CN115304382A - 一种低热导新型四元高熵金属二硼化物及其制备方法 - Google Patents

一种低热导新型四元高熵金属二硼化物及其制备方法 Download PDF

Info

Publication number
CN115304382A
CN115304382A CN202211011055.3A CN202211011055A CN115304382A CN 115304382 A CN115304382 A CN 115304382A CN 202211011055 A CN202211011055 A CN 202211011055A CN 115304382 A CN115304382 A CN 115304382A
Authority
CN
China
Prior art keywords
powder
metal diboride
entropy metal
entropy
quaternary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211011055.3A
Other languages
English (en)
Inventor
朱时珍
柳彦博
刘玲
马壮
张泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202211011055.3A priority Critical patent/CN115304382A/zh
Publication of CN115304382A publication Critical patent/CN115304382A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种新型四元高熵金属二硼化物及其制备方法,属于超高温陶瓷材料技术领域。所述高熵金属二硼化物化学式记为(Hf0.25Zr0.25Ta0.25Sc0.25)B2,其中Hf,Zr,Ta和Sc金属元素为等摩尔比,摩尔比总和为1;(Hf0.25Zr0.25Ta0.25Sc0.25)B2处理具有优异的相稳定性,优异的力学性能外,(Hf0.25Zr0.25Ta0.25Sc0.25)B2的热导率仅有13.9W·m‑1·K‑1,比传统HfB2,ZrB2降低了86.7%,76.8%。因此,(Hf0.25Zr0.25Ta0.25Sc0.25)B2适宜在超高温隔热领域推广应用。

Description

一种低热导新型四元高熵金属二硼化物及其制备方法
技术领域
本发明涉及一种新型四元高熵金属二硼化物及其制备方法,属于超高温陶瓷材料技术领域。
背景技术
在超高温陶瓷(UHTCs)中,过渡金属二硼化物(TMB2)因其高熔点、高硬度、良好的抗热震性和化学稳定性,被广泛应用于高超声速飞行器、核反应堆、飞机前缘和鼻锥等领域。然而,单组元TMB2(HfB2,ZrB2)热导率可达到60-120W·m-1·K-1,较高的热导率是阻碍金属二硼化物在超高温隔热领域应用的主要原因。先前的研究表明4-5种TMB2经过高熵固溶后可以增强声子散射率,从而显著降低超高温陶瓷的热导率。目前,高熵过渡金属二硼化物(HE TMB2)的组分主要为HfB2,ZrB2,TaB2,NbB2和TiB2。首先,这些TMB2都是高热导材料,并且数量较少,使得多数研究以(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2作为HE TMB2的主要研究对象,导致HE TMB2的材料设计空间较窄。研究在HE TMB2中引入稀土金属二硼化物ScB2对其结构和性能的影响。
发明内容
有鉴于此,本发明为了扩大HE TMB2的材料设计空间,通过高熵的概念在TMB2引入了稀土金属二硼化物(REB2)—ScB2。设计了一种新型的四元高熵金属二硼化物—(Hf0.25Zr0.25Ta0.25Sc0.25)B2。该金属二硼化物是由Hf、Zr、Ta、Sc以及B组成的,不仅力学性能优异,而且可以显著降低传统TMB2的热导率;而且该四元高熵金属二硼化物可以在1700℃低温下制备成单相粉体,制备工艺易于操作,制备成本低,适宜工业推广。
本发明的目的是通过以下技术方案实现的。
一种四元高熵金属二硼化物,所述高熵金属二硼化物化学式简记为(Hf0.25Zr0.25Ta0.2Sc0.25)B2,Hf、Zr、Ta和Sc的原子摩尔比为0.25(原子摩尔比总和为1)。
一种四元高熵金属二硼化物的制备方法,所述方法包括以下步骤:
将HfO2,ZrO2,Ta2O5,Sc2O3和B4C粉体按照化学计量比配料,B4C粉体的加入料过量20%以保证反应的充分和弥补高温下B源的损失。将五种粉体先混合均匀,然后将混合粉体转移至高温真空条件下,温度为1700℃以上(包含1700℃)并保温1h~3h,得到四元高熵金属二硼化物的粉体;
将制备得到的四元高熵金属二硼化物粉体的装入石墨模具中,采用放电感应等离子烧结(SPS)在真空或惰性气体保护气氛下烧结,烧结温度为1900℃~2200℃,烧结压力为30MPa~50MPa,烧结时间(以保温时间为主)为15min~35min,得到单相高熵金属二硼化物块体。
优选地,HfO2,ZrO2,Ta2O5,Sc2O3和B4C粉体在球磨罐中球磨混合,溶剂为乙醇,球料比为(3~6):1,转速为300rpm~500rpm,球磨时间为2h~6h。
优选地,四元高熵金属二硼化物粉体在真空高温气氛中的制备过程,升温速率为5℃/min~10℃/min。
优选地,四元高熵金属二硼化物粉体制备过程中,保温温度为1700℃~1950℃。
优选地,采用放电感应等离子烧结(SPS)制备四元高熵金属二硼化物块体的过程中,保温温度为1900~2200℃。
有益效果:
(1)本发明首次设计及制备了一种新型四元高熵金属二硼化物,(Hf0.25Zr0.25Ta0.2Sc0.25)B2具有优异的相稳定性,不仅在较低温度下可以合成纯相的粉体,而且还具有优异的力学性能。
(2)本发明所述新型四元高熵金属二硼化物的制备过程中添加了过量的B4C,因为HfO2,ZrO2,Ta2O5,Sc2O3和B4C粉体在高温反应下会发生热还原反应,中间反应产物B2O3和BO较低的沸点在真空和高温下会快速挥发导致硼源的流失,导致热还原反应不完全,因此为了能够充分反应添加了过量的B4C。
(3)本发明所述新型四元高熵金属二硼化物块体具有较低的热导率,可以在超高温隔热材料领域应用。
附图说明
图1为实施例1制备的(Hf0.25Zr0.25Ta0.2Sc0.25)B2粉体的X射线衍射(XRD)谱图。
图2为实施例1制备的(Hf0.25Zr0.25Ta0.2Sc0.25)B2块体的X射线衍射(XRD)谱图。
图3为实施例1制备的(Hf0.25Zr0.25Ta0.2Sc0.25)B2块体的元素分析图谱。
具体实施方式
下面结合具体实施方式对本发明作进一步阐述,其中,所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径获得。
以下实施例中:
HfO2、ZrO2、Ta2O5、Sc2O3和B4C粉体的粒径均为500nm~3μm;
弹性模量采用脉冲激发共振法测得,测试样品尺寸为3mm×15mm×40mm的长方体;
维氏硬度采用HXD-1000B型显微硬度计(上海泰明光学仪器有限公司),测试样品尺寸3mm×4mm×15mm,测试面抛光至镜面,载荷分别为0.5、1、2、3、5和10N,保压时间为10s;其中,为了避免压痕之间的相互影响,压痕在不同的位置进行,并且两个压痕点之间的距离要大于凹陷对角线长度的三倍以上;
弯曲强度通过三点弯曲实验得到,测试设备为万能力学试验机,测试样品的尺寸为3mm×4mm×36mm,跨距为30mm,压头移动速度为0.5mm/min;其中,在测试前,样品进行三面抛光,且受拉面作45°倒角处理以降低边缘性破坏的可能性;
热扩散系数采用激光闪射法来测量,测试设备为激光热导仪,样品的尺寸为直径12.7mm×1.0mm的圆片。热导率通过公式σ=σ0+Kd0.5进行计算。。
实施例1
(1)将HfO2、ZrO2、Ta2O5、Sc2O3和B4C粉体按照摩尔比2:2:1:1:5.71和乙醇一起加入尼龙材质的球磨罐中,球料比为6:1,在350rpm转速下球磨混合5h,得到混合均匀的混合粉体;
(2)将混合粉体在100℃的条件下干燥后,放至真空条件下,以10℃/min的升温速率加热至1700℃并保温3h,得到四元高熵金属二硼化物粉体,化学式为(Hf0.25Zr0.25Ta0.2Sc0.25)B2
(3)将制备得到的(Hf0.25Zr0.25Ta0.2Sc0.25)B2粉体装入石墨模具中,采用放电感应等离子烧结在真空气氛下进行块体的烧结,烧结温度为2000℃,烧结压力为40MPa,烧结时间30min,得到单相(Hf0.25Zr0.25Ta0.2Sc0.25)B2块体。
对步骤(2)获得的(Hf0.25Zr0.25Ta0.2Sc0.25)B2粉体进行XRD表征,从图1中可以看出,(Hf0.25Zr0.25Ta0.2Sc0.25)B2粉体的衍射峰与六方AlB2型结构的一致,没有检测到其他相结构的衍射峰,说明合成的(Hf0.25Zr0.25Ta0.2Sc0.25)B2粉体为均匀的单相结构。
步骤(3)所获得的(Hf0.25Zr0.25Ta0.2Sc0.25)B2块体采用扫描电子显微镜的EDS功能进行元素分析,根据图3的检测分析结果可知,Hf、Ta、Zr和Sc四种金属元素分布均匀,没有检测到团聚或偏析的现象,说明(Hf0.25Zr0.25Ta0.2Sc0.25)B2块体具有均匀的四元高熵结构。
对步骤(3)制备的(Hf0.25Zr0.25Ta0.2Sc0.25)B2块体进行力学性能测试,测试结果如表1所示。从表1中可以看出,(Hf0.25Zr0.25Ta0.2Sc0.25)B2具有比传统TMB2更优异的力学性能,其中硬度高30%,弯曲强度高22%。
表1
Figure BDA0003810577480000041
对步骤(3)制备的(Hf0.25Zr0.25Ta0.2Sc0.25)B2块体进行热扩散测试,测试结果及通过公式计算得到的热导率如表1所示,表1列出了传统TMB2的结果进行对比。从表1中可以看出,(Hf0.25Zr0.25Ta0.2Sc0.25)B2的热导率为13.9W·m-1·K-1,(Hf0.25Zr0.25Ta0.2Sc0.25)B2的热导率分别比传统HfB2,ZrB2降低了86.7%,76.8%。
Figure BDA0003810577480000042

Claims (8)

1.一种四元高熵金属二硼化物,其特征在于:所述四元高熵金属二硼化物化学式为(Hf0.25Zr0.25Ta0.2Sc0.25)B2,Hf、Zr、Ta和Sc四种金属元素为等原子摩尔比且原子摩尔比之和为1。
2.一种如权利要求1所述的四元高熵金属二硼化物的制备方法,其特征在于:所述方法包括以下步骤:
将HfO2,ZrO2,Ta2O5,Sc2O3和B4C粉体按照化学计量比配料,B4C粉体的加入料过量20%以保证反应的充分和弥补高温下B源的损失。将五种粉体先混合均匀,然后将混合粉体转移至高温真空条件下,温度为1700℃以上(包含1700℃)并保温1h~3h,得到四元高熵金属二硼化物的;
将制备得到的四元高熵金属二硼化物粉体的装入石墨模具中,采用放电感应等离子烧结(SPS)在真空或惰性气体保护气氛下烧结,烧结温度为1900℃~2200℃,烧结压力为30MPa~50MPa,烧结时间(以保温时间为主)为15min~35min,得到单相高熵金属二硼化物块体。
3.根据权利要求2所述的一种四元高熵金属二硼化物的制备方法,其特征在于:过量的B4C粉体为按照化学计量比加入的B4C粉体质量的115%~135%。
4.根据权利要求2所述的一种四元高熵金属二硼化物的制备方法,其特征在于HfO2,ZrO2,Ta2O5,Sc2O3和B4C粉体在球磨罐中球磨混合,球料比为(3~6):1,转速为300rpm~500rpm,球磨时间为2h~6h。
5.根据权利要求2所述的一种四元高熵金属二硼化物的制备方法,其特征在于:四元高熵金属二硼化物粉体制备过程中,以5℃/min~10℃/min的升温速率加热至1700℃以上。
6.根据权利要求2所述的一种四元高熵金属二硼化物的制备方法,其特征在于:四元高熵金属二硼化物粉体制备过程中,加热温度为1700℃~1950℃。
7.根据权利要求2所述的一种四元高熵金属二硼化物的制备方法,其特征在于:将制备得到的四元高熵金属二硼化物粉体研磨并通过100-300目的筛子过筛,再采用放电感应等离子烧结制备成块体。
8.根据权利要求2所述的一种单相高熵金属二硼化物的制备方法,其特征在于:HfO2,ZrO2,Ta2O5,Sc2O3和B4C粉体的粒径均为500nm~3μm。
CN202211011055.3A 2022-08-23 2022-08-23 一种低热导新型四元高熵金属二硼化物及其制备方法 Pending CN115304382A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211011055.3A CN115304382A (zh) 2022-08-23 2022-08-23 一种低热导新型四元高熵金属二硼化物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211011055.3A CN115304382A (zh) 2022-08-23 2022-08-23 一种低热导新型四元高熵金属二硼化物及其制备方法

Publications (1)

Publication Number Publication Date
CN115304382A true CN115304382A (zh) 2022-11-08

Family

ID=83865513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211011055.3A Pending CN115304382A (zh) 2022-08-23 2022-08-23 一种低热导新型四元高熵金属二硼化物及其制备方法

Country Status (1)

Country Link
CN (1) CN115304382A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633214A (en) * 1994-06-30 1997-05-27 Nkk Corporation Boron nitride-containing material and method thereof
CN114715907A (zh) * 2022-03-18 2022-07-08 北京理工大学 一种单相高熵金属二硼化物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633214A (en) * 1994-06-30 1997-05-27 Nkk Corporation Boron nitride-containing material and method thereof
CN114715907A (zh) * 2022-03-18 2022-07-08 北京理工大学 一种单相高熵金属二硼化物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZE ZHANG ET AL.: "Phase structure,mechanical properties and thermal properties of high-entropy diboride (Hf0.25Zr0.25Ta0.25Sc0.25)B2", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Similar Documents

Publication Publication Date Title
Gu et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach
Qin et al. A high entropy silicide by reactive spark plasma sintering
US6531423B1 (en) Liquid-phase-sintered SiC shaped bodies with improved fracture toughness and a high electric resistance
Zhang et al. Fabrication of textured (Hf0. 2Zr0. 2Ta0. 2Cr0. 2Ti0. 2) B2 high-entropy ceramics
CN108751997B (zh) 一种B4C-TiB2-SiC复合陶瓷块体及其快速制备方法
Sciti et al. Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum
CN110511035A (zh) 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用
CN112830785A (zh) 一种层状高熵双硼碳化物陶瓷粉体及其制备方法
CN114715907B (zh) 一种单相高熵金属二硼化物及其制备方法
CN112778010A (zh) 一种高硬度高导电率的高熵陶瓷及其制备方法和应用
CN106747474B (zh) 高热导率氮化硅陶瓷的制备方法
Ekström et al. α-Sialon ceramics synthesised from a clay precursor by carbothermal reduction and nitridation
Zhang et al. Effects of different types of sintering additives and post-heat treatment (PHT) on the mechanical properties of SHS-fabricated Si3N4 ceramics
CN113603493B (zh) 一种耐磨氮化硅陶瓷刀具材料及其制备方法
Chen et al. Effects of mechanically alloying Al2O3 and Y2O3 additives on the liquid phase sintering behavior and properties of SiC
Hirosaki et al. Phase relationships in the Si3N4–SiO2–Lu2O3 system
JP2002003276A (ja) 炭化ケイ素−窒化ホウ素複合材料の反応合成
CN115304382A (zh) 一种低热导新型四元高熵金属二硼化物及其制备方法
US10541064B2 (en) SiC powder, SiC sintered body, SiC slurry and manufacturing method of the same
Santos et al. Stabilization of α-SiAlONs using a rare-earth mixed oxide (RE2O3) as sintering additive
CN115159990A (zh) 一种高韧性高熵金属二硼化物及其制备方法
Nakane et al. Fabrication and mechanical properties of titanium boride ceramics
Neuman et al. Processing and mechanical properties of hot-pressed zirconium diboride–zirconium carbide ceramics
Sonber et al. Effect of TiSi2 addition on densification of cerium hexaboride
Hu et al. Synthesis and performance of TiB2–B4C composites by high pressure of TiC–B mixture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20221108