CN115282296A - 一种超顺磁性近红外长余纳米颗粒、其制备方法及应用 - Google Patents

一种超顺磁性近红外长余纳米颗粒、其制备方法及应用 Download PDF

Info

Publication number
CN115282296A
CN115282296A CN202210949040.5A CN202210949040A CN115282296A CN 115282296 A CN115282296 A CN 115282296A CN 202210949040 A CN202210949040 A CN 202210949040A CN 115282296 A CN115282296 A CN 115282296A
Authority
CN
China
Prior art keywords
superparamagnetic
infrared long
afterglow
salt
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210949040.5A
Other languages
English (en)
Inventor
张倩
张云
史俊朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganjiang Innovation Academy of CAS
Original Assignee
Ganjiang Innovation Academy of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ganjiang Innovation Academy of CAS filed Critical Ganjiang Innovation Academy of CAS
Priority to CN202210949040.5A priority Critical patent/CN115282296A/zh
Publication of CN115282296A publication Critical patent/CN115282296A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0065Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1878Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles the nanoparticle having a magnetically inert core and a (super)(para)magnetic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种超顺磁性近红外长余纳米颗粒、其制备方法及应用,属于生物材料及其应用技术领域。制备方法包括:通过模板法合成形貌均匀的介孔硅球,将预配置好的碱土金属离子溶液吸附到硅球的介孔内,并通过燃烧法合成生物窗口激发的近红外长余辉纳米粒子,最后通过低温燃烧将磁性颗粒原位生长到硅球表面。该材料尺寸约100纳米左右,具有超顺磁性,并且被能透过生物组织的红灯激发后,其余辉发射峰位于700纳米波长处;制备过程简单易行,所得复合纳米颗粒余辉时间超30分钟,可在外磁场存在时朝磁场方向定向移动,具备良好的生物应用前景。

Description

一种超顺磁性近红外长余纳米颗粒、其制备方法及应用
技术领域
本发明属于生物材料及其应用技术领域,尤其是一种超顺磁性近红外长余纳米颗粒、其制备方法及应用。
背景技术
近来,光学成像由于其信号强、灵敏度高等优势备受研究者的青睐,未来有望应用于临床。在众多的光学成像材料中,长余辉材料具有高光化学稳定性,抗光漂白性,不仅可避免生物发光的背景干扰,而且其激发光不会造成组织损伤。然而,由于存在光散射,光学成像在体内不具备空间分辨率。
磁共振成像是利用人体内氢原子核在强磁场内共振产生影像的一种医学检查诊断方法,是目前较为先进科学的,并且对人体没有放射性损害的检查方式之一。与光学成像不同,磁共振成像具有高分辨率,但其灵敏度稍差。临床上约50%的磁共振成像需要注射造影剂以提高图像敏感性,从而更清楚地显示病变的结构和范围。
通过将两种或两种以上成像模式联合起来形成双模态或多模态的成像模式,可以给疾病诊断和外科手术提供多维且更具象的指导方案。磁共振成像是光学成像的首选互补成像方式,磁共振成像具有高空间分辨率,相对于基于电离辐射的正电子发射计算机断层扫描和电子计算机断层扫描而言,磁共振成像对于患者的安全性更高。磁共振成像/长余辉成像这种双模式的成像相对于单模式成像而言具有更高的灵敏度和空间分辨率,提供更精确更完善的医学影像信息。
关于磁共振/长余辉双模式成像的报道已有很多,其中大部分是钆的螯合物和长余辉材料相结合用于成像,但钆的螯合物在体内通常在体内滞留时间短,需要短时间内快速扫描,对设备要求高;经肾脏排泄,有一定的肾毒性。具有超顺磁性的纳米铁氧化物就能很好的避免这一问题,目前关于兼具超顺磁性和余辉发光性能的纳米材料的报道还非常少,因而,开发一种超顺磁性近红外长余辉纳米材料在磁共振/长余辉双模式成像领域具有广阔应用前景。
发明内容
为了克服上述技术缺陷,本发明提供一种超顺磁性近红外长余纳米颗粒、其制备方法及应用,以解决背景技术所涉及的问题。
本发明提供一种超顺磁性近红外长余纳米颗粒,由内核、中间层和外壳组成;所述的内核为生物窗口激发的近红外长余辉纳米粒子,中间层为负载生物窗口激发的近红外长余辉纳米粒子的介孔硅,外壳为原位生长在介孔硅上的超顺磁性纳米颗粒。
优选地或可选地,所述生物窗口激发的近红外长余辉纳米粒子与超顺磁性纳米颗粒的摩尔比为15:1-1:1。
优选地或可选地,超顺磁性近红外长余辉纳米颗粒的尺寸在80-120纳米,具有超顺磁性;余辉发射峰位于700纳米波长处。
本发明还提一种超顺磁性近红外长余纳米颗粒的制备方法,包括:
步骤1、介孔硅的制备:以CTAC作为模板,TEOS作为硅源,合成粒径80-120nm的介孔硅;
步骤2、生物窗口激发的近红外长余辉纳米粒子的制备:将步骤1中的介孔硅与碱土金属离子溶液混合超声均匀,置于真空干燥箱50~70摄氏度保温8~16h,取出后研磨于马弗炉中700~1000摄氏度煅烧1~4小时;
步骤3、超顺磁性近红外长余纳米颗粒的制备:取步骤2制备的生物窗口激发的近红外长余辉纳米粒子与锌盐和铁盐置于玛瑙研钵中,加入适量乙醇充分研磨,待乙醇挥发后,将混合物粉末置于马弗炉中300-600摄氏度燃烧1~4小时得到具有超顺磁性的近红外长余辉纳米颗粒。
优选地或可选地,所述碱土金属离子溶液为锌盐、镓盐、锡盐、铬盐、钇盐的混合溶液,总碱土金属离子浓度为0.5-2摩尔/升;
介孔硅与碱土金属离子溶液之间投料比为100毫克:500微升。
优选地或可选地,在所述碱土金属离子溶液中,所述锌盐至少为乙酸锌、硝酸锌、氯化锌、硫酸锌或相应结晶水合物中的一种;所述镓盐至少为氯化镓、硝酸镓、硫酸镓或相应结晶水合物中的一种;所述锡盐至少为结晶四氯化锡,所述铬盐为乙酸铬,所述钇盐为硝酸钇。
优选地或可选地,所述金属离子溶液中的锌离子浓度、镓离子浓度、锡离子浓度、铬离子浓度、钇离子浓度摩尔比为1.3:1.4:0.3:0.005:0.003。
优选地或可选地,在步骤3中,所述锌盐中的锌与铁盐中的铁的摩尔比例为1:2,锌盐与近红外长余辉纳米粒子的比例为(0.05~0.1毫摩尔):50毫克。
优选地或可选地,在步骤3中,所述锌盐为乙酰丙酮锌及其水合物,所述铁盐为乙酰丙酮铁。
本发明还提供一种基于所述的超顺磁性近红外长余纳米颗粒在体内磁共振/长余辉双模式成像中的应用。
本发明涉及一种超顺磁性近红外长余纳米颗粒、其制备方法及应用,相较于现有技术,具有如下有益效果:
1、本发明借助介孔硅模板得到尺寸均一的超顺磁性近红外长余辉纳米颗粒,该超顺磁性近红外长余辉纳米颗粒的尺寸在80-120纳米左右;
2、本发明通过低温燃烧原位生长磁性的铁酸锌颗粒,合成具有超顺磁性的纳米铁酸锌,形成均匀的超顺磁性近红外长余辉纳米颗粒;
3、本发明得到的超顺磁性近红外长余辉纳米颗粒可以在体激发同时具有更强的磁饱和强度,降低了对仪器设备的要求,解决了余辉材料进入体内后快速衰减的问题;
4、本发明的制备过程简单易行,所得复合纳米颗粒余辉时间超30分钟,可在外磁场存在时朝磁场方向定向移动,具备良好的体内磁共振/长余辉双模式成像应用前景。
附图说明
图1为超顺磁性近红外长余辉纳米颗粒的透射电镜照片。
图2为超顺磁性近红外长余辉纳米颗粒的余辉衰减谱图。
图3为超顺磁性近红外长余辉纳米颗粒的余辉发射谱图。
图4为超顺磁性近红外长余辉纳米颗粒被钕磁铁吸附的照片。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
发明概述
通过将两种或两种以上成像模式联合起来形成双模态或多模态的成像模式,可以给疾病诊断和外科手术提供多维且更具象的指导方案。磁共振成像是光学成像的首选互补成像方式,磁共振成像具有高空间分辨率,相对于基于电离辐射的正电子发射计算机断层扫描和电子计算机断层扫描而言,磁共振成像对于患者的安全性更高。磁共振成像/长余辉成像这种双模式的成像相对于单模式成像而言具有更高的灵敏度和空间分辨率,提供更精确更完善的医学影像信息。
本发明公开了一种新型超顺磁性近红外长余辉复合纳米颗粒、其制备方法及应用,该材料由内核、中间层和外壳组成;所述的内核为生物窗口激发的近红外长余辉纳米粒子,中间层为负载生物窗口激发的近红外长余辉纳米粒子的介孔硅,外壳为原位生长在介孔硅上的超顺磁性纳米颗粒。该材料尺寸约100纳米左右,具有超顺磁性,并且被能透过生物组织的红灯激发后,其余辉发射峰位于700纳米波长处;该材料的制备步骤为:通过模板法合成形貌均匀的介孔硅球,将预配置好的碱土金属离子溶液吸附到硅球的介孔内,并通过燃烧法合成生物窗口激发的近红外长余辉纳米粒子,最后通过低温燃烧将磁性颗粒原位生长到硅球表面。本发明制备过程简单易行,所得复合纳米颗粒余辉时间超30分钟,可在外磁场存在时朝磁场方向定向移动,具备良好的生物应用前景。
下面结合实施例,对本发明作进一步说明,所述的实施例的示例旨在解释本发明,而不能理解为对本发明的限制。
实施例1:
步骤1、介孔硅的制备:以CTAC(十六烷基三甲基氯化铵)作为模板,TEOS()作为硅源合成粒径100纳米的介孔硅。称取0.18克TEA(三乙醇胺)分散在5毫升去离子水中,转移到圆底烧瓶,加入24毫升25%的CTAC溶液,再继续加入45毫升去离子水,60摄氏度油浴搅拌1小时,直至无气泡。停止搅拌,沿瓶壁缓慢加入20毫升TEOS/环己烷=4/16的溶液,继续搅拌18小时。离心,洗涤三次,烘干后550摄氏度除模板。
步骤2、生物窗口激发的近红外长余辉纳米粒子的制备:预先用乙酸锌,硝酸镓,氯化锡,乙酸铬和硝酸钇按照锌离子、镓离子、锡离子、铬离子、钇离子摩尔比例为1.3:1.4:0.3:0.005:0.003配置1.5摩尔/升的金属离子溶液,称取100毫克介孔硅与500微升的上述金属离子溶液混合超声均匀,置于真空干燥箱60摄氏度保温过夜,取出后研磨于马弗炉中950摄氏度煅烧3小时。
步骤3、超顺磁性近红外长余纳米颗粒的制备:称取步骤2制备的生物窗口激发的近红外长余辉纳米粒子50毫克与0.05毫摩尔的乙酰丙酮锌和0.1毫摩尔的乙酰丙酮铁置于玛瑙研钵中,加入适量乙醇充分研磨,待乙醇挥发后,将混合物粉末置于马弗炉中300摄氏度燃烧3小时得到具有超顺磁性的近红外长余辉纳米颗粒。
该实施例制备的超顺磁性近红外长余辉纳米颗粒的形貌尺寸如图1所示,其粒子尺寸均在100纳米左右。将制备的超顺磁性近红外长余辉纳米颗粒用650nm激发波长的红灯照射5分钟后,测试得到材料的余辉衰减谱图,即图2,可知其余辉衰减时间可达30分钟。余辉发射谱图如图3所示,生物窗口激发光源(650纳米)对样品预激发5分钟,停止激发后,该探针的余辉发射峰值位于700纳米处,信号易穿透生物组织被接收。图4为磁性近红外长余辉纳米探针被钕磁铁吸附的照片,说明探针不仅在激发后具有余辉光,而且同时还具有超顺磁性。
实施例2
步骤1、介孔硅的制备:以CTAC作为模板,TEOS作为硅源合成粒径100纳米的介孔硅。称取0.18克TEA(三乙醇胺)分散在5毫升去离子水中,转移到圆底烧瓶,加入24毫升25%的CTAC溶液,再继续加入45毫升去离子水,60摄氏度油浴搅拌1小时,直至无气泡。停止搅拌,沿瓶壁缓慢加入20毫升TEOS/环己烷=4/16的溶液,继续搅拌18小时。离心,洗涤三次,烘干后550摄氏度除模板。
步骤2、生物窗口激发的近红外长余辉纳米粒子的制备:预先用乙酸锌,硝酸镓,氯化锡,硝酸铬和硝酸钇按照锌离子、镓离子、锡离子、铬离子、钇离子摩尔比例为1.3:1.4:0.3:0.005:0.003配置2摩尔/升的金属离子溶液,称取100毫克介孔硅与450微升的上述金属离子溶液混合超声均匀,置于真空干燥箱60摄氏度保温过夜,取出后研磨于马弗炉中900摄氏度煅烧3小时。
步骤3、超顺磁性近红外长余纳米颗粒探针的制备:称取步骤2制备的生物窗口激发的近红外长余辉纳米粒子100毫克与0.07毫摩尔的乙酰丙酮锌和0.14毫摩尔的乙酰丙酮铁置于玛瑙研钵中,加入适量乙醇充分研磨,待乙醇挥发后,将混合物粉末置于马弗炉中400摄氏度燃烧3小时得到具有超顺磁性的近红外长余辉纳米颗粒。
实施例3
步骤1、介孔硅的制备:以CTAC作为模板,TEOS作为硅源合成粒径100纳米的介孔硅。称取0.18克TEA(三乙醇胺)分散在5毫升去离子水中,转移到圆底烧瓶,加入24毫升25%的CTAC溶液,再继续加入45毫升去离子水,60摄氏度油浴搅拌1小时,直至无气泡。停止搅拌,沿瓶壁缓慢加入20毫升TEOS/环己烷=4/16的溶液,继续搅拌18小时。离心,洗涤三次,烘干后550摄氏度除模板。
步骤2、生物窗口激发的近红外长余辉纳米粒子的制备:预先用硝酸锌,硝酸镓,氯化锡,硝酸铬和硝酸钇按照锌离子、镓离子、锡离子、铬离子、钇离子摩尔比例为1.3:1.4:0.3:0.005:0.003配置1摩尔/升的金属离子溶液,称取50毫克介孔硅与200微升的上述金属离子溶液混合超声均匀,置于真空干燥箱60摄氏度保温过夜,取出后研磨于马弗炉中950摄氏度煅烧3小时。
步骤3、超顺磁性近红外长余纳米颗粒的制备:称取步骤2制备的生物窗口激发的近红外长余辉纳米粒子50毫克与0.03毫摩尔的乙酰丙酮锌和0.06毫摩尔的乙酰丙酮铁置于玛瑙研钵中,加入适量乙醇充分研磨,待乙醇挥发后,将混合物粉末置于马弗炉中500摄氏度燃烧3小时得到具有超顺磁性的近红外长余辉纳米颗粒。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (10)

1.一种超顺磁性近红外长余纳米颗粒,其特征在于,由内核、中间层和外壳组成;所述的内核为生物窗口激发的近红外长余辉纳米粒子,中间层为负载生物窗口激发的近红外长余辉纳米粒子的介孔硅,外壳为原位生长在介孔硅上的超顺磁性纳米颗粒。
2.根据权利要求1所述的超顺磁性近红外长余纳米颗粒,其特征在于,所述生物窗口激发的近红外长余辉纳米粒子与超顺磁性纳米颗粒的摩尔比为15:1-1:1。
3.根据权利要求1所述的超顺磁性近红外长余纳米颗粒,其特征在于,超顺磁性近红外长余辉纳米颗粒的尺寸在80-120纳米,具有超顺磁性;余辉发射峰位于700纳米波长处。
4.一种基于权利要求1至3任一项所述的超顺磁性近红外长余纳米颗粒的制备方法,其特征在于,包括:
步骤1、介孔硅的制备:以CTAC作为模板,TEOS作为硅源,合成粒径80-120nm的介孔硅;
步骤2、生物窗口激发的近红外长余辉纳米粒子的制备:将步骤1中的介孔硅与碱土金属离子溶液混合超声均匀,置于真空干燥箱50~70摄氏度保温8~16h,取出后研磨于马弗炉中700~1000摄氏度煅烧1~4小时;
步骤3、超顺磁性近红外长余纳米颗粒的制备:取步骤2制备的生物窗口激发的近红外长余辉纳米粒子与锌盐和铁盐置于玛瑙研钵中,加入适量乙醇充分研磨,待乙醇挥发后,将混合物粉末置于马弗炉中300-600摄氏度燃烧1~4小时得到具有超顺磁性的近红外长余辉纳米颗粒。
5.根据权利要求4所述的超顺磁性近红外长余纳米颗粒的制备方法,其特征在于,所述碱土金属离子溶液为锌盐、镓盐、锡盐、铬盐、钇盐的混合溶液,总碱土金属离子浓度为0.5-2摩尔/升;
介孔硅与碱土金属离子溶液之间投料比为100毫克:300-700微升。
6.根据权利要求5所述的超顺磁性近红外长余纳米颗粒的制备方法,其特征在于,在所述碱土金属离子溶液中,所述锌盐至少为乙酸锌、硝酸锌、氯化锌、硫酸锌或相应结晶水合物中的一种;所述镓盐至少为氯化镓、硝酸镓、硫酸镓或相应结晶水合物中的一种;所述锡盐至少为结晶四氯化锡,所述铬盐为乙酸铬,所述钇盐为硝酸钇。
7.根据权利要求5所述的超顺磁性近红外长余纳米颗粒的制备方法,其特征在于,所述金属离子溶液中的锌离子浓度、镓离子浓度、锡离子浓度、铬离子浓度、钇离子浓度摩尔比为1.3:1.4:0.3:0.005:0.003。
8.根据权利要求4所述的超顺磁性近红外长余纳米颗粒的制备方法,其特征在于,在步骤3中,所述锌盐中的锌与铁盐中的铁的摩尔比例为1:2,锌盐与近红外长余辉纳米粒子的比例为(0.05~0.1毫摩尔):50毫克。
9.根据权利要求8所述的超顺磁性近红外长余纳米颗粒的制备方法,其特征在于,在步骤3中,所述锌盐为乙酰丙酮锌及其水合物,所述铁盐为乙酰丙酮铁。
10.一种基于权利要求1至3任一项所述的超顺磁性近红外长余纳米颗粒在体内磁共振/长余辉双模式成像中的应用。
CN202210949040.5A 2022-08-09 2022-08-09 一种超顺磁性近红外长余纳米颗粒、其制备方法及应用 Withdrawn CN115282296A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210949040.5A CN115282296A (zh) 2022-08-09 2022-08-09 一种超顺磁性近红外长余纳米颗粒、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210949040.5A CN115282296A (zh) 2022-08-09 2022-08-09 一种超顺磁性近红外长余纳米颗粒、其制备方法及应用

Publications (1)

Publication Number Publication Date
CN115282296A true CN115282296A (zh) 2022-11-04

Family

ID=83828556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210949040.5A Withdrawn CN115282296A (zh) 2022-08-09 2022-08-09 一种超顺磁性近红外长余纳米颗粒、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN115282296A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116925763A (zh) * 2023-07-28 2023-10-24 中国科学院赣江创新研究院 一种用于动脉粥样硬化斑块成像的近红外长余辉纳米探针及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040164277A1 (en) * 2003-02-25 2004-08-26 Yen William M. Long persistent phosphors and persistent energy transfer technique
US20110158915A1 (en) * 2009-10-29 2011-06-30 William Marsh Rice University Nanoshells with targeted enhancement of magnetic and optical imaging and photothermal therapeutic response
WO2012102516A2 (ko) * 2011-01-24 2012-08-02 고려대학교 산학협력단 자성 특성과 발광 특성을 동시에 갖는 나노복합체 및 그 제조 방법
CN104099098A (zh) * 2013-04-12 2014-10-15 中国科学院城市环境研究所 以磁性多孔材料为核心制备磁性长余辉发光纳米材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040164277A1 (en) * 2003-02-25 2004-08-26 Yen William M. Long persistent phosphors and persistent energy transfer technique
US20110158915A1 (en) * 2009-10-29 2011-06-30 William Marsh Rice University Nanoshells with targeted enhancement of magnetic and optical imaging and photothermal therapeutic response
WO2012102516A2 (ko) * 2011-01-24 2012-08-02 고려대학교 산학협력단 자성 특성과 발광 특성을 동시에 갖는 나노복합체 및 그 제조 방법
CN104099098A (zh) * 2013-04-12 2014-10-15 中国科学院城市环境研究所 以磁性多孔材料为核心制备磁性长余辉发光纳米材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JUNPENG SHI等: "A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy" *
SHI, JUNPENG等: "Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging" *
付海霞: "长余辉发光纳米材料的制备及其在生物成像中的应用" *
金征宇等, 天津科学技术出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116925763A (zh) * 2023-07-28 2023-10-24 中国科学院赣江创新研究院 一种用于动脉粥样硬化斑块成像的近红外长余辉纳米探针及其制备方法和应用
CN116925763B (zh) * 2023-07-28 2024-08-16 中国科学院赣江创新研究院 一种用于动脉粥样硬化斑块成像的近红外长余辉纳米探针及其制备方法和应用

Similar Documents

Publication Publication Date Title
Shi et al. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy
Zou et al. Magnetic-NIR persistent luminescent dual-modal ZGOCS@ MSNs@ Gd2O3 core–shell nanoprobes for in vivo imaging
Liu et al. Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging
Xiao et al. Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging
Zhu et al. Core–shell Fe3O4@ NaLuF4: Yb, Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging
Mimun et al. Bimodal imaging using neodymium doped gadolinium fluoride nanocrystals with near-infrared to near-infrared downconversion luminescence and magnetic resonance properties
Zhu et al. Zn3Ga2Ge2O10: Cr3+ uniform microspheres: template-free synthesis, tunable bandgap/trap depth, and in vivo rechargeable near-infrared-persistent luminescence
CN109475647B (zh) 在生物相容的交流磁场中具有巨大的交流磁自发热的氧化铁纳米颗粒及其制备方法
CN111892928B (zh) 一种近红外长余辉发光材料、荧光探针及其制备方法和应用
Liu et al. Mn-complex modified NaDyF 4: Yb@ NaLuF 4: Yb, Er@ polydopamine core–shell nanocomposites for multifunctional imaging-guided photothermal therapy
Yi et al. High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution
Xu et al. AT 1, T 2 magnetic resonance imaging (MRI)-fluorescent imaging (FI) by using ultrasmall mixed gadolinium–europium oxide nanoparticles
Li et al. Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging
CN106913885B (zh) 一种磁性纳米粒子及其制备方法和应用
CN113637476B (zh) 稀土离子共掺杂近红外长余辉发光纳米材料、其制备方法和应用
Li et al. Current progress in the controlled synthesis and biomedical applications of ultrasmall (< 10 nm) NaREF 4 nanoparticles
Yang et al. Short-wave near-infrared emissive GdPO 4: Nd 3+ theranostic probe for in vivo bioimaging beyond 1300 nm
Luo et al. Core@ shell Fe 3 O 4@ Mn 2+-doped NaYF 4: Yb/Tm nanoparticles for triple-modality T 1/T 2-weighted MRI and NIR-to-NIR upconversion luminescence imaging agents
Satpathy et al. Near‐Infrared I/II Nanophosphors with Cr3+/Ni2+ Energy Transfer for Bioimaging
CN115282296A (zh) 一种超顺磁性近红外长余纳米颗粒、其制备方法及应用
Araichimani et al. Rare-earth ions integrated silica nanoparticles derived from rice husk via microwave-assisted combustion method for bioimaging applications
CN111477420A (zh) 一种磁性纳米粒子、制备方法及其应用
CN114381255B (zh) 一种放射性医用同位素标记的稀土掺杂纳米材料和pet显像诊疗剂及其制备方法和应用
Secu et al. Gd3+ co-doping influence on the morphological, up-conversion luminescence and magnetic properties of LiYF4: Yb3+/Er3+ nanocrystals
CN110408377A (zh) 一种稀土掺杂NaCeF4近红外荧光纳米探针及其制备方法和生物应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20221104

WW01 Invention patent application withdrawn after publication