CN115295645A - 基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用 - Google Patents

基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用 Download PDF

Info

Publication number
CN115295645A
CN115295645A CN202210592007.1A CN202210592007A CN115295645A CN 115295645 A CN115295645 A CN 115295645A CN 202210592007 A CN202210592007 A CN 202210592007A CN 115295645 A CN115295645 A CN 115295645A
Authority
CN
China
Prior art keywords
quantum dot
dot layer
colloid
mercury
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210592007.1A
Other languages
English (en)
Inventor
陈梦璐
郝群
唐鑫
秦天令
赵雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202210592007.1A priority Critical patent/CN115295645A/zh
Publication of CN115295645A publication Critical patent/CN115295645A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用,属于光电探测器技术领域。该探测器包括第一胶体量子点层与相邻设置的第二胶体量子点层,还包括衬底和电极,且第一胶体量子点层相较于第二胶体量子点层更靠近电极设置;第一胶体量子点层的载流子迁移率大于第二胶体量子点层;第二胶体量子点层为p型半导体材料层,该p型半导体材料层中的空穴俘获第一胶体量子点层中的电子并用来降低电子‑空穴间复合噪声。本发明设计的探测器既具备优异的光响应率,又表现出良好的比探测率。

Description

基于俘获模式的胶体量子点光导型红外探测器及其制备方法 与应用
技术领域
本发明涉及一种红外感光元器件,属于光电探测器技术领域,具体地涉及一种基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用。
背景技术
红外探测器是能够对外界红外光辐射产生响应的光电传感器。对于此波段敏感的光子探测器主基于单晶InSb和HgCdTe等材料,然而单晶外延生长的成本一直居高不下,并且与硅基读出电路耦合时工艺也极为复杂,进一步提高了成本,限制了探测器的应用。因此人们对于量子点红外探测器、量子阱红外探测器、III-V半导体的II类超晶格等替代方案进行了研究,寻求解决之道。胶体量子点作为新一代光电半导体材料,由于其光谱调控范围宽,热注射法合成制备成本低、液相加工可直接涂在硅电子器件上的优势,在光电器件发展上取得了重大进展,进一步降低红外胶体量子点探测器的功耗并且提高其探测性能是现存的关键问题。
红外胶体量子点探测器有光导型、光伏型、光晶体管型等多种类型。光导型探测器的突出优点就是结构简单,只需要两个电极就可以工作,其原理是当红外辐射照射在材料表面上时,半导体材料中产生电子空穴对,部分电子和空穴可以从原来不导电的束缚状态变为能导电的自由状态,使半导体的导电率增加。但是光导型的探测器理论噪声要比光伏型的探测器高,这是由于光导型探测器相比于光伏型探测器而言,增加了电子和空穴结合而出现的产生-复合噪声,并且需要在外加偏压的条件下工作,有较高的散粒噪声。
具体的,衡量光电探测器性能的一个重要指标是噪声等效功率即 NEP,噪声等效功率越小,探测器的灵敏度越高。其计算公式如式(1)、(2)所示:
Figure BDA0003665705440000021
其中in为噪声电流,Rres为响应率。
Figure BDA0003665705440000022
其中Iph为光电流,P为输入光功率。
因此降低探测器的复合噪声并用来提升光响应率、比探测率及外量子效率显得尤为重要。
发明内容
为解决上述技术问题,本发明公开了一种基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用。该光导型红外探测器既具备优异的光响应率,又表现出良好的比探测率。
本发明提供了一种基于俘获模式的胶体量子点光导型红外探测器,所述探测器包括第一胶体量子点层与相邻设置的第二胶体量子点层,还包括衬底和电极,且所述第一胶体量子点层相较于第二胶体量子点层更靠近电极设置;
所述第一胶体量子点层的载流子迁移率大于第二胶体量子点层;所述第二胶体量子点层为p型半导体材料层,所述第一胶体量子点层为本征型或弱p型或n型半导体材料层;所述第二胶体量子点层中的空穴(多子)俘获第一胶体量子点层中的电子(少子)并用来降低电子-空穴间复合噪声。
进一步地,所述探测器的结构自上而下包括外部封装涂层、第二胶体量子点层、第一胶体量子点层、电极及衬底,所述电极为设置在所述衬底上的叉指金属电极或叉指合金电极。
进一步地,本征型半导体材料为汞离子富集的硫系汞半导体材料,弱p型半导体材料的材质为硫系汞半导体材料,n型半导体材料为硒化铋处理的硫系汞半导体材料。
进一步地,所述硫系汞为硫化汞、硒化汞或碲化汞中至少一种。
进一步地,所述第二胶体量子点层的材质为硫系银半导体材料。
进一步地,所述硫系银为硫化银、硒化银或碲化银中一种以上。
进一步地,所述硫系汞为碲化汞,所述硫系银为碲化银。
进一步地,所述探测器的结构自上而下包括聚甲基丙烯酸甲酯封装涂层、碲化银胶体量子点层、碲化汞胶体量子点层、金电极与蓝宝石衬底,其中,碲化汞胶体量子点层的载流子迁移率为1cm2/Vs,碲化银胶体量子点层的载流子迁移率为10-3~10-4cm2/Vs。
本发明的目的之二是提供一种上述基于俘获模式的胶体量子点光导型红外探测器的制备方法,它包括如下步骤:
1)在衬底上设计电极;
2)在电极上制作第一胶体量子点层:将第一胶体量子点墨水旋涂至电极表面;其中,本发明实施例1详细公开了碲化汞胶体量子点墨水的制备过程,对于其他本征或弱p型或n型胶体量子点墨水的制备与碲化汞会有不同,一切以量子点本身具备的特异性为准。
本发明在旋涂过程中,采用单层逐一涂覆方式,完成每层涂覆后,停止一段时间使量子点溶液充分浸润,然后采用清洗剂冲洗掉量子点溶液中多余配体,继续重复上述涂覆直至完成。
3)在第一胶体量子点层表面制作第二胶体量子点层:
4)表面封装涂层。
本发明还有一个技术目的是公开了上述胶体量子点光导型红外探测器在1.1~2.5μm的短波探测和/或3~5μm中波探测领域中的应用。
本发明实施例提供的技术方案与现有技术相比具有如下优点:
1、本发明设计的基于俘获模式的胶体量子点光导型红外探测器使用校准的黑体光源在600℃下测量光响应率,探测器样品置于液氮恒温器中,距离光源20cm。对600℃下在4300~7000cm-1的黑体光谱进行积分,得到黑体的光通量为718.906W/m2/sr。在热功耗为6.4×10-4W 时,基于俘获模式的胶体量子点光导型红外探测器光响应率可以达到 24.95A/W,对照组中的碲化汞胶体量子点光导型红外探测器光响应率为10.6A/W。在相同条件下,本发明设计的基于俘获模式的胶体量子点光导型红外探测器光响应率提高了140%。
2、本发明设计的基于俘获模式的胶体量子点光导型红外探测器使用校准的黑体光源在600℃下测量比探测率,探测器样品置于液氮恒温器中,距离光源20cm。对600℃下在4300-7000cm-1的黑体光谱进行积分,得到黑体的光通量为718.906W/m2/sr。在270K下,本发明设计的俘获模式的胶体量子点光导型红外探测器比探测率最高可以达到 6.5×1011cm·Hz1/2·W-1,对照组的碲化汞胶体量子点光导型红外探测器比探测率最高只能达到1.5×1011cm·Hz1/2·W-1。相比之下,本发明设计的俘获模式的胶体量子点光导型红外探测器比探测率提高了将近330%,有效的提高了胶体量子点光导型红外探测器的比探测率。
3、本发明设计的探测器在1.1~2.5μm的短波探测和/或3~5μm中波探测领域中具备较好应用,具体的,在短波红外领域,本发明设计的俘获模式的胶体量子点光导型红外探测器可以利用环境中的反射光成像,可以应用到安防领域中的面孔识别和目标识别、空间遥感探测等领域。并且因为短波红外成像可以透过挡风玻璃进行成像,因此可以应用到运输车辆的夜视系统中,增强夜视探测的能力。在中波红外领域中,本发明设计的俘获模式的胶体量子点光导型红外探测器可以探测目标物体自身辐射的红外光谱,因此外界环境对其探测性能影响较小,适用于雨天、雾天等恶劣天气中的目标探测。可以应用到有遮蔽物的环境监测,民生领域中机场安检等方面。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明公开的探测器结构示意图;
图2为本发明实施例1公开的探测器结构示意图;
图3为图2中碲化汞薄膜的吸收光谱图;
图4为图2中碲化汞薄膜的光谱响应图;
图5为本发明设计的场效应管连接关系示意图;
图6为图2中碲化汞薄膜采用图5场效应管测试结果图;
图7为图2中碲化银薄膜采用图5场效应管测试结果图;
图8为图2中探测器的光响应率测试图;
图9为图2中探测器的比探测率测试图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面将对本发明的方案进行进一步描述。需要说明的是,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
本发明公开了一种基于俘获模式的胶体量子点光导型红外探测器,所述探测器包括第一胶体量子点层与相邻设置的第二胶体量子点层,还包括衬底和电极,且所述第一胶体量子点层相较于第二胶体量子点层更靠近电极设置;所述第一胶体量子点层的载流子迁移率大于第二胶体量子点层;所述第二胶体量子点层为p型半导体材料层,所述第一胶体量子点层1为本征型或弱p型或n型半导体材料,所述p型半导体材料层中的空穴俘获本征型或弱p型或n型半导体材料中的电子并用来降低电子-空穴间复合噪声。其中,本发明公开的探测器结构自上而下包括外部封装涂层、第二胶体量子点层、第一胶体量子点层、电极及衬底。
结合图1,本发明优选所述探测器的结构如图1所示,自上而下包括外部封装涂层5、第二胶体量子点层2、第一胶体量子点层1、电极 3及衬底4,所述电极3为设置在所述衬底上的叉指金属电极或叉指合金电极,其中,所述金属电极和合金电极为本领域可能的一种电极,所述衬底为本领域可能且常用的衬底,所述外部封装涂层为本领域常用且不影响探测器使用效果的涂层,本发明优选采用金电极和蓝宝石衬底及甲基丙烯酸甲酯封装涂层。
本发明的第二胶体量子点层2优选为载流子迁移率小于第一胶体量子点层1的p型半导体材料层,所述第一胶体量子点层1为本征型或弱p型或n型的具备相对较高载流子迁移率的光敏层,二者叠加在一起时,由于p型半导体材料层中有空穴,其会俘获光敏层中的电子,又由于p型半导体材料层中的载流子迁移率很低,能够有效阻止俘获的电子进一步向外逃逸,这就使得光敏层中电子浓度下降,其与内部空穴之间复合速率变慢,不仅延长了光敏层中空穴寿命,还能降低空穴-电子之间复合噪声,因而有利于提升探测器的光响应率。
本发明的本征型半导体材料可以为表面汞离子富集的碲化汞、硒化汞或硫化汞材料。
本发明的n型半导体材料可以为硒化铋处理的硒化汞、硫化汞或碲化汞材料。
本发明的弱p型半导体材料可以为硫系汞半导体材料,如硫化汞、硒化汞或碲化汞中至少一种。本发明优选碲化汞,但硒化汞、硫化汞及本征型半导体材料、n型半导体材料均在本申请保护范围内。
本发明的p型半导体材料层的材质可以为硫系银半导体材料,如硫化银、硒化银或碲化银中一种以上。本发明优选碲化银。
综上所述,本发明优选如图2结构的探测器,它自上而下包括聚甲基丙烯酸甲酯封装涂层、碲化银胶体量子点层、碲化汞胶体量子点层、金电极与蓝宝石衬底。
本发明还公开了具备上述结构的探测器的制备方法,它包括如下步骤:
1)在衬底上设计电极:本发明选择在蓝宝石衬底上设计长×宽=1mm×1mm的叉指金电极;
2)在电极上制作第一胶体量子点层:包括如下具体步骤:
2.1)碲前驱体溶液的制备:取碲粉与三辛基膦搅拌,形成浅黄色溶液;
2.2)碲化汞胶体量子点的合成:在氮气环境中,称量一定量氯化汞溶于油胺中,在100℃下加热1个小时,之后在80℃下热平衡半个小时;其中碲粉与氯化汞间摩尔比约为1:1;
取步骤2.1)制备的碲前驱体溶液注入到上述热平衡溶液中,在80℃下反应,然后加入淬火溶液结束反应,随后移出氮气环境进行清洗。其中,所述淬火溶液为取四氯乙烯、三辛基膦和十二烷基硫醇配置得到。
2.3)碲化汞胶体量子点的清洗:取上述步骤2.2)淬火结束后碲化汞胶体量子点溶液,加至双十二烷基二甲基溴化铵中,再加入异丙醇,置于离心机中,离心处理,离心结束以后,倒掉上清液,用正己烷溶解沉淀物,获得清洗后碲化汞胶体量子点溶液。
2.4)制备高载流子迁移率的碲化汞胶体量子点墨水:取摩尔比为 1:1的丁基氯化、氯化汞与2-巯基乙醇、正丁基胺溶解在N,N-二甲基甲酰胺中,形成杂化配体溶液;然后向杂化配体溶液中加入上述碲化汞胶体量子点溶液,混匀使碲化汞量子点从正己烷中向N,N-二甲基甲酰胺相转移,为促进溶液-相配体之间交换,选择对上述混合物进行涡流,结束后加入甲苯作为抗溶剂用于沉淀碲化汞量子点,继续离心处理,离心结束以后,倒掉上清液,采用N,N-二甲基甲酰胺溶解沉淀固体,即碲化汞在N,N-二甲基甲酰胺中生成稳定的,具备高载流子迁移率的胶体量子点墨水。
2.5)电极表面生成碲化汞量子点薄膜:取上述步骤2.4)制备的碲化汞胶体量子点墨水,在氮气环境下,旋涂在衬底上步骤1)的电极及衬底上,具体的,控制转速为3000r/s,旋涂处理30秒,停止10秒使得胶体量子点充分浸润,然后采用异丙醇冲旋30秒用于去除胶体量子点中多余配体,重复上述步骤,直至生成的碲化汞量子点薄膜厚度约为200nm,即该碲化汞量子点薄膜为具备相对高载流子迁移率的第一胶体量子点层。
3)在第一胶体量子点层表面制作第二胶体量子点层:
它包括如下具体步骤:
3.1)合成碲化银胶体量子点:取硝酸银溶于油胺和油酸中,置于手套箱中控制70℃条件下搅拌30min,得溶解均匀溶液,继续注入三辛基膦,并迅速加热至160℃,持续35~45min,溶液由澄清变为黄色,注入步骤2.1)的碲前驱体溶液,黄色溶液马上变成黑色,反应10分钟,反应结束后,可选择进一步对反应原液进行清洗并进行后续过程,也可选择将反应原液放入-8℃环境中冷藏,其中硝酸银与碲粉间摩尔比为2:1;
3.2)清洗碲化银胶体量子点:取室温下的上述反应原液,加入甲醇后置于涡旋仪中混匀,继续超声处理20秒左右,然后离心处理,待离心结束后倒掉上层清液,取固体沉淀物溶解至十二硫醇和氯苯的混合液中,混匀后,再加入甲醇混匀,继续超声处理20秒左右,然后离心处理,待离心结束后倒掉上层清液,取固体沉淀物溶解至氯苯中,再加入甲醇混匀,继续超声处理20秒左右,然后离心处理5分钟,待离心结束后倒掉上层清液,取固体沉淀物溶解至体积比为9:1的正己烷+辛烷溶液中,形成清洗后碲化银胶体量子点溶液;
3.3)第一胶体量子点层表面制作低载流子迁移率p型掺杂层:取上述步骤3.2)制备的清洗后碲化银胶体量子点溶液,在氮气环境下,旋涂在步骤2.5)的第一胶体量子点层表面,具体的,控制转速为3000r/s,旋涂处理15秒,即完成旋涂一层碲化银,再用氯化汞与甲醇冲旋处理 10s,重复上述步骤,直至生成碲化银胶体量子点层。
4)表面封装涂层:取聚甲基丙烯酸甲酯溶液对步骤3.3)的碲化银胶体量子点层表面进行封层处理,以减少空气、水分等外部条件对探测器的影响。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但本发明还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本发明的一部分实施例,而不是全部的实施例。
实施例1
本实施例公开了具备上所述附图2所示探测器的具体制备方法,它包括如下步骤:
1)在衬底上设计电极:本发明选择在蓝宝石衬底上设计长×宽=1mm×1mm的叉指金电极;
2)在电极上制作第一胶体量子点层:包括如下具体步骤:
2.1)碲前驱体溶液的制备:取3毫摩尔的碲粉与3毫升的三辛基膦搅拌,形成浅黄色溶液;
2.2)碲化汞胶体量子点的合成:在氮气环境中,称量81.6mg的氯化汞溶于12mL的油胺中,在100℃下加热1个小时,之后在80℃下热平衡半个小时;
取0.3mL步骤2.1)制备的碲前驱体溶液注入到上述热平衡溶液中,在80℃下反应4分钟,然后加入淬火溶液结束反应,随后移出氮气环境进行清洗。其中,所述淬火溶液为取24mL四氯乙烯、0.9mL三辛基膦和3mL十二烷基硫醇配置得到。
2.3)碲化汞胶体量子点的清洗:取上述步骤2.2)淬火结束后碲化汞胶体量子点溶液,加至0.7mL的双十二烷基二甲基溴化铵中,再加入25mL异丙醇,置于离心机中,控制转速7500rpm,离心处理6分钟,离心结束以后,倒掉上清液,用正己烷溶解沉淀物,获得清洗后碲化汞胶体量子点溶液。
2.4)制备高载流子迁移率的碲化汞胶体量子点墨水:首先取0.5 mmol丁基氯化铵、0.5mmol氯化汞、140μL2-巯基乙醇和400μL正丁基胺溶解在5mLN,N-二甲基甲酰胺中,形成杂化配体溶液;然后向杂化配体溶液中加入400μL,约80mg/mL的上述碲化汞胶体量子点溶液,轻微晃动导致碲化汞量子点从正己烷中向N,N-二甲基甲酰胺相转移,为促进溶液-相配体之间交换,选择对上述混合物进行1分钟的涡流,结束后加入甲苯作为抗溶剂用于沉淀碲化汞量子点,继续控制转速 4000rpm,离心处理30秒,离心结束以后,倒掉上清液,采用40μLN,N- 二甲基甲酰胺溶解沉淀固体,即碲化汞在N,N-二甲基甲酰胺中生成稳定的,具备高载流子迁移率的胶体量子点墨水。
2.5)电极表面生成碲化汞量子点薄膜:取上述步骤2.4)制备的碲化汞胶体量子点墨水,在氮气环境下,旋涂在衬底上步骤1)的电极及衬底上,具体的,控制转速为3000r/s,旋涂处理30秒,停止10秒使得胶体量子点充分浸润,然后采用异丙醇冲旋30秒用于去除胶体量子点中多余配体,重复上述步骤,直至生成的碲化汞量子点薄膜厚度约为200nm,即该碲化汞量子点薄膜为具备相对高载流子迁移率的第一胶体量子点层。其中,图3和图4分别给出了碲化汞的吸收光谱图和光谱响应图,结合图3、图4可知,碲化汞胶体量子点从4000cm-1开始具有光谱响应,与吸收峰位置相符。
3)在第一胶体量子点层表面制作第二胶体量子点层:
它包括如下具体步骤:
3.1)合成碲化银胶体量子点:取34mg硝酸银溶于5mL油胺和5mL 油酸中,置于手套箱中控制70℃条件下搅拌30min,得溶解均匀溶液,继续注入0.5mL三辛基膦,并迅速加热至160℃,持续35~45min,溶液由澄清变为黄色,注入步骤2.1)的碲前驱体溶液,黄色溶液马上变成黑色,反应10分钟,反应结束后,可选择进一步对反应原液进行清洗并进行后续过程,也可选择将反应原液放入-8℃环境中冷藏。
3.2)清洗碲化银胶体量子点:取200μL室温下的上述反应原液,加入2mL甲醇后置于涡旋仪中混匀,继续超声处理20秒左右,然后控制离心转速5000rpm,离心处理5分钟,待离心结束后倒掉上层清液,取固体沉淀物溶解至50μL十二硫醇和150μL氯苯的混合液中,混匀后,再加入2mL甲醇混匀,继续超声处理20秒左右,然后控制离心转速5000rpm,离心处理5分钟,待离心结束后倒掉上层清液,取固体沉淀物溶解至200μL氯苯中,再加入2mL甲醇混匀,继续超声处理 20秒左右,然后控制离心转速5000rpm,离心处理5分钟,待离心结束后倒掉上层清液,取固体沉淀物溶解至400μL体积比为9:1的正己烷+辛烷溶液中,形成浓度为12.5mg/mL的溶液;
3.3)第一胶体量子点层表面制作低载流子迁移率p型掺杂层:取上述步骤3.2)制备的清洗后碲化银胶体量子点溶液,在氮气环境下,旋涂在步骤2.5)的第一胶体量子点层表面,具体的,控制转速为3000r/s,旋涂处理15秒,即完成旋涂一层碲化银,再用氯化汞与甲醇冲旋处理 10s,重复上述步骤,直至生成碲化银胶体量子点层。
4)表面封装涂层:取聚甲基丙烯酸甲酯溶液对步骤3.3)的碲化银胶体量子点层表面进行封层处理,以减少空气、水分等外部条件对探测器的影响。
综上所述,本实施例制得了具备说明书附图图2结构示意图的探测器。
为进一步探究碲化汞薄膜是p型还是n型,并计算出本实施例制备的第一胶体量子点层的迁移率,本发明选择通过图5、图6所示示意图构建场效应管对碲化汞薄膜进行测量。结合图5可知,本发明制备的探测器为略p型的本征态,结合图6,并进一步选择如下公式列举的场效应管的计算公式(3)计算胶体量子点薄膜的迁移率:
Figure BDA0003665705440000111
其中,上述数学关系式(3)中,Ci为300nm的SiO2的电容,数值为1.15×10-4F/m2,间隙L=10μm,总沟道宽度W=5μm,漏极电压 VD=1V,
Figure BDA0003665705440000112
为源漏电流与栅极电压的斜率为5.75×10-5A/V。
计算出碲化汞半导体材料的迁移率为1cm2/Vs。
本发明还选择构建场效应管对碲化银薄膜进行测量,结果如图7 所示,由图7可知,碲化银半导体材料为强P型,采用上述计算公式算的其载流子迁移率为10-3~10-4cm2/Vs。
由此可知,本发明制备的碲化汞半导体材料的载流子迁移率要高于碲化银半导体材料三到四个数量级以上,故二者叠加在一起时,由于p型半导体材料层中有空穴,其会俘获碲化汞半导体材料层的电子,又由于p型半导体材料层中的载流子迁移率很低,能够有效阻止俘获的电子进一步向外逃逸,这就使得碲化汞半导体材料层中电子浓度下降,其与内部空穴之间复合速率变慢,不仅延长了碲化汞半导体材料层中空穴寿命,还能降低空穴-电子之间复合噪声,因而有利于提升探测器的光响应率。
为进一步探究本实施例制备的探测器的光响应率,本发明还制备了对比例1的探测器,该对比例1探测器与上述实施例1探测器不同之处在于直接在第一胶体量子点层表面封装,其它均保持相同,图8 给出了两种探测器的热功耗与响应率曲线,结合图8可知,在相同的热功耗下,经过碲化银处理的量子点薄膜的响应率要比无处理的薄膜响应率提高了140%左右。
响应率的计算公式为
Figure BDA0003665705440000121
Iph为探测器的光电流,
Figure BDA0003665705440000122
Figure BDA0003665705440000123
为输入光功率,ABB=πr2为黑体辐射的面积,r=2cm,L=20cm 为黑体距离探测器的距离,Ap=0.5mm2为有效探测器面积,
Figure BDA0003665705440000124
为光通量。
此外,本发明还探究了上述两种探测器对弱光的探测能力,具体如图9所示,结合图9可知,本发明设计的探测器在温度为270K时,比探测率提高了330%左右。
综上,本发明制备的光导型红外探测器既具备优异的光响应率,又表现出良好的比探测率。
除此之外,外量子效率计算公式为:
Figure BDA0003665705440000131
R为胶体量子点红外探测器的光响应率,在热功耗为6.4×10-4W时,本发明设计的基于俘获模式的红外胶体量子点红外探测器的光响应率由图8可以看出是24.9A/W,λ0=2.3μm为红外探测器的吸收波长。因此在相同条件下,本发明设计的基于俘获模式的红外胶体量子点红外探测器外量子效率提高至1500%左右。
本发明设计的探测器在1.1~2.5μm的短波探测和/或3~5μm中波探测领域中具备较好应用,具体的,在短波红外领域,本发明设计的俘获模式的胶体量子点光导型红外探测器可以利用环境中的反射光成像,可以应用到安防领域中的面孔识别和目标识别、空间遥感探测等领域。并且因为短波红外成像可以透过挡风玻璃进行成像,因此可以应用到运输车辆的夜视系统中,增强夜视探测的能力。在中波红外领域中,本发明设计的俘获模式的胶体量子点光导型红外探测器可以探测目标物体自身辐射的红外光谱,因此外界环境对其探测性能影响较小,适用于雨天、雾天等恶劣天气中的目标探测。可以应用到有遮蔽物的环境监测,民生领域中机场安检等方面。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种基于俘获模式的胶体量子点光导型红外探测器,其特征在于,所述探测器包括第一胶体量子点层与相邻设置的第二胶体量子点层,还包括衬底和电极,且所述第一胶体量子点层相较于第二胶体量子点层更靠近电极设置;
所述第一胶体量子点层的载流子迁移率大于第二胶体量子点层,且所述第二胶体量子点层为p型半导体材料层,所述第一胶体量子点层为本征型或弱p型或n型半导体材料层,所述第二胶体量子点层中的空穴俘获第一胶体量子点层中的电子并用来降低电子-空穴间复合噪声。
2.根据权利要求1所述基于俘获模式的胶体量子点光导型红外探测器,其特征在于,所述探测器的结构自上而下包括外部封装涂层、第二胶体量子点层、第一胶体量子点层、电极及衬底,所述电极为设置在所述衬底上的叉指金属电极或叉指合金电极。
3.根据权利要求1或2所述基于俘获模式的胶体量子点光导型红外探测器,其特征在于,本征型半导体材料为汞离子富集的硫系汞半导体材料,弱p型半导体材料为硫系汞半导体材料,n型半导体材料为硒化铋处理的硫系汞半导体材料。
4.根据权利要求3所述基于俘获模式的胶体量子点光导型红外探测器,其特征在于,所述硫系汞半导体材料为硫化汞、硒化汞或碲化汞中至少一种。
5.根据权利要求1或2或4所述基于俘获模式的胶体量子点光导型红外探测器,其特征在于,所述第二胶体量子点层的材质为硫系银半导体材料。
6.根据权利要求5所述基于俘获模式的胶体量子点光导型红外探测器,其特征在于,所述硫系银半导体材料为硫化银、硒化银或碲化银中一种以上。
7.根据权利要求4或6所述基于俘获模式的胶体量子点光导型红外探测器,其特征在于,所述硫系汞为碲化汞,所述硫系银为碲化银。
8.根据权利要求7所述基于俘获模式的胶体量子点光导型红外探测器,其特征在于,所述探测器的结构自上而下包括聚甲基丙烯酸甲酯封装涂层、碲化银胶体量子点层、碲化汞胶体量子点层、金电极与蓝宝石衬底,其中,碲化汞胶体量子点层的载流子迁移率为1cm2/Vs,碲化银胶体量子点层的载流子迁移率为10-3~10-4cm2/Vs。
9.一种基于俘获模式的胶体量子点光导型红外探测器的制备方法,其特征在于,它包括如下步骤:
1)在衬底上设计电极;
2)在电极上制作第一胶体量子点层:将第一胶体量子点墨水旋涂至电极表面;
3)在第一胶体量子点层表面制作第二胶体量子点层:将第二胶体量子点墨水旋涂至第一胶体量子点层表面;
4)表面封装涂层。
10.一种权利要求1~8中任一项所述胶体量子点光导型红外探测器在1.1~2.5μm的短波探测和/或3~5μm中波探测领域中的应用。
CN202210592007.1A 2022-05-27 2022-05-27 基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用 Pending CN115295645A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210592007.1A CN115295645A (zh) 2022-05-27 2022-05-27 基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210592007.1A CN115295645A (zh) 2022-05-27 2022-05-27 基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115295645A true CN115295645A (zh) 2022-11-04

Family

ID=83820927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210592007.1A Pending CN115295645A (zh) 2022-05-27 2022-05-27 基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115295645A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914000A (zh) * 2023-09-13 2023-10-20 长春理工大学 一种顶层掺杂的平面光导型非倒装键合量子点成像芯片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914000A (zh) * 2023-09-13 2023-10-20 长春理工大学 一种顶层掺杂的平面光导型非倒装键合量子点成像芯片
CN116914000B (zh) * 2023-09-13 2023-12-05 长春理工大学 一种顶层掺杂的平面光导型非倒装键合量子点成像芯片

Similar Documents

Publication Publication Date Title
Guyot-Sionnest et al. Colloidal quantum dots for infrared detection beyond silicon
Jiang et al. A versatile photodetector assisted by photovoltaic and bolometric effects
Dong et al. Solution processed hybrid polymer: HgTe quantum dot phototransistor with high sensitivity and fast infrared response up to 2400 nm at room temperature
Wan et al. High-mobility induced high-performance self-powered ultraviolet photodetector based on single ZnO microwire/PEDOT: PSS heterojunction via slight ga-doping
Luo et al. Ultrasensitive flexible broadband photodetectors achieving pA scale dark current
Srivastava et al. Bulk and interface defects analysis of n-CdS/p-Si heterojunction solar cell
Li et al. CMOS‐Compatible Tellurium/Silicon Ultra‐Fast Near‐Infrared Photodetector
Nawar et al. Heterostructure device based on Brilliant Green nanoparticles–PVA/p-Si interface for analog–digital converting dual-functional sensor applications
CN110431672B (zh) 光伏场效应晶体管
Shi et al. A silicon-based PbSe quantum dot near-infrared photodetector with spectral selectivity
Chen et al. High‐performance silicon‐based PbSe-CQDs infrared photodetector
CN115295645A (zh) 基于俘获模式的胶体量子点光导型红外探测器及其制备方法与应用
Yu et al. Tunable alloying improved wide spectrum UV-vis-NIR and polarization-sensitive photodetector based on Sb–S–Se nanowires
Hafiz et al. Ligand engineering of mid-infrared Ag2Se colloidal quantum dots
Peng et al. High-performance UV–visible photodetectors based on ZnO/perovskite heterostructures
Erdogan et al. Dependence of electrical parameters of co/gold-chloride/p-Si diode on frequency and illumination
Huang et al. A self-powered dual-functional hybrid Cu2O/SiNWs heterojunction with applications in broadband photodetectors and ozone gas sensors
Al-Sehemi et al. Photodiode performance and infrared light sensing capabilities of quaternary Cu2ZnSnS4 chalcogenide
Singh et al. Analytical study of sputter-grown ZnO-based pin homojunction UV photodetector
Al-Sehemi et al. The electronic and optoelectronic properties of Al/hydroxymethyl functionalized Zn (II) Pc/p-Si photonic device
Yu et al. Highly sensitive photodetector of Zn/Bi doped MAPbBr3 single crystals formed homojunction
Pandey et al. Enhanced sub-band gap photosensitivity by an asymmetric source–drain electrode low operating voltage oxide transistor
Hao et al. Deep ultraviolet detectors based on wide bandgap semiconductors: a review
Prajapat et al. Facile synthesized Sb2S3 based high-performance visible photodetector for weak optical signal detection
Lin et al. Effects of passivation and extraction surface trap density on the 1/f noise of HgCdTe photoconductive detector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination