CN115282943A - 一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用 - Google Patents

一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用 Download PDF

Info

Publication number
CN115282943A
CN115282943A CN202211063890.1A CN202211063890A CN115282943A CN 115282943 A CN115282943 A CN 115282943A CN 202211063890 A CN202211063890 A CN 202211063890A CN 115282943 A CN115282943 A CN 115282943A
Authority
CN
China
Prior art keywords
pda
nts
mips
adsorbent
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211063890.1A
Other languages
English (en)
Other versions
CN115282943B (zh
Inventor
李美瑶
潘建明
王盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202211063890.1A priority Critical patent/CN115282943B/zh
Publication of CN115282943A publication Critical patent/CN115282943A/zh
Application granted granted Critical
Publication of CN115282943B publication Critical patent/CN115282943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于分子辨识吸附分离功能材料制备技术领域,公开了一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用。本发明以姜黄素为模板,制备聚多巴胺纳米管PDA NTs,通过2‑溴异丁酰溴在PDA NTs管壁外侧修饰上溴元素;以溴元素为原子转移自由基聚合的引发剂,2'‑脱氧腺苷dA为模板分子,与dA形成氢键的5‑(2‑甲氧基乙烯基)‑2'‑脱氧尿苷为功能单体,在PDA NTs管壁外侧接枝了dA分子印迹聚合物;然后,用乙醇溶解姜黄素模板,使PDA NTs管壁内表面丰富的基团裸露出来,并将Ag+原位还原银纳米颗粒,获得一种各向异性接枝银纳米颗粒的管状吸附剂。该吸附剂兼具选择性高效吸附目标分子dA与抑菌抗污的双重功能,用于水溶液中dA的快速、精准、大量吸附与分离。

Description

一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离 应用
技术领域
本发明属于分子辨识吸附分离功能材料制备技术领域,具体涉及一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用。
背景技术
核苷是一类具有重要生物化学意义的分子,它们是编码在DNA和RNA中的遗传信息的组成部分。其中,2′-脱氧腺苷(dA)是一种具有良好生理活性的嘌呤类核苷,参与生物细胞的遗传信息的传递,影响着蛋白质的合成以及多聚糖的代谢,对生物体内细胞的生长、增殖、分化和抑制具有十分重要的调控作用,现已被确定为许多疾病的潜在标志物。此外,dA也是抗病毒、抗肿瘤、毛细胞白血病、慢性淋巴细胞白血病、艾滋病等药物的重要中间体或原料。dA的合成途径主要有三种:①脱氧核糖核酸的降解;②化学合成法;③生物转化法。以上三种合成途径存在主产物浓度低、副产物多的难题。同时dA与多种脱氧核苷结构相似、极性和电荷相近,使得分离纯化dA的困难程度增加。相比常见的柱色谱法,结晶法,溶剂萃取法等,吸附法因其操作简单、绿色环保、成本低廉,成为较为理想的分离腺苷的方法。但传统吸附剂在吸附腺苷时,往往存在位点亲和力不够高、传质效率较低、吸附过程易受细菌污染、使用寿命短等不足。因此,探索选择性分离纯化dA新方法对于高品质dA及其衍生物的药理研究和应用开发具有重要意义。
分子印迹技术(MIT)是一种制备对某一特定分子具有专一识别能力聚合物技术,制备的聚合物称为分子印迹聚合物(MIPs)。MIPs又被称为“人工抗体”,与生物辨识相比,MIPs具有稳定性高、抗恶劣环境和使用寿命长等优点。MIPs因其制备简单、成本低、化学/物理稳定性优异和保质期较长等独特的优势,有望成为可大规模制备的抗体替代品。然而,传统MIPs仍存在一些不足,比如:①传质速率较慢;②吸附容量有待提高;③吸附分离的选择性有待增强;④功能较为单一等。因此,迫切需要开发一种新的策略以解决传统MIPs的局限性。
受贻贝蛋白质粘附机理的启发,多巴胺(DA)已成为材料科学研究的热点。DA在碱性条件下能够自聚形成聚多巴胺(PDA),也可以黏附在一些材料表面形成PDA涂层;PDA表面具有丰富的酚羟基与氨基,有利于进行多种表面修饰。PDA具有优异的生物相容性和生物降解性;良好的亲水性、化学活性和稳定性。此外,PDA本身具有一定的抗菌活性,具有高粘附性的PDA与细菌膜结合会损害细胞的活性,限制营养物质在胞浆内外的扩散,从而导致细菌死亡。但与一些无机、有机和天然抗菌剂相比,PDA的抗菌活性相对较弱,为提高其抗菌活性,将Ag+原位还原成纳米银颗粒(Ag NPs)从而沉积在PDA表面,利用PDA涂层与Ag NPs产生协同抗菌的功效提高材料的抗菌能力。
Janus材料是一种两面性质不同的各向异性材料,它为实现一材多用提供了可能性,可以通过对材料内、外表面进行不同的修饰使其发挥不同的功能,表现出“一加一大于二”的优异性能。其中,Janus中空微纳米材料是指由相互贯通或封闭孔洞构成的、同时拥有两种不同结构或化学组成的各向异性材料。与实心材料相比,空腔的存在赋予了材料诸多优势,比如表面积大、密度小、表面利用率高、渗透性好等物理性质以及较好的化学惰性和可再生性等。
迄今为止,有关利用Janus中空微纳米材料制备各向异性多功能印迹聚合物的研究较少,关于使核苷类印迹吸附剂具备抑菌抗污能力的相关工作还未见报道。因此,本发明提出了一种合适的策略,使PDA NTs内外表面分别具备抑菌抗污与高效吸附dA的双重功能,该工作针对传统MIPs存在的不足进行优化,显著提升了对目标分子dA的吸附速率、吸附选择性以及吸附容量,使该多功能吸附剂能够在有菌环境中实现对dA的高效分离。
发明内容
本发明以姜黄素模板法制备的聚多巴胺纳米管(PDANTs)为基底材料,利用其表面丰富的基团,通过2-溴异丁酰溴(BIBB)在PDA NTs外壁修饰溴元素;随后以外表面的溴元素为原子转移自由基聚合(ATRP)的引发剂,以2'-脱氧腺苷(dA)作为模板分子,以可与dA碱基互补配对并其具有高特异性吸附的5-(2-甲氧基乙烯基)-2'-脱氧尿苷(AcrU)为功能单体,在PDA NTs外壁接枝了dA分子印迹聚合物(J-PDA NTs-MIPs);然后,用乙醇溶解姜黄素模板,暴露PDA NTs内壁丰富的基团,并将Ag+原位还原成银纳米颗粒(Ag NPs),最终获得接枝银纳米颗粒的印迹吸附剂(J-Ag@PDA NTs-MIPs)。本发明以Janus中空微纳米材料为桥梁,结合分子印迹和银纳米颗粒抑菌手段,构建了兼具选择性高效吸附dA与抑菌抗污双重功能的印迹吸附剂。此外,吸附剂的中空结构使溶剂传输有足够空间,提升了传质速率,极大优化了特异性吸附与模板分子脱附的过程。本发明为实现在有菌水溶液环境中对dA的“快、准、多”吸附分离提供了新方法,同时也为印迹材料的多功能修饰提供了新思路。
本发明提供了一种可抑菌抗污的各向异性管状印迹吸附剂的制备方法,并利用dA模拟溶液,评估了J-Ag@PDA NTs-MIPs吸附剂选择性吸附分离dA分子的性能与抑菌性能。所述方法包括如下步骤:
(1)PDA NTs的制备:
首先通过现有技术制备PDA NTs。具体步骤为:将一定量的姜黄素溶解在乙醇中,随后在温和的搅拌条件下滴加去离子水,室温下静置一段时间,然后加入一定量的盐酸多巴胺,搅拌片刻后加入一定量的Tris-HCl缓冲溶液,室温下持续搅拌24h,抽滤收集产物,并用去离子水清洗三次,最后经冷冻干燥得到PDA NTs;
(2)J-PDA NTs-Br的制备:
取步骤(1)制备的PDA NTs分散一定体积的正己烷中,常温下通氮气后,依次加入一定量的2-溴异丁酰溴(BIBB)和三乙胺,并在0℃下搅拌反应2-4h;待反应结束后离心收集产物,并用正己烷洗涤产物数次;然后用乙醇浸泡产物一段时间以除去中间的姜黄素模板;随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥后得到仅外壁修饰溴元素的J-PDA NTs-Br;
(3)J-PDA NTs-MIPs的制备:
首先,将一定比例的乙腈和二甲亚砜(DMSO)混合做溶剂,加入一定用量的dA和AcrU,超声使其充分溶解,常温下通氮气;避光自组装4-6h;然后加入一定量的二甲基丙烯酸乙二醇酯(EGDMA)和步骤(2)制备的J-PDA NTs-Br,在35℃条件下搅拌30min后,加入N,N,N,N,N-五甲基二乙烯三胺(PMDETA)、溴化铜(CuBr2)、溴化亚铜(CuBr)和抗坏血酸(VC);随后再次通氮气,之后将反应容器密封,并在35℃沙浴加热条件下持续搅拌进行反应12-15h;反应结束后离心收集产物,并用乙腈和去离子水各洗涤产物数次,再用水/乙酸的混合溶液作为洗脱剂(9:1,V:V)对产物反复进行浸泡与洗涤,除去模板分子dA;最后,经冷冻干燥,得到仅外壁覆盖分子印迹聚合物的管状吸附剂,记为J-PDANTs-MIPs;
(4)J-Ag@PDA NTs-MIPs的制备:
首先,配制一定浓度的硝酸银水溶液;然后取一定量步骤(3)制备的J-PDA NTs-MIPs分散在硝酸银水溶液中,在0℃冰水浴温度条件下持续搅拌2-4h,随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥得到外壁覆盖分子印迹聚合物、内壁接银纳米颗粒的各向异性管状吸附剂,记为J-Ag@PDA NTs-MIPs。
步骤(1)中,所述的姜黄素与盐酸多巴胺的质量比为1mg:(4-6)mg;所述的乙醇、去离子水和Tris-HCl缓冲溶液(1.5M,pH=8.8)的用量比为100mL:400mL:3mL;
步骤(1)中,所述的静置一段时间为:50-70min;温和的搅拌转速为:200-400rpm。
步骤(2)中,所述的PDA NTs、BIBB和三乙胺的用量比为:0.1g:(0.2-0.3)mL:(0.4-0.6)mL。
步骤(3)中,所述的溶剂中,乙腈和DMSO的体积比为3:1~9:1。
步骤(3)中,所述的J-PDA NTs-Br、模板分子dA、功能单体AcrU、交联剂EGDMA的用量比为:100mg:40mg:(37.1-55.7)mg:(112-128)μL。
步骤(3)中,所述的模板分子dA、PMDETA、CuBr2、CuBr和VC的用量比为:40mg:0.4mL:(55-65)mg:(55-65)mg:(45-55)mg。
步骤(4)中,所述的硝酸银溶液浓度为(2-4)mg·mL-1
上述方法中,不添加模板分子2'-脱氧腺苷(dA),则制得非印迹聚合物J-Ag@PDANTs-NIPs。
将本发明制备的J-Ag@PDA NTs-MIPs用于dA的选择性吸附分离的用途。
与现有技术相比较,本发明的有益效果体现如下:
本发明以PDA NTs为基底材料,采用ATRP引发技术、AcrU为功能单体,在管壁外侧覆盖分子印迹聚合物层,在管内壁接银纳米颗粒,制备了各向异性管状吸附剂,使该吸附剂兼具选择性吸附目标分子dA与抑菌的双重功能。此外,该吸附剂的中空结构加快了传质效率,大大缩短了吸附平衡时间;其轻质的基底材料使得该吸附剂对dA的最大吸附容量显著提升,从而实现对dA的快速、精准、大量吸附。
附图说明
图1为该实施例1中制备的AcrU的核磁谱图。
图2为该实施例1中制备的姜黄素结晶(a,d)、PDA NTs(b,e)、J-PDA NTs-MIPs(c,f)的扫描电镜图。
图3为该实施例1中制备的PDA NTs(a)、J-PDA NTs-MIPs(b)、J-Ag@PDA NTs-MIPs(c,d)的透射电镜图。
图4为该实施例1中制备的PDA NTs(a)、J-PDA NTs-Br(b)、J-PDA NTs-MIP(c)、J-Ag@PDA NTs-MIPs(d)的红外谱图。
图5为该实施例1中制备的PDA NTs、J-Ag@PDA NTs-MIPs的XRD图。
图6为实施例1中制备的J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs在298K时吸附dA的动力学数据及其模型拟合曲线。
图7为实施例1中J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs在298K时吸附dA的平衡数据和模型拟合曲线。
图8为实施例1中J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs对dA、dG、dC、AMP、ATP的单组分吸附结果。
图9为在金黄色葡萄球菌和大肠杆菌固体培养基中空白滤纸(a,a1)、实施例1中制备的J-PDA NTs-MIPs(b,b1)、J-Ag@PDA NTs-MIPs(c,c1)的抑菌圈图。
具体实施方式
为更好的使本领域技术人员理解本发明的技术方案,下面结合具体实施例和附图对本发明的技术方案进一步的说明。
本发明具体实施方式中识别性能评价按照下述方法进行:
将2mL初始浓度为300μmol L-1的dA溶液加入到10mL的离心管中,加入一定量的J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs吸附剂,置于25℃的恒温水域震荡中,分别在一定时间梯度下取出,离心回收吸附剂,用紫外可见分光光度计进行测定dA含量,并根据检测结果计算出吸附容量,用于J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs吸附剂的动力学性能。将2mL不同浓度的dA溶液加入到10mL的离心管中,分别加入2mg的J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs吸附剂,吸附后将吸附剂离心回收,用紫外可见分光光度计测定dA含量,并根据结果计算出吸附容量。选择几种结构和性质类似的核苷类化合物,例如2-脱氧鸟苷(dG)、2-脱氧胞苷(dC)、单磷酸腺苷(AMP)和三磷酸腺苷(ATP)作为选择性吸附物,参与研究吸附剂的识别性能。以大肠杆菌和金黄色葡萄球菌为模型菌,通过抑菌圈实验测定J-PDANTs-MIPs、J-Ag@PDA NTs-MIPs的抑菌效果。
下面结合具体实施实例对本发明做进一步说明。
实施例1:
(1)PDA NTs的制备:
首先,将100mg姜黄素溶解在100mL乙醇中,随后在200rpm搅拌条件下滴加400mL去离子水,室温下静置50min,然后加入400mg盐酸多巴胺,搅拌片刻后加入3mL的Tris-HCl缓冲溶液,室温下持续搅拌反应24h,抽滤收集产物,并用去离子水清洗三次,最后经冷冻干燥得到PDA NTs;
(2)J-PDA NTs-Br的制备:
取0.2g步骤(1)制备的PDA NTs分散在20mL正己烷中,常温下通氮气后,依次加入0.4mL BIBB和0.8mL三乙胺,并在0℃冰水浴下搅拌反应4h;待反应结束后离心收集产物,并用正己烷洗涤产物数次;然后用乙醇浸泡产物一段时间以除去中间的姜黄素模板;随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥后得到仅外壁修饰溴元素的J-PDA NTs-Br;
(3)J-PDA NTs-MIPs的制备:
首先,将15mL乙腈和5mL DMSO混合,加入40mg dA和37.1mg AcrU,超声使其充分溶解,常温下通氮气;避光自组装一段时间;然后加入112μL EGDMA和100mg步骤(2)制备的J-PDA NTs-Br,在35℃条件下搅拌30min后,加入0.4mL PMDETA、55mg CuBr2、55mg CuBr和45mg VC;随后再次通氮气,之后将反应容器密封,并在沙浴加热条件下持续搅拌进行反应;反应结束后离心收集产物,并用乙腈和去离子水各洗涤产物数次,再用水/乙酸的混合溶液作为洗脱剂(9:1,V:V)对产物反复进行浸泡与洗涤,除去模板分子dA;最后,经冷冻干燥得到仅外壁覆盖分子印迹聚合物的管状吸附剂,记为J-PDA NTs-MIPs;
(4)J-Ag@PDA NTs-MIPs的制备:
首先,配制浓度为2mg mL-1的硝酸银水溶液;然后取0.1g步骤(3)制备的J-PDANTs-MIPs分散在20mL硝酸银水溶液中,在0℃冰水浴下持续搅2h,随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥得到外壁覆盖分子印迹聚合物、内壁接银纳米颗粒的各向异性管状吸附剂,记为J-Ag@PDA NTs-MIPs。
图1为该实施例1中制备的AcrU的核磁谱图,通过对特定官能团的核磁谱图分析证明该功能单体的成功制备。
图2为该实施例1中制备的姜黄素结晶(a,d)、PDA NTs(b,e)、J-PDA NTs-MIPs(c,f)的扫描电镜图。图中可以看出观察到姜黄素结晶(a,d)、PDA NTs(b,e)、J-PDA NTs-MIPs管径约为1μm左右,其中J-PDA NTs-MIPs呈现空心形貌,且J-PDA NTs-MIPs相对于PDA NTs外表面明显生成了聚合物,表明外表面成功修饰上了分子印迹聚合物。
图3为该实施例1中制备的PDA NTs(a)、J-PDA NTs-MIPs(b)、J-Ag@PDA NTs-MIPs(c,d)的透射电镜图。图中可以看出J-PDA NTs-MIPs相对于PDA NTs外表面壁厚增加了约50nm,证实了分子印迹聚合物在外表面的成功覆盖;此外J-Ag@PDA NTs-MIPs的银纳米颗粒主要生长在管壁内表面,Ag NPs的平均直径约40nm。
图4为该实施例1中制备的PDA NTs(a)、J-PDA NTs-Br(b)、J-PDA NTs-MIP(c)、J-Ag@PDA NTs-MIPs(d)的红外谱图。用BIBB修饰PDA NTs后的J-PDA NTs-Br显示出1730cm-1和1045cm-1两个新峰,分别对应C=O和C-O-C。J-PDA NTs-MIP中的2960cm-1对应-CH3的伸缩振动;1460cm-1对应AcrU酰胺键O=C-NHR中的N-H,证明印迹聚合物的存在。
图5为该实施例1中制备的PDA NTs、J-Ag@PDA NTs-MIPs的XRD图。图中表明制备的J-Ag@PDA NTs-MIPs与Ag标准卡匹配,证明银纳米颗粒的存在。
实施例2:
(1)PDA NTs的制备:
首先,将100mg姜黄素溶解在100mL乙醇中,随后在300rpm搅拌条件下滴加400mL去离子水,室温下静置60min,然后加入500mg盐酸多巴胺,搅拌片刻后加入3mL的Tris-HCl缓冲溶液,室温下持续搅拌反应24h,抽滤收集产物,并用去离子水清洗三次,最后经冷冻干燥得到PDA NTs;
(2)J-PDA NTs-Br的制备:
取0.2g步骤(1)制备的PDA NTs分散在20mL正己烷中,常温下通氮气后,依次加入0.5mL BIBB和1.0mL三乙胺,并在0℃冰水浴下搅拌反应3h;待反应结束后离心收集产物,并用正己烷洗涤产物数次;然后用乙醇浸泡产物一段时间以除去中间的姜黄素模板;随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥后得到仅外壁修饰溴元素的J-PDA NTs-Br;
(3)J-PDA NTs-MIPs的制备:
首先,将17mL乙腈和3mL DMSO混合,加入40mg dA和46.4mg AcrU,超声使其充分溶解,常温下通氮气;避光自组装一段时间;然后加入120μL EGDMA和100mg步骤(2)制备的J-PDA NTs-Br,在35℃条件下搅拌30min后,加入0.4mL PMDETA、60mg CuBr2、60mg CuBr和50mg VC;随后再次通氮气,之后将反应容器密封,并在沙浴加热条件下持续搅拌进行反应;反应结束后离心收集产物,并用乙腈和去离子水各洗涤产物数次,再用水/乙酸的混合溶液作为洗脱剂(9:1,V:V)对产物反复进行浸泡与洗涤,除去模板分子dA;最后,经冷冻干燥得到仅外壁覆盖分子印迹聚合物的管状吸附剂,记为J-PDA NTs-MIPs;
(4)J-Ag@PDA NTs-MIPs的制备:
首先,配制浓度为3mg mL-1的硝酸银水溶液;然后取0.1g步骤(3)制备的J-PDANTs-MIPs分散在20mL硝酸银水溶液中,在0℃冰水浴下持续搅3h,随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥得到外壁覆盖分子印迹聚合物、内壁接银纳米颗粒的各向异性管状吸附剂,记为J-Ag@PDA NTs-MIPs。
实施例3:
(1)PDA NTs的制备:
首先,将100mg姜黄素溶解在100mL乙醇中,随后在400rpm搅拌条件下滴加400mL去离子水,室温下静置70min,然后加入600mg盐酸多巴胺,搅拌片刻后加入3mL的Tris-HCl缓冲溶液,室温下持续搅拌反应24h,抽滤收集产物,并用去离子水清洗三次,最后经冷冻干燥得到PDA NTs;
(2)J-PDA NTs-Br的制备:
取0.2g步骤(1)制备的PDA NTs分散在20mL正己烷中,常温下通氮气后,依次加入0.6mL BIBB和1.2mL三乙胺,并在0℃冰水浴下搅拌反应2h;待反应结束后离心收集产物,并用正己烷洗涤产物数次;然后用乙醇浸泡产物一段时间以除去中间的姜黄素模板;随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥后得到仅外壁修饰溴元素的J-PDA NTs-Br;
(3)J-PDA NTs-MIPs的制备:
首先,将18mL乙腈和2mL DMSO混合,加入40mg dA和55.7mg AcrU,超声使其充分溶解,常温下通氮气;避光自组装一段时间;然后加入128μL EGDMA和100mg步骤(2)制备的J-PDA NTs-Br,在35℃条件下搅拌30min后,加入0.4mL PMDETA、65mg CuBr2、65mg CuBr和55mg VC;随后再次通氮气,之后将反应容器密封,并在沙浴加热条件下持续搅拌进行反应;反应结束后离心收集产物,并用乙腈和去离子水各洗涤产物数次,再用水/乙酸的混合溶液作为洗脱剂(9:1,V:V)对产物反复进行浸泡与洗涤,除去模板分子dA;最后,经冷冻干燥得到仅外壁覆盖分子印迹聚合物的管状吸附剂,记为J-PDA NTs-MIPs;
(4)J-Ag@PDA NTs-MIPs的制备:
首先,配制浓度为4mg mL-1的硝酸银水溶液;然后取0.1g步骤(3)制备的J-PDANTs-MIPs分散在20mL硝酸银水溶液中,在0℃冰水浴下持续搅4h,随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥得到外壁覆盖分子印迹聚合物、内壁接银纳米颗粒的各向异性管状吸附剂,记为J-Ag@PDA NTs-MIPs。
试验例1:
取2mL初始浓度为300μmol L-1的dA溶液分别加入到10mL的离心管中,分别加入2mg实施例1中的J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs吸附剂,分别置于25℃的水浴振荡器中,在1、3、5、10、15、20、30、45、60、75min的时候取出;通过离心将吸附剂和溶液分离开。滤液中的dA浓度通过紫外分光光度计在259nm的波长下计算测定,并根据结果得到了图6并计算达到吸附平衡的时间;结果表明,在最初的5min,J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs的吸附容量快速增加,说明模板分子能很容易地扩散进入吸附剂。而且J-Ag@PDA NTs-MIPs的吸附效率明显要比J-Ag@PDA NTs-NIPs更快,对dA的吸附容量也比J-Ag@PDA NTs-NIPs大,说明在J-Ag@PDA NTs-MIPs表面有大量空的印迹位点。在快速吸附后,由于dA浓度的下降以及结合位点数量的减少,吸附速率急剧下降并且在10min时达到平衡。
试验例2:
取2mL初始浓度分别为30、60、100、150、300、500、600、800、1000μmol L-1的dA溶液加入到10mL的离心管中,分别加入2mg实施例1中的J-Ag@PDA NTs-MIPs和J-Ag@PDA NTs-NIPs,把测试液置于25℃的水浴中震荡30min后,离心分离吸附剂和溶液,未吸附的dA分子浓度分别用紫外可见分光光度计在259nm的波长下测定,并根据结果得到图7并计算出吸附容量。结果表明,在25℃条件下,达到吸附平衡时J-Ag@PDA NTs-MIPs对dA的最大吸附容量是223.26μmol g-1,达到吸附平衡时J-Ag@PDA NTs-NIPs对dA的最大吸附容量是81.65μmolg-1,在相同温度下J-Ag@PDA NTs-MIPs比J-Ag@PDA NTs-NIPs的最大吸附量要高,说明J-Ag@PDA NTs-MIPs是一种有效识别dA的吸附剂。
试验例3:
选择dA、dG、dC、AMP和ATP作为选择性吸附物,分别配制以上5种化合物的溶液,浓度为300μmol L-1,分别取2mL加入到离心管中,分别加入2mg实施例1中制备的J-Ag@PDANTs-MIPs和J-Ag@PDA NTs-NIPs吸附剂,将测试液置于25℃的水浴振荡器中30min后,离心分离吸附剂和溶液,吸附后几种核苷化合物分子浓度分别用紫外可见分光光度计在对应波长下测定,并根据结果得到图8。结果表明J-Ag@PDA NTs-MIPs对5种化合物的吸附量遵循dA﹥dG﹥dC﹥AMP﹥ATP的顺序,因此可以推断J-Ag@PDA NTs-MIPs的表面存在与dA形状、尺寸一致的印迹位点,使得J-Ag@PDA NTs-MIPs对dA具有较好的吸附专一性。
试验例4:
以大肠杆菌和金黄色葡萄球菌为模型菌,通过抑菌圈实验测定J-PDA NTs-MIPs、J-Ag@PDA NTs-MIPs的抑菌效果。将已经过高压灭菌的琼脂培养基在超净台冷却到45℃左右后倾倒在培养皿内,培养基在超净台中进行冷却固化。取已灭菌的去离子水,配置20mgmL-1的J-PDA NTs-MIPs、J-Ag@PDA NTs-MIPs悬浮液,然后将直径为6mm的滤纸分别浸入去离子水、J-PDA NTs-MIPs悬浮液、J-Ag@PDA NTs-MIPs悬浮液中,待滤纸浸透后晾干备用。吸取浓度为106CFU mL-1左右的大肠杆菌和金黄色葡萄球菌菌液各100μL,分别加入到无菌的琼脂固体培养基平板上,用涂布器涂布均匀直至出现摩擦感,随后将准备好的滤纸贴放于琼脂固体培养基上,在37℃条件下培养24h,次日测量抑菌圈直径,并拍照记录得到图9。结果表明J-PDA NTs-MIPs在大肠杆菌琼脂固体培养基、金黄色葡萄球菌琼脂固体培养基的抑菌圈直径分别为:7.79±0.28mm、7.06±0.32mm;J-Ag@PDA NTs-MIPs在大肠杆菌琼脂固体培养基、金黄色葡萄球菌琼脂固体培养基的抑菌圈直径分别为:12.59±0.35mm、10.45±0.33mm。由此可见Ag NPs的负载可明显提升印迹吸附剂的抑菌抗污性能。

Claims (10)

1.一种可抑菌抗污的各向异性管状印迹吸附剂的制备方法,其特征在于,包括以下步骤:
(1)制备聚多巴胺纳米管PDA NTs,备用:
(2)J-PDA NTs-Br的制备:
取步骤(1)制备的PDA NTs分散在一定量的正己烷中,常温下通氮气后,依次加入一定量的2-溴异丁酰溴BIBB和三乙胺,并在一定温度下搅拌反应一段时间;待反应结束后离心收集产物,正己烷洗涤数次;然后用乙醇浸泡除去中间的姜黄素模板;随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥后,得到仅外壁修饰溴元素的J-PDA NTs-Br;
(3)J-PDA NTs-MIPs的制备:
首先,将一定比例的乙腈和二甲亚砜DMSO混合做溶剂,加入2'-脱氧腺苷dA、5-(2-甲氧基乙烯基)-2'-脱氧尿苷AcrU,超声使其充分溶解,常温下通氮气;避光自组装一段时间;然后加入一定量的二甲基丙烯酸乙二醇酯EGDMA和步骤(2)制备的J-PDA NTs-Br,在一定温度条件下搅拌一段时间后,加入N,N,N,N,N-五甲基二乙烯三胺PMDETA、溴化铜CuBr2、溴化亚铜CuBr和抗坏血酸VC;随后再次通氮气,之后将反应容器密封,并在沙浴加热条件下持续搅拌进行反应;反应结束后离心收集产物,并用乙腈和去离子水各洗涤产物数次,再用洗脱剂对产物反复进行浸泡与洗涤,除去模板分子dA;最后,经冷冻干燥得到仅外壁覆盖分子印迹聚合物的管状吸附剂,记为J-PDA NTs-MIPs;
(4)J-Ag@PDA NTs-MIPs的制备:
首先,配制一定浓度的硝酸银水溶液;然后取一定量步骤(3)制备的J-PDA NTs-MIPs分散在硝酸银水溶液中,在一定的水浴温度条件下持续搅拌一段时间,随后离心收集产物,用乙醇和去离子水各清洗数次;最后经冷冻干燥,得到外壁覆盖分子印迹聚合物、内壁接银纳米颗粒的各向异性管状吸附剂,即可抑菌抗污的各向异性管状印迹吸附剂,记为J-Ag@PDANTs-MIPs。
2.如权利要求1所述的制备方法,步骤(1)中,聚多巴胺纳米管PDA NTs的制备步骤为:将一定量的姜黄素溶解在乙醇中,随后在温和的搅拌条件下滴加去离子水,室温下静置一段时间,然后加入一定量的盐酸多巴胺,搅拌片刻后加入一定量的Tris-HCl缓冲溶液,室温下持续搅拌反应一段时间,抽滤收集产物,并用去离子水清洗数次,最后经冷冻干燥得到PDA NTs。
3.如权利要求2所述的制备方法,所述的姜黄素与盐酸多巴胺的质量比为1mg:(4-6)mg;所述的乙醇、去离子水和Tris-HCl缓冲溶液的用量比为100mL:400mL:3mL;Tris-HCl缓冲溶液的浓度为1.5M,pH=8.8;
所述的温和的搅拌条件转速为200-400rpm,时间为24h,静置时间为50-70min。
4.如权利要求1所述的制备方法,其特征在于,步骤(2)中,所述的PDA NTs、BIBB和三乙胺的用量比为0.1g:(0.2-0.3)mL:(0.4-0.6)mL。
5.如权利要求1所述的制备方法,其特征在于,步骤(2)中,所述的在一定温度下搅拌的温度为0℃,时间为2-4h。
6.如权利要求1所述的制备方法,其特征在于,步骤(3)中,所述的J-PDA NTs-Br、模板分子dA、功能单体AcrU、交联剂EGDMA的用量比为:100mg:40mg:(37.1-55.7)mg:(112-128)μL;所述的模板分子dA、PMDETA、CuBr2、CuBr和VC的用量比为:40mg:0.4mL:(55-65)mg:(55-65)mg:(45-55)mg。
7.如权利要求1所述的制备方法,其特征在于,步骤(3)中,
溶剂中,乙腈和DMSO的体积比为3:1~9:1;
避光自组装的时间为4-6h;
所述在一定温度条件下搅拌的温度为35℃,搅拌时间为30min;
所述沙浴加热的温度为35℃,反应时间12-15h。
所述洗脱剂为水/乙酸的混合溶液,其中,水和乙酸的体积比为9:1。
8.如权利要求1所述的制备方法,其特征在于,步骤(4)中,所述的硝酸银溶液浓度为(2-4)mg·mL-1
9.如权利要求1所述的制备方法,其特征在于,步骤(4)中,所述的一定的水浴温度为0℃;反应时间为2-4h。
10.将权利要求1~9任一项所述制备方法制得的可抑菌抗污的各向异性管状印迹吸附剂用于dA的选择性吸附分离。
CN202211063890.1A 2022-09-01 2022-09-01 一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用 Active CN115282943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211063890.1A CN115282943B (zh) 2022-09-01 2022-09-01 一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211063890.1A CN115282943B (zh) 2022-09-01 2022-09-01 一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用

Publications (2)

Publication Number Publication Date
CN115282943A true CN115282943A (zh) 2022-11-04
CN115282943B CN115282943B (zh) 2024-03-19

Family

ID=83831315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211063890.1A Active CN115282943B (zh) 2022-09-01 2022-09-01 一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用

Country Status (1)

Country Link
CN (1) CN115282943B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718745A (zh) * 2019-01-25 2019-05-07 江苏大学 一种雅努斯型磁性印迹纳米片及其制备方法和应用
CN111318265A (zh) * 2020-02-17 2020-06-23 江苏大学 一种马赛克型磁性印迹吸附剂的制备方法及其应用
CN114392725A (zh) * 2021-12-24 2022-04-26 江苏大学 一种Janus型单孔中空印迹颗粒复合凝胶吸附剂的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718745A (zh) * 2019-01-25 2019-05-07 江苏大学 一种雅努斯型磁性印迹纳米片及其制备方法和应用
CN111318265A (zh) * 2020-02-17 2020-06-23 江苏大学 一种马赛克型磁性印迹吸附剂的制备方法及其应用
CN114392725A (zh) * 2021-12-24 2022-04-26 江苏大学 一种Janus型单孔中空印迹颗粒复合凝胶吸附剂的制备方法及其应用

Also Published As

Publication number Publication date
CN115282943B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
Dong et al. Molecularly imprinted polymers by the surface imprinting technique
CN107970788B (zh) 选择性识别分离依诺沙星分子印迹复合膜材料的制备方法
Wu et al. Double-layer-based molecularly imprinted membranes for template-dependent recognition and separation: An imitated core-shell-based synergistic integration design
Yang et al. Design and preparation of self-driven BSA surface imprinted tubular carbon nanofibers and their specific adsorption performance
Yang et al. Synthesis, performance, and application of molecularly imprinted membranes: A review
Geng et al. A fluorescent molecularly imprinted polymer using aptamer as a functional monomer for sensing of kanamycin
Qu et al. Multilayered molecularly imprinted composite membrane based on porous carbon nanospheres/pDA cooperative structure for selective adsorption and separation of phenol
Sun et al. Synthesis of ion imprinted nanocomposite membranes for selective adsorption of lithium
Chen et al. Design of self-cleaning molecularly imprinted membrane with antibacterial ability for high-selectively separation of ribavirin
CN104861130A (zh) 一种高分子刷接枝硼酸亲和分离材料及其制备方法与应用
CN104231166A (zh) 一种仿生青蒿素分子印迹复合膜的制备方法
CN109364769A (zh) 抗污染功能化依诺沙星分子印迹复合膜材料的制备方法
Li et al. Biomimetic functional material-based sensors for food safety analysis: A review
CN109364768A (zh) 有机无机杂化依诺沙星分子印迹复合膜材料的制备方法
Bao et al. Bacteria-templated fabrication of a charge heterogeneous polymeric interface for highly specific bacterial recognition
CN116615559A (zh) 官能化等离子体纳米结构
Kanitthamniyom et al. Application of polydopamine in biomedical microfluidic devices
Sergeyeva et al. Rationally designed molecularly imprinted polymer membranes as antibody and enzyme mimics in analytical biotechnology
CN115282943B (zh) 一种可抑菌抗污的各向异性管状印迹吸附剂及其快速分离应用
Yan et al. Multifunctional-imprinted nanocomposite membranes with thermo-responsive biocompatibility for selective/controllable recognition and separation application
Wang et al. Recyclable and selective PVDF-based molecularly imprinted membrane combining mussel-inspired biomimetic strategy for dimethomorph elimination
CN103755967A (zh) 一种温敏性手性分离添加剂和温敏性聚砜手性拆分膜
Basak et al. Synthesis of PVDF-Based Graft Copolymeric Antifouling Membranes Showing Affinity-Driven Immobilization of Nucleobases
CN105199101A (zh) 一种二肽聚乙烯亚胺聚合物及其制备方法与应用
JP4113954B2 (ja) 細胞培養基材、及び該基材を使用した細胞分別方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant