CN115308944A - Chip structure and display module - Google Patents

Chip structure and display module Download PDF

Info

Publication number
CN115308944A
CN115308944A CN202110502474.6A CN202110502474A CN115308944A CN 115308944 A CN115308944 A CN 115308944A CN 202110502474 A CN202110502474 A CN 202110502474A CN 115308944 A CN115308944 A CN 115308944A
Authority
CN
China
Prior art keywords
medium layer
layer
quantum dot
optically
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110502474.6A
Other languages
Chinese (zh)
Other versions
CN115308944B (en
Inventor
刘召军
张珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Stan Technology Co Ltd
Original Assignee
Shenzhen Stan Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Stan Technology Co Ltd filed Critical Shenzhen Stan Technology Co Ltd
Priority to CN202110502474.6A priority Critical patent/CN115308944B/en
Publication of CN115308944A publication Critical patent/CN115308944A/en
Application granted granted Critical
Publication of CN115308944B publication Critical patent/CN115308944B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H29/00Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
    • H10H29/10Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
    • H10H29/14Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
    • H10H29/142Two-dimensional arrangements, e.g. asymmetric LED layout

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)

Abstract

The invention discloses a chip structure and a display module, which comprise an excitation light source and a quantum dot structure arranged on the excitation light source, and are characterized in that the excitation light source is also provided with a light adjusting structure, the light adjusting structure is arranged on the side surface of the quantum dot structure in a surrounding manner, the light adjusting structure comprises a first light thinning medium layer, a light tight medium layer and a second light thinning medium layer which are sequentially stacked, the first light thinning medium layer is closer to the excitation light source than the second light thinning medium layer, and the surface of the light tight medium layer close to one side of the second light thinning medium layer or the peripheral area of the surface of the second light thinning medium layer is an uneven surface. The invention can separate the light intensity of the excitation light source from the light intensity of the quantum dot structure, avoid the light intensity of the excitation light source from being superposed on the light intensity of the quantum dot structure, and improve the photoluminescence color purity of the quantum dot structure.

Description

芯片结构及显示模组Chip structure and display module

技术领域technical field

本发明涉及半导体发光技术领域,更具体地,涉及一种芯片结构及显示模组。The present invention relates to the technical field of semiconductor light emitting, more specifically, to a chip structure and a display module.

背景技术Background technique

量子点是一种半导体纳米结构,由于其色域广、色纯度高、尺寸小的优点,成为新一代显示应用的关键技术。Quantum dots are semiconductor nanostructures that have become a key technology for next-generation display applications due to their wide color gamut, high color purity, and small size.

但对于量子点光致发光的应用,参考图1,如在激发光源10上方叠加量子点结构20,激发光源10产生的光照射量子点结构20,并激发量子点结构20发光,即量子点结构20的光致发光,量子点结构20的光致发光的光线的传播具有各向性,即量子点结构20的上表面和侧面21均可以向外发射光线,激发光源10的光线主要从激发光源10正上方出射,导致激发光源10的光强和量子点结构20的光强叠加在一起,参考图1中的箭头标记的光线传播路径,由于很难剔除激发光源10的光强,使最终的显示产生色偏,无法发挥量子点本身色纯度高的优势。However, for the application of quantum dot photoluminescence, referring to FIG. 1, if a quantum dot structure 20 is superimposed on the excitation light source 10, the light generated by the excitation light source 10 illuminates the quantum dot structure 20, and excites the quantum dot structure 20 to emit light, that is, the quantum dot structure 20 photoluminescence, the propagation of the photoluminescent light of the quantum dot structure 20 has anisotropy, that is, the upper surface and the side surface 21 of the quantum dot structure 20 can emit light outward, and the light of the excitation light source 10 is mainly from the excitation light source 10 is emitted directly above, causing the light intensity of the excitation light source 10 and the light intensity of the quantum dot structure 20 to be superimposed together. Referring to the light propagation path marked by the arrow in FIG. 1, since it is difficult to eliminate the light intensity of the excitation light source 10, the final The display produces color shift, which cannot take advantage of the high color purity of quantum dots.

为解决上述问题,有些技术采用紫外光等短波长激发光源,使人眼感知不到激发光源的存在,然而会增加激发光源的制备难度和成本,且短波长光可能对人眼造成损伤。还有些技术采用加厚量子点层厚的方式提高颜色转换率,但是会增加量子点涂布或图形化的难度,显示分辨率下降。In order to solve the above problems, some technologies use short-wavelength excitation light sources such as ultraviolet light, so that the human eye cannot perceive the existence of the excitation light source, but it will increase the difficulty and cost of the preparation of the excitation light source, and short-wavelength light may cause damage to the human eye. There are also some technologies that increase the color conversion rate by increasing the thickness of the quantum dot layer, but it will increase the difficulty of quantum dot coating or patterning, and the display resolution will decrease.

发明内容Contents of the invention

本发明的目的在于克服现有技术存在的上述缺陷,提供一种芯片结构及显示模组,将激发光源的光强与量子点结构的光强分开,避免激发光源的光强叠加在量子点结构的光强上,提高量子点结构的光致发光色纯度。The purpose of the present invention is to overcome the above-mentioned defects in the prior art, provide a chip structure and a display module, separate the light intensity of the excitation light source from the light intensity of the quantum dot structure, and avoid superimposing the light intensity of the excitation light source on the quantum dot structure. In terms of light intensity, the photoluminescent color purity of the quantum dot structure is improved.

为实现上述目的,本发明的技术方案如下:To achieve the above object, the technical scheme of the present invention is as follows:

一种芯片结构,包括激发光源和设置在所述激发光源上的量子点结构,其特征在于,所述激发光源上还设有光调节结构,所述光调节结构围绕设置在所述量子点结构的侧面,所述光调节结构包括依次层叠的第一光疏介质层、光密介质层和第二光疏介质层,所述第一光疏介质层比所述第二光疏介质层靠近所述激发光源,所述光密介质层的靠近所述第二光疏介质层一侧的表面的外围区域或所述第二光疏介质层的表面的外围区域为不平坦表面。A chip structure, comprising an excitation light source and a quantum dot structure arranged on the excitation light source, characterized in that the excitation light source is also provided with a light adjustment structure, and the light adjustment structure is arranged around the quantum dot structure The side of the optical adjustment structure includes a first optically thinning medium layer, an optically denser medium layer and a second optically thinning medium layer stacked in sequence, and the first optically thinning medium layer is closer to the optically thinning medium layer than the second optically thinning medium layer For the excitation light source, the peripheral area of the surface of the optically dense medium layer close to the second optically sparse medium layer or the peripheral area of the surface of the second optically sparse medium layer is an uneven surface.

优选的,所述不平坦表面在所述激发光源所在平面的投影落在所述激发光源的外周。Preferably, the projection of the uneven surface on the plane where the excitation light source is located falls on the periphery of the excitation light source.

优选的,所述量子点结构的侧面与所述光密介质层的侧面正对。Preferably, the side of the quantum dot structure is directly opposite to the side of the optically dense medium layer.

优选的,所述第一光疏介质层和所述第二光疏介质层的位置设置方案包括以下任一方案:Preferably, the position setting scheme of the first optically thinning medium layer and the second optically thinning medium layer includes any of the following schemes:

方案一:所述第一光疏介质层设置于所述量子点结构的下方,所述第二光疏介质层设置于所述量子点结构的上方;Solution 1: the first optically thinning medium layer is disposed below the quantum dot structure, and the second optically thinning medium layer is disposed above the quantum dot structure;

方案二:所述第一光疏介质层设置于所述量子点结构的下方,所述第二光疏介质层环绕设置于所述量子点结构的侧方;Solution 2: the first optically thinning medium layer is arranged under the quantum dot structure, and the second optically thinning medium layer is arranged around the side of the quantum dot structure;

方案三:所述第一光疏介质层环绕设置于所述量子点结构的侧方,所述第二光疏介质层环绕设置于所述量子点结构的侧方;Scheme 3: the first optically thinning medium layer is arranged around the side of the quantum dot structure, and the second optically thinning medium layer is arranged around the side of the quantum dot structure;

方案四:所述第一光疏介质层环绕设置于所述量子点结构的侧方,所述第二光疏介质层设置于所述量子点结构的上方。Solution 4: The first optically thinning medium layer is arranged around the side of the quantum dot structure, and the second optically thinning medium layer is arranged above the quantum dot structure.

优选的,在所述激发光源的靠近所述量子点结构一侧的表面上设有凹槽,所述第一光疏介质层容纳于所述凹槽内,所述第二光疏介质层设置于所述量子点结构的上方,或所述第二光疏介质层环绕设置于所述量子点结构的侧方。Preferably, a groove is provided on the surface of the excitation light source close to the quantum dot structure, the first optically thinning medium layer is accommodated in the groove, and the second optically thinning medium layer is arranged Above the quantum dot structure, or the second optical thinning medium layer is arranged around the side of the quantum dot structure.

优选的,所述第一光疏介质层包括二氧化硅层或空气层,所述第二光疏介质层包括二氧化硅层或空气层,所述光密介质层包括氮化硅层。Preferably, the first optically thinning medium layer includes a silicon dioxide layer or an air layer, the second optically thinning medium layer includes a silicon dioxide layer or an air layer, and the optically denser medium layer includes a silicon nitride layer.

优选的,所述第一光疏介质层为空气层,所述第二光疏介质层为空气层,所述光密介质层为二氧化硅层。Preferably, the first optically thinning medium layer is an air layer, the second optically thinning medium layer is an air layer, and the optically denser medium layer is a silicon dioxide layer.

优选的,所述激发光源包括LED激发光源、OLED激发光源或LCD激发光源。Preferably, the excitation light source includes an LED excitation light source, an OLED excitation light source or an LCD excitation light source.

本发明还公开了一种显示模组,包括上述的芯片结构。The present invention also discloses a display module, which includes the above-mentioned chip structure.

实施本发明实施例,将具有如下有益效果:Implementing the embodiment of the present invention will have the following beneficial effects:

本发明实施例通过在量子点结构的侧面设置光调节结构,该光调节结构包括依次层叠的第一光疏介质层、光密介质层和第二光疏介质层,从量子点结构的侧面发出的光致发光的光线进入光密介质层进行传播,由于第一光疏介质层或第二光疏介质层的折射率小于光密介质层的折射率,因此,当光线由光密介质层到达第一光疏介质层或第二光疏介质层的界面时,会在第一光疏介质层或第二光疏介质层界面处发生全反射,使量子点结构的光致发光的光线锁定在光密介质层传播,即光波导效应,直到到达不平坦表面处,不平坦表面能够破坏光线的全反射传播路径,锁定在光密介质层传播的光线从不平坦表面处出射,由此可将量子点结构的光致发光的光线经光波导效应与激发光源的向正上方出射的光线分离,从而提高量子点结构的光致发光色纯度。In the embodiment of the present invention, a light-regulating structure is provided on the side of the quantum dot structure. The light-regulating structure includes a first optically sparse medium layer, an optically dense medium layer, and a second optically sparse medium layer stacked in sequence, and emits light from the side of the quantum dot structure. The photoluminescent light enters the optically dense medium layer to propagate, since the refractive index of the first optically sparse medium layer or the second optically sparse medium layer is smaller than the refractive index of the optically dense medium layer, when the light reaches the optically dense medium layer When the interface of the first optically thinning medium layer or the second optically thinning medium layer, total reflection will occur at the interface of the first optically thinning medium layer or the second optically thinning medium layer, so that the photoluminescent light of the quantum dot structure is locked in Optically dense medium layer propagation, that is, the optical waveguide effect, until it reaches the uneven surface, the uneven surface can destroy the total reflection propagation path of the light, and the light locked in the optically dense medium layer is emitted from the uneven surface, so that the The photoluminescence light of the quantum dot structure is separated from the light emitted directly above the excitation light source through the optical waveguide effect, thereby improving the color purity of the photoluminescence of the quantum dot structure.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

其中:in:

图1是现有技术中的芯片结构的结构示意图。FIG. 1 is a schematic structural diagram of a chip structure in the prior art.

图2是本发明一具体实施例的芯片结构的结构示意图。FIG. 2 is a schematic structural diagram of a chip structure according to a specific embodiment of the present invention.

图3是本发明一具体实施例的芯片结构的结构示意图。FIG. 3 is a schematic structural diagram of a chip structure according to a specific embodiment of the present invention.

图4是本发明一具体实施例的芯片结构的结构示意图。FIG. 4 is a schematic structural diagram of a chip structure according to a specific embodiment of the present invention.

图5是本发明一具体实施例的芯片结构的结构示意图。FIG. 5 is a schematic structural diagram of a chip structure according to a specific embodiment of the present invention.

图6是本发明一具体实施例的芯片结构的结构示意图。FIG. 6 is a schematic structural diagram of a chip structure according to a specific embodiment of the present invention.

图7是本发明一具体实施例的芯片结构的结构示意图。FIG. 7 is a schematic structural diagram of a chip structure according to a specific embodiment of the present invention.

其中,图中,激发光源10、凹槽11、量子点结构20、量子点结构的侧壁21、第一光疏介质层30、光密介质层40、凸起41、第二光疏介质层50、衬底60。Among them, in the figure, the excitation light source 10, the groove 11, the quantum dot structure 20, the side wall 21 of the quantum dot structure, the first optically thinning medium layer 30, the optically dense medium layer 40, the protrusion 41, the second optically thinning medium layer 50. Substrate 60.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

参考图2~图7,本发明公开了一种芯片结构,包括激发光源10和设置在激发光源10上方的量子点结构20,在激发光源10的上方还包括光调节结构,光调节结构围绕设置在量子点结构20的侧面,光调节结构包括依次层叠的第一光疏介质层30、光密介质层40和第二光疏介质层50,第一光疏介质层30靠近激发光源10,第二光疏介质层50背离激发光源10,光密介质层40的靠近第二光疏介质层50一侧的表面的外围区域或第二光疏介质层50的表面的外围区域为不平坦表面41。Referring to FIGS. 2 to 7 , the present invention discloses a chip structure, including an excitation light source 10 and a quantum dot structure 20 arranged above the excitation light source 10, and a light adjustment structure is also included above the excitation light source 10, and the light adjustment structure is arranged around On the side of the quantum dot structure 20, the light adjustment structure includes a first optically sparse medium layer 30, an optically dense medium layer 40 and a second optically sparse medium layer 50 stacked in sequence, the first optically sparse medium layer 30 is close to the excitation light source 10, the second optically sparse medium layer The second optical thinning medium layer 50 is away from the excitation light source 10, and the peripheral area of the surface of the optically dense medium layer 40 near the second optical thinning medium layer 50 or the peripheral area of the surface of the second optical thinning medium layer 50 is an uneven surface 41 .

通过在量子点结构20的侧方的光密介质层40的两侧分别层叠第一光疏介质层30和第二光疏介质层50,从量子点结构20的侧面21发出的光致发光的光线进入光密介质层40进行传播,由于第一光疏介质层30或第二光疏介质层50的折射率小于光密介质层40的折射率,因此,当光线由光密介质层40到达第一光疏介质层30或第二光疏介质层50的界面时,会在第一光疏介质层30或第二光疏介质层50界面处发生全反射,使量子点结构20的光致发光的光线锁定在光密介质层40传播,即光波导效应,直到到达不平坦表面41处,不平坦表面41能够破坏光线的全反射传播路径,锁定在光密介质层40传播的光线从不平坦表面41处出射,由此可将量子点结构20侧面的光致发光的光线经光波导效应与激发光源10的向正上方出射的光线分离,从而提高量子点结构20的光致发光色纯度。在这里不考虑由量子点结构20的上表面向正上方传播的叠加光强的分离,因为,芯片的量子点结构20正上方还会有其它功能层,能够阻挡量子点结构20的上表面发出的光致光强以及激发光源10从量子点结构20的上表面发出的光强。By laminating the first optically sparse medium layer 30 and the second optically sparse medium layer 50 on both sides of the optically dense medium layer 40 on the side of the quantum dot structure 20, the photoluminescence emitted from the side 21 of the quantum dot structure 20 The light enters the optically dense medium layer 40 and propagates. Since the refractive index of the first optically sparse medium layer 30 or the second optically sparse medium layer 50 is smaller than the refractive index of the optically dense medium layer 40, when the light reaches the optically dense medium layer 40 When the interface of the first optically thinning medium layer 30 or the second optically thinning medium layer 50, total reflection will occur at the interface of the first optically thinning medium layer 30 or the second optically thinning medium layer 50, so that the photoinduced quantum dot structure 20 The luminous light is locked in the optically dense medium layer 40 and propagates, that is, the optical waveguide effect, until it reaches the uneven surface 41, the uneven surface 41 can destroy the total reflection propagation path of the light, and the light locked in the optically dense medium layer 40 propagates never The light emitted from the flat surface 41 can separate the photoluminescent light from the side of the quantum dot structure 20 through the optical waveguide effect from the light emitted directly above the excitation light source 10, thereby improving the photoluminescent color purity of the quantum dot structure 20 . The separation of the superimposed light intensity propagating directly above from the upper surface of the quantum dot structure 20 is not considered here, because there will be other functional layers directly above the quantum dot structure 20 of the chip, which can block the emission from the upper surface of the quantum dot structure 20. The intensity of photoluminescence and the intensity of light emitted by the excitation light source 10 from the upper surface of the quantum dot structure 20 .

本申请中的第一光疏介质层30和第二光疏介质层50中的“光疏”是与光密介质层40中的“光密”成对比关系,即,第一光疏介质层30的折射率小于光密介质层40的折射率,第二光疏介质层50的折射率小于光密介质层40的折射率。The "optical thinning" in the first optically thinning medium layer 30 and the second optically thinning medium layer 50 in this application is in contrast to the "optical density" in the optically dense medium layer 40, that is, the first optically thinning medium layer The refractive index of the second optically sparse medium layer 50 is smaller than that of the optically dense medium layer 40 .

另,由于从量子点结构20的侧面21发出的光致发光的光线在光密介质层40中横向传播,将光线引导到激发光源10正上方以外的区域,因此,第一光疏介质层30、光密介质层40和第二光疏介质层50的长度从激发光源10正上方向其以外的区域继续延长,第一光疏介质层30的厚度、光密介质层40的厚度和第二光疏介质层50的厚度均可以不等厚。In addition, since the photoluminescent light emitted from the side surface 21 of the quantum dot structure 20 propagates laterally in the optically dense medium layer 40, and guides the light to areas other than directly above the excitation light source 10, the first optically sparse medium layer 30 , the length of the optically dense medium layer 40 and the second optically sparse medium layer 50 continue to extend from the area directly above the excitation light source 10 to the outside, the thickness of the first optically sparse medium layer 30, the thickness of the optically dense medium layer 40 and the second The thickness of the optical thinning medium layer 50 may vary.

在一具体实施例中,不平坦表面41在激发光源10所在平面的投影落在激发光源10的外周,如此,可将量子点结构20侧面的光致发光的光线经光波导效应与激发光源10的向正上方出射的光线完全分离。In a specific embodiment, the projection of the uneven surface 41 on the plane where the excitation light source 10 is located falls on the periphery of the excitation light source 10, so that the photoluminescent light on the side of the quantum dot structure 20 can be connected to the excitation light source 10 through the optical waveguide effect. The rays that exit directly above are completely separated.

在一具体实施例中,参考图2~图7,量子点结构20的侧面与光密介质层40的侧面正对,由量子点结构20的侧面21出射的光致发光光线进入光密介质层40并沿光密介质层40传播,直至由不平坦表面41出射。In a specific embodiment, referring to FIGS. 2 to 7, the side of the quantum dot structure 20 is facing the side of the optically dense medium layer 40, and the photoluminescent light emitted from the side 21 of the quantum dot structure 20 enters the optically dense medium layer. 40 and propagates along the optically dense medium layer 40 until it emerges from the uneven surface 41.

在一具体实施例中,参考图2,进一步的,第一光疏介质层30设置于量子点结构20的下方,第二光疏介质层50设置于量子点结构20的上方,此时,量子点结构20的侧面21仅与光密介质层40的侧面正对,由量子点结构20的侧面21出射的光致发光光线全部进入光密介质层40。In a specific embodiment, referring to FIG. 2 , further, the first optically thinning medium layer 30 is disposed below the quantum dot structure 20, and the second optically thinning medium layer 50 is disposed above the quantum dot structure 20. At this time, the quantum dot structure The side 21 of the dot structure 20 is only facing the side of the optically dense medium layer 40 , and all the photoluminescent light emitted from the side 21 of the quantum dot structure 20 enters the optically dense medium layer 40 .

在另一具体实施例中,参考图5,进一步的,第一光疏介质层30和第二光疏介质层50均环绕设置于量子点结构20的侧方。另由于不需设置凹陷,制备工艺相对简单。In another specific embodiment, referring to FIG. 5 , further, the first optically thinning medium layer 30 and the second optically thinning medium layer 50 are both disposed around the sides of the quantum dot structure 20 . In addition, since no depression is required, the preparation process is relatively simple.

在另一具体实施例中,参考图6和图7,进一步的,第一光疏介质层30设置于量子点结构20的上方,第二光疏介质层50环绕设置于量子点结构20的侧方,或者,第一光疏介质层30环绕设置于量子点结构20的侧方,第二光疏介质层50设置于量子点结构20的上方。In another specific embodiment, referring to FIG. 6 and FIG. 7 , further, the first optically thinning medium layer 30 is disposed above the quantum dot structure 20 , and the second optically thinning medium layer 50 is disposed around the side of the quantum dot structure 20 Alternatively, the first optically rarefied medium layer 30 is disposed around the side of the quantum dot structure 20 , and the second optically sparse medium layer 50 is disposed above the quantum dot structure 20 .

在上述各实施例中,进一步的,参考图3和图4,在激发光源10的靠近量子点结构20一侧的表面上设有凹槽11,使第一光疏介质层30容纳于凹槽11内,第一光疏介质层30环绕设置于量子点结构20的侧下方,第二光疏介质层50设置于量子点结构20的上方,或第二光疏介质层50环绕设置于量子点结构20的侧方或侧上方。由于第一光疏介质层30占用的是本属于激发光源10的位置。In each of the above-mentioned embodiments, further, with reference to FIG. 3 and FIG. 4 , a groove 11 is provided on the surface of the exciting light source 10 close to the quantum dot structure 20, so that the first optically thinning medium layer 30 is accommodated in the groove 11, the first optically thinning medium layer 30 is arranged around and below the side of the quantum dot structure 20, the second optically thinning medium layer 50 is arranged above the quantum dot structure 20, or the second optically thinning medium layer 50 is arranged around the quantum dots The side or side of the structure 20. Since the first optical thinning medium layer 30 occupies the position originally belonging to the exciting light source 10 .

同理,第二光疏介质层50可以设置于量子点结构20的背离激发光源10的一侧,进一步优选的,量子点结构20背离激发光源10一侧的构件上也设有凹槽11,使第二光疏介质层50也容纳于凹槽11内。Similarly, the second optically thinning medium layer 50 can be disposed on the side of the quantum dot structure 20 away from the excitation light source 10, and further preferably, the component on the side of the quantum dot structure 20 away from the excitation light source 10 is also provided with a groove 11, The second optically thinning medium layer 50 is also accommodated in the groove 11 .

值得注意的是,上述各实施例中,第一光疏介质层30设置于量子点结构20的下方,是指量子点结构20的正下方有第一光疏介质层30,即量子点结构20的底部位于第一光疏介质层30的上表面或位于第一光疏介质层30的内部。上述的第二光疏介质层50设置于量子点结构20的上方,是指量子点结构20的正上方有第二光疏介质层50,即量子点结构20的顶部位于第二光疏介质层50的下表面或位于第二光疏介质层50的内部。上述的第一光疏介质层30或第二光疏介质层50环绕设置于量子点结构20的侧方,是指量子点结构20的正下方或正上方没有第一光疏介质层30或第二光疏介质层50。It is worth noting that, in the above-mentioned embodiments, the first optically thinning medium layer 30 is arranged under the quantum dot structure 20, which means that there is a first optically thinning medium layer 30 directly below the quantum dot structure 20, that is, the quantum dot structure 20 The bottom of is located on the upper surface of the first optically thinning medium layer 30 or inside the first optically thinning medium layer 30 . The above-mentioned second optically thinning medium layer 50 is arranged above the quantum dot structure 20, which means that there is a second optically thinning medium layer 50 directly above the quantum dot structure 20, that is, the top of the quantum dot structure 20 is located in the second optically thinning medium layer The lower surface of the second optical thinning medium layer 50 may be located on the lower surface thereof. The first optically thinning medium layer 30 or the second optically thinning medium layer 50 is arranged around the side of the quantum dot structure 20, which means that there is no first optically thinning medium layer 30 or the second optically thinning medium layer directly below or directly above the quantum dot structure 20. Two optically thinning medium layers 50 .

上述各实施例中,由于第一光疏介质层30和第二光疏介质层50仅用于提供全反射界面,其厚度可以较薄,并不会显著降低量子点结构20的光致发光的色纯度。具体的,在所有实施例中,第一光疏介质层30的厚度小于量子点结构20厚度的十分之一,第二光疏介质层50的厚度小于量子点结构20厚度的十分之一。In each of the above-mentioned embodiments, since the first optically thinning medium layer 30 and the second optically thinning medium layer 50 are only used to provide a total reflection interface, their thicknesses can be thinner without significantly reducing the photoluminescence of the quantum dot structure 20. color purity. Specifically, in all embodiments, the thickness of the first optically sparse medium layer 30 is less than one tenth of the thickness of the quantum dot structure 20, and the thickness of the second optically sparse medium layer 50 is less than one tenth of the thickness of the quantum dot structure 20 .

上述各实施例中,不平坦表面41为使光密介质层40的靠近第二光疏介质层50一侧的表面或第二光疏介质层50的表面设置有凸起或设有凹陷形成,凸起和凹陷均改变了表面光滑度,使光线能够从凸起或凹陷处出射,从而将量子点结构20侧面出射的光致发光的光强与激发光源10向正上方发出的光强区分开。In the above-mentioned embodiments, the uneven surface 41 is formed by setting the surface of the optically dense medium layer 40 close to the second optically sparse medium layer 50 or the surface of the second optically sparse medium layer 50 with protrusions or depressions, The protrusions and depressions both change the surface smoothness, so that light can exit from the protrusions or depressions, thereby distinguishing the light intensity of the photoluminescence emitted from the side of the quantum dot structure 20 from the light intensity emitted directly upward by the excitation light source 10 .

上述各实施例中,第一光疏介质层30的折射率可以为1~1.45,第二光疏介质层50的折射率可以为1~1.45,光密介质层40的折射率可以为1.45~3。In the above-mentioned embodiments, the refractive index of the first optically thinning medium layer 30 may be 1 to 1.45, the refractive index of the second optically thinning medium layer 50 may be 1 to 1.45, and the refractive index of the optically dense medium layer 40 may be 1.45 to 1.45. 3.

进一步的,在一具体实施例中,第一光疏介质层30包括二氧化硅层或空气层,第二光疏介质层50包括二氧化硅层或空气层,光密介质层40包括氮化硅层。空气层的折射率为1,二氧化硅层的折射率为1.45,氮化硅层的折射率为2。Further, in a specific embodiment, the first optically thinning medium layer 30 includes a silicon dioxide layer or an air layer, the second optically thinning medium layer 50 includes a silicon dioxide layer or an air layer, and the optically denser medium layer 40 includes a nitride silicon layer. The air layer has a refractive index of 1, the silicon dioxide layer has a refractive index of 1.45, and the silicon nitride layer has a refractive index of 2.

在另一具体实施例中,第一光疏介质层30包括空气层,第二光疏介质层50包括空气层,光密介质层40包括二氧化硅层,空气层可以通过预留一定间隙实现。具体的,可以提供一光密介质层40,将光密介质层40直接套设在量子点结构周围,光密介质层40上方和下方均预留一定间隙,从而得到本具体实施例的结构。In another specific embodiment, the first optically thinning medium layer 30 includes an air layer, the second optically thinning medium layer 50 includes an air layer, and the optically dense medium layer 40 includes a silicon dioxide layer. The air layer can be realized by reserving a certain gap. . Specifically, an optically dense medium layer 40 can be provided, and the optically dense medium layer 40 is directly sleeved around the quantum dot structure, and a certain gap is reserved above and below the optically dense medium layer 40, thereby obtaining the structure of this specific embodiment.

当然,在其它可实施的实施例中,第一光疏介质层30不限于上述列举的二氧化硅层或空气层,第一光疏介质层30也不限于上述列举的二氧化硅层或空气层,光密介质层40也不限于上述列举的氮化硅层或二氧化硅层,只要使第一光疏介质层30的折射率小于光密介质层40的折射率,且使第二光疏介质层50的折射率小于光密介质层40就能形成光波导效应。Of course, in other practicable embodiments, the first optically thinning medium layer 30 is not limited to the silicon dioxide layer or the air layer listed above, and the first optically thinning medium layer 30 is not limited to the silicon dioxide layer or the air layer listed above. layer, the optically dense medium layer 40 is not limited to the silicon nitride layer or silicon dioxide layer listed above, as long as the refractive index of the first optically sparse medium layer 30 is lower than the refractive index of the optically dense medium layer 40, and the second light The optical waveguide effect can be formed when the refractive index of the thin medium layer 50 is smaller than that of the optically dense medium layer 40 .

空气层的形成可以通过使上、下结构层之间形成间隙即可。The air layer can be formed by forming a gap between the upper and lower structural layers.

上述各实施例中,激发光源10包括且不限于LED激发光源10、OLED激发光源10或LCD激发光源10等,只要能发光激发量子点结构20即可。In the above embodiments, the excitation light source 10 includes and is not limited to the LED excitation light source 10 , the OLED excitation light source 10 or the LCD excitation light source 10 , as long as it can emit light and excite the quantum dot structure 20 .

另,激发光源10除了包括能够直接发光的结构层外,还可以包括衬底60、外延层、导电层、电流扩展层、阻挡层等其它功能结构层。In addition, the excitation light source 10 may include other functional structural layers such as a substrate 60 , an epitaxial layer, a conductive layer, a current spreading layer, and a blocking layer, in addition to the structural layer capable of directly emitting light.

本发明还公开了一种显示模组,包括上述的LED芯片结构,显示模组可以是应用于手机、平板、笔记本电脑、电视、AR/VR设备、车仪表与中控、户外显示器、抬头显示器(HUD)等产品的显示模组。The present invention also discloses a display module, which includes the above-mentioned LED chip structure. The display module can be applied to mobile phones, tablets, notebook computers, TVs, AR/VR equipment, vehicle instruments and central controls, outdoor displays, and head-up displays. (HUD) and other display modules.

下面以图5所示的芯片结构为例,具体阐述一种芯片结构的制备方法,包括以下步骤:Taking the chip structure shown in FIG. 5 as an example, a method for preparing a chip structure is described in detail below, including the following steps:

1)制备激发光源10,包括且不限于LED激发光源10、OLED激发光源10、LCD激发光源10等。1) Prepare excitation light source 10, including but not limited to LED excitation light source 10, OLED excitation light source 10, LCD excitation light source 10, etc.

2)在激发光源10表面依次制备第一光疏介质层30和光密介质层40。2) Prepare the first optically thinning medium layer 30 and the optically dense medium layer 40 sequentially on the surface of the exciting light source 10 .

3)对光密介质层40进行开孔,形成深至激发光源10的孔结构,用于放置量子点。3) Opening holes in the optically dense medium layer 40 to form a hole structure as deep as the excitation light source 10 for placing quantum dots.

4)在步骤3)形成的结构上形成图形化掩模,该图形化掩模用于遮挡孔结构以外的结构,通过图形化掩模为孔结构填充量子点。4) Forming a patterned mask on the structure formed in step 3), the patterned mask is used to shield structures other than the hole structure, and the hole structure is filled with quantum dots through the patterned mask.

图形化掩模的制备方法包括且不限于旋涂光刻胶、喷墨打印或压力溅射等方法。The preparation methods of the patterned mask include but are not limited to methods such as spin-coating photoresist, inkjet printing or pressure sputtering.

5)用刻蚀等方法在光密介质层40表面制造出凸起或凹陷等任何破坏表面平整度的结构。5) Making protrusions or depressions on the surface of the optically dense medium layer 40 by means of etching or the like, and any structure that destroys the flatness of the surface.

6)在光密介质层40表面继续制备第二光疏介质层50。6) Continue to prepare the second optically thinning medium layer 50 on the surface of the optically dense medium layer 40 .

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the scope of the patent application. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.

Claims (9)

1. The utility model provides a chip structure, is in including excitation light source and setting quantum dot structure on the excitation light source, a serial communication port, still be equipped with light adjusting structure on the excitation light source, light adjusting structure is around setting up the side of quantum dot structure, light adjusting structure is including the first light sparse dielectric layer that stacks gradually, optically dense dielectric layer and second light sparse dielectric layer, first light sparse dielectric layer is compared the second light sparse dielectric layer is close to the excitation light source, being close to on optically dense dielectric layer the peripheral region on the surface of second light sparse dielectric layer one side or the peripheral region on the surface of second light sparse dielectric layer is uneven surface.
2. The chip structure according to claim 1, wherein a projection of the uneven surface on a plane of the excitation light source falls on an outer periphery of the excitation light source.
3. The chip structure according to claim 1 or 2, wherein a side of the quantum dot structure is directly opposite to a side of the optically denser medium layer.
4. The chip structure according to claim 3, wherein the arrangement scheme of the positions of the first optically thinner medium layer and the second optically thinner medium layer comprises any one of the following schemes:
the first scheme is as follows: the first light-thinning medium layer is arranged below the quantum dot structure, and the second light-thinning medium layer is arranged above the quantum dot structure;
scheme two is as follows: the first light-thinning medium layer is arranged below the quantum dot structure, and the second light-thinning medium layer is arranged on the side of the quantum dot structure in a surrounding mode;
and a third scheme is as follows: the first light-thinning medium layer is arranged on the lateral side of the quantum dot structure in a surrounding mode, and the second light-thinning medium layer is arranged on the lateral side of the quantum dot structure in a surrounding mode;
and the scheme is as follows: the first light-thinning medium layer is arranged on the lateral side of the quantum dot structure in a surrounding mode, and the second light-thinning medium layer is arranged above the quantum dot structure.
5. The chip structure according to any one of claims 1, 2 or 4, wherein a groove is disposed on a surface of the excitation light source near a side of the quantum dot structure, the first optically thinner medium layer is accommodated in the groove, the second optically thinner medium layer is disposed above the quantum dot structure, or the second optically thinner medium layer is disposed around a side of the quantum dot structure.
6. The chip structure according to any one of claims 1, 2 or 4, wherein the first optically thinner dielectric layer comprises a silicon dioxide layer or an air layer, the second optically thinner dielectric layer comprises a silicon dioxide layer or an air layer, and the optically denser dielectric layer comprises a silicon nitride layer; or the first light-thinning medium layer is an air layer, the second light-thinning medium layer is an air layer, and the light-tight medium layer is a silicon dioxide layer.
7. The chip structure according to claim 5, wherein the first optically thinner medium layer comprises a silicon dioxide layer or an air layer, the second optically thinner medium layer comprises a silicon dioxide layer or an air layer, and the optically denser medium layer comprises a silicon nitride layer; or the first light-thinning medium layer is an air layer, the second light-thinning medium layer is an air layer, and the light-tight medium layer is a silicon dioxide layer.
8. The chip structure according to any one of claims 1, 2, 4 or 7, wherein the excitation light source comprises an LED excitation light source, an OLED excitation light source or an LCD excitation light source.
9. A display module comprising the chip structure according to any one of claims 1 to 8.
CN202110502474.6A 2021-05-08 2021-05-08 Chip structure and display module Active CN115308944B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110502474.6A CN115308944B (en) 2021-05-08 2021-05-08 Chip structure and display module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110502474.6A CN115308944B (en) 2021-05-08 2021-05-08 Chip structure and display module

Publications (2)

Publication Number Publication Date
CN115308944A true CN115308944A (en) 2022-11-08
CN115308944B CN115308944B (en) 2024-06-11

Family

ID=83853144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110502474.6A Active CN115308944B (en) 2021-05-08 2021-05-08 Chip structure and display module

Country Status (1)

Country Link
CN (1) CN115308944B (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157943A (en) * 2005-12-02 2007-06-21 Stanley Electric Co Ltd Semiconductor light emitting device and manufacturing method thereof
US20100079061A1 (en) * 2008-10-01 2010-04-01 Tzeng-Guang Tsai Light emitting diode device and manufacturing method thereof
US20130099264A1 (en) * 2011-08-11 2013-04-25 Scott M. Zimmerman Solid state light sources based on thermally conductive luminescent elements containing interconnects
US20150333109A1 (en) * 2014-05-16 2015-11-19 Osram Oled Gmbh Optoelectronic component, method for producing an optoelectronic component
KR20160048321A (en) * 2014-10-23 2016-05-04 삼성전자주식회사 Method for manufacturing light emitting diode package
CN106299075A (en) * 2015-05-18 2017-01-04 青岛海信电器股份有限公司 A kind of quantum dot light emitting element, backlight module and display device
KR20170017150A (en) * 2015-08-05 2017-02-15 엘지이노텍 주식회사 Light source module and lighting apparatus
CN107039573A (en) * 2016-02-04 2017-08-11 晶元光电股份有限公司 Light emitting element and method for manufacturing the same
CN107180902A (en) * 2016-11-25 2017-09-19 惠州市华量半导体有限公司 LED lamp bead and LED/light source
CN107505769A (en) * 2017-08-15 2017-12-22 京东方科技集团股份有限公司 Backing structure and display device
CN109256403A (en) * 2017-07-14 2019-01-22 格科微电子(上海)有限公司 Imaging sensor front-illuminated and forming method thereof
CN109585481A (en) * 2018-12-03 2019-04-05 德淮半导体有限公司 Image sensor structure and preparation method thereof
CN111128985A (en) * 2019-12-25 2020-05-08 深圳市华星光电半导体显示技术有限公司 Display panel and preparation method thereof
CN111240094A (en) * 2020-03-12 2020-06-05 京东方科技集团股份有限公司 Area light source
CN112483941A (en) * 2020-12-15 2021-03-12 台州路铭科技有限公司 Three proofings LED purifies lamp
CN215340590U (en) * 2021-05-08 2021-12-28 深圳市思坦科技有限公司 Chip structure and display module

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157943A (en) * 2005-12-02 2007-06-21 Stanley Electric Co Ltd Semiconductor light emitting device and manufacturing method thereof
US20100079061A1 (en) * 2008-10-01 2010-04-01 Tzeng-Guang Tsai Light emitting diode device and manufacturing method thereof
US20130099264A1 (en) * 2011-08-11 2013-04-25 Scott M. Zimmerman Solid state light sources based on thermally conductive luminescent elements containing interconnects
US20150333109A1 (en) * 2014-05-16 2015-11-19 Osram Oled Gmbh Optoelectronic component, method for producing an optoelectronic component
KR20160048321A (en) * 2014-10-23 2016-05-04 삼성전자주식회사 Method for manufacturing light emitting diode package
CN106299075A (en) * 2015-05-18 2017-01-04 青岛海信电器股份有限公司 A kind of quantum dot light emitting element, backlight module and display device
KR20170017150A (en) * 2015-08-05 2017-02-15 엘지이노텍 주식회사 Light source module and lighting apparatus
CN107039573A (en) * 2016-02-04 2017-08-11 晶元光电股份有限公司 Light emitting element and method for manufacturing the same
CN107180902A (en) * 2016-11-25 2017-09-19 惠州市华量半导体有限公司 LED lamp bead and LED/light source
CN109256403A (en) * 2017-07-14 2019-01-22 格科微电子(上海)有限公司 Imaging sensor front-illuminated and forming method thereof
CN107505769A (en) * 2017-08-15 2017-12-22 京东方科技集团股份有限公司 Backing structure and display device
CN109585481A (en) * 2018-12-03 2019-04-05 德淮半导体有限公司 Image sensor structure and preparation method thereof
CN111128985A (en) * 2019-12-25 2020-05-08 深圳市华星光电半导体显示技术有限公司 Display panel and preparation method thereof
CN111240094A (en) * 2020-03-12 2020-06-05 京东方科技集团股份有限公司 Area light source
CN112483941A (en) * 2020-12-15 2021-03-12 台州路铭科技有限公司 Three proofings LED purifies lamp
CN215340590U (en) * 2021-05-08 2021-12-28 深圳市思坦科技有限公司 Chip structure and display module

Also Published As

Publication number Publication date
CN115308944B (en) 2024-06-11

Similar Documents

Publication Publication Date Title
CN111509141B (en) Display panel, manufacturing method thereof, and display device
CN112234070B (en) Display panel, display device and manufacturing method of display panel
KR102132220B1 (en) Method of manufacturing a quantum dot optical component and backlight unit having the quantum dot optical component
WO2020224088A1 (en) Array substrate and preparation method therefor
WO2020043093A1 (en) Light emitting device, pixel unit, method for manufacturing pixel unit, and display device
CN109782492B (en) Light source module and display device
US20190101690A1 (en) Backlight device and manufacturing method thereof
CN114388560B (en) Display panel, preparation method thereof and display device
CN111048648B (en) Display panel, manufacturing method and electronic equipment
US20230114578A1 (en) Electronic device
CN215340590U (en) Chip structure and display module
CN110320702A (en) Substrate and preparation method thereof, display panel
US11131879B2 (en) Backlight module and applications thereof
CN112542537B (en) Quantum dot film layer, backlight module and preparation method of backlight module
CN115308944B (en) Chip structure and display module
CN113439334B (en) Display substrate and preparation method thereof, display device
CN110579905B (en) Display device
CN108051951A (en) LED light source, backlight module and liquid crystal display device
WO2024082488A1 (en) Packaged light-emitting unit, display apparatus and manufacturing method for packaged light-emitting unit
US20230369546A1 (en) Light source device and manufacturing method of light source device
CN1967899B (en) Organic electroluminescence display element and manufacturing method thereof
CN113241364B (en) Optical structure and display assembly
WO2018228107A1 (en) Organic light-emitting device and manufacturing method therefor
CN111864035B (en) Display panel, manufacturing method of display panel, and display device
JP4781255B2 (en) Surface light emitting device and display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant