中蛋白的摩尔比1.6 : 1;
(3)挥发油类药物和油混合作为油相;
(4)将油相和水相混合,超声,得初乳液;所述油相和水相混合的体积比为1: 4;
(5)将上述初乳液进一步分散减小粒径,紫外线照射,最后稀释,过滤,即得所述纳米乳剂;所述紫外线照射的辐射波长为253.7 nm,功率36 W,照射时间为90min。
2.根据权利要求1所述的纳米乳剂的制备方法,其特征在于,步骤(1)中,所述多糖和蛋白的摩尔比为(5~7) : 1。
3.根据权利要求1所述的纳米乳剂的制备方法,其特征在于,步骤(3)中,所述挥发油类药物选自桉叶油醇、艳山姜挥发油、生姜挥发油、白芷挥发油中的一种或几种。
4.根据权利要求1所述的纳米乳剂的制备方法,其特征在于,步骤(3)中,所述油选自中链脂肪酸甘油三酯、大豆油、玉米油、花生油、蓖麻油中的一种或几种。
5.根据权利要求1所述的纳米乳剂的制备方法,其特征在于,步骤(5)中,所述初乳液进一步分散,采用的工艺方法包括采用超声、高压均质、微射流中的一种或几种。
6.一种用于负载挥发油类药物的纳米乳剂,由权利要求1~5任一项所述制备方法制得。
CN202211076722.6A 2022-09-05 2022-09-05 一种用于负载挥发油类药物的纳米乳剂及其制备方法 Active CN115317448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211076722.6A CN115317448B (zh) 2022-09-05 2022-09-05 一种用于负载挥发油类药物的纳米乳剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211076722.6A CN115317448B (zh) 2022-09-05 2022-09-05 一种用于负载挥发油类药物的纳米乳剂及其制备方法

Publications (2)

Publication Number Publication Date
CN115317448A CN115317448A (zh) 2022-11-11
CN115317448B true CN115317448B (zh) 2024-03-15

Family

ID=83930489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211076722.6A Active CN115317448B (zh) 2022-09-05 2022-09-05 一种用于负载挥发油类药物的纳米乳剂及其制备方法

Country Status (1)

Country Link
CN (1) CN115317448B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120566A (ja) * 2007-11-16 2009-06-04 Nisshin Oillio Group Ltd 難溶解性薬剤の溶解剤、乳化香料製剤及び飲料
CN101961314A (zh) * 2010-09-26 2011-02-02 中国人民解放军第三军医大学 一种蛋白质药物的新型纳米乳载药系统及其制备方法
CN102302450A (zh) * 2011-09-06 2012-01-04 复旦大学 疏水药物-白蛋白-葡聚糖纳米乳液及其制备方法和应用
CN104394715A (zh) * 2012-06-27 2015-03-04 帝斯曼知识产权资产管理有限公司 包含水溶性活性成分的纳米凝胶
CN105663039A (zh) * 2015-12-31 2016-06-15 复旦大学 负载疏水药物和营养物的酪蛋白/多糖复合乳液及其制备方法
CN108096188A (zh) * 2017-12-19 2018-06-01 复旦大学 负载疏水药物和营养物的水包油复合纳米乳液及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940858B2 (en) * 2010-05-17 2015-01-27 Northwestern University Fibrous microcapsules and methods of assembly and use thereof
JP6214004B2 (ja) * 2011-09-21 2017-10-25 イッサム リサーチ ディべロップメント カンパニー オブ ザ ヘブライ ユニバーシティー オブ エルサレム,リミテッドYissum Research Development Company Of The Hebrew University Of Jerusalem,Ltd. ナノ送達システム
AU2020399278A1 (en) * 2019-12-09 2022-06-30 Nicoventures Trading Limited Nanoemulsion for oral use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120566A (ja) * 2007-11-16 2009-06-04 Nisshin Oillio Group Ltd 難溶解性薬剤の溶解剤、乳化香料製剤及び飲料
CN101961314A (zh) * 2010-09-26 2011-02-02 中国人民解放军第三军医大学 一种蛋白质药物的新型纳米乳载药系统及其制备方法
CN102302450A (zh) * 2011-09-06 2012-01-04 复旦大学 疏水药物-白蛋白-葡聚糖纳米乳液及其制备方法和应用
CN104394715A (zh) * 2012-06-27 2015-03-04 帝斯曼知识产权资产管理有限公司 包含水溶性活性成分的纳米凝胶
CN105663039A (zh) * 2015-12-31 2016-06-15 复旦大学 负载疏水药物和营养物的酪蛋白/多糖复合乳液及其制备方法
CN108096188A (zh) * 2017-12-19 2018-06-01 复旦大学 负载疏水药物和营养物的水包油复合纳米乳液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Protamine and BSA–dextran complex emulsion improves oral bioavailability and anti-tumor efficacy of paclitaxel;Guangrui Xu等;《Drug Delivery》;第27卷(第1期);第1360–1368页 *

Also Published As

Publication number Publication date
CN115317448A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
Cheng et al. Fate of lutein-containing zein nanoparticles following simulated gastric and intestinal digestion
Ding et al. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions
Jones et al. Bioavailability of nanotechnology-based bioactives and nutraceuticals
Yu et al. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions
Jayan et al. Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique
Joye et al. Nanotechnology for increased micronutrient bioavailability
Liu et al. Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate–chitosan-coated nanoliposomes
Huang et al. Improved physicochemical properties of curcumin-loaded solid lipid nanoparticles stabilized by sodium caseinate-lactose Maillard conjugate
Li et al. The intestine-responsive lysozyme nanoparticles-in-oxidized starch microgels with mucoadhesive and penetrating properties for improved epithelium absorption of quercetin
Chen et al. Advances of astaxanthin-based delivery systems for precision nutrition
Meng et al. Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating
Majumdar et al. Nanotechnology for enhanced bioactivity of bioactive compounds
Karim et al. Microencapsulation of fish oil using hydroxypropyl methylcellulose as a carrier material by spray drying
Peanparkdee et al. Stability of bioactive compounds from Thai Riceberry bran extract encapsulated within gelatin matrix during in vitro gastrointestinal digestion
Matsushita et al. Enhanced water dispersibility of coenzyme Q10 by complexation with albumin hydrolysate
Wang et al. Improved physicochemical stability of emulsions enriched in lutein by a combination of chlorogenic acid–whey protein isolate–dextran and vitamin E
Shen et al. High internal phase Pickering emulsions stabilized by modified sturgeon myofibrillar protein for quercetin delivery
Ge et al. Storage stability and in vitro digestion of apigenin encapsulated in Pickering emulsions stabilized by whey protein isolate–chitosan complexes
Jia et al. Storage stability and in-vitro release behavior of microcapsules incorporating fish oil by spray drying
Jeong et al. Effect of the emulsifier type on the physicochemical stability and in vitro digestibility of a lutein/zeaxanthin-enriched emulsion
CN115317448B (zh) 一种用于负载挥发油类药物的纳米乳剂及其制备方法
Pan et al. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy
Nikolić et al. Potential of encapsulated phytochemicals in hydrogel particles
Tang et al. Pseudosciaena crocea roe protein‐stabilized emulsions for oral delivery systems: In vitro digestion and in situ intestinal perfusion study
Luo et al. Hyaluronic Acid Poly (glyceryl) 10-Stearate Derivatives: Novel Emulsifiers for Improving the Gastrointestinal Stability and Bioaccessibility of Coenzyme Q10 Nanoemulsions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant