CN115278943A - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
CN115278943A
CN115278943A CN202110485642.5A CN202110485642A CN115278943A CN 115278943 A CN115278943 A CN 115278943A CN 202110485642 A CN202110485642 A CN 202110485642A CN 115278943 A CN115278943 A CN 115278943A
Authority
CN
China
Prior art keywords
mac
layer entity
target
procedure
mac layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110485642.5A
Other languages
English (en)
Inventor
王君
吕永霞
王婷
张立清
马江镭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202110485642.5A priority Critical patent/CN115278943A/zh
Priority to PCT/CN2022/088993 priority patent/WO2022228389A1/zh
Publication of CN115278943A publication Critical patent/CN115278943A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及通信装置,该通信方法包括:媒体接入控制层MAC层实体确定目标通信方式,所述MAC层实体支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程,所述目标通信方式为所述第一通信方式或者所述第二通信方式;所述MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程。在本申请提出的通信方法对应的协议栈中,MAC层可以同时支持多个不同通信方式对应的MAC流程,同时本申请中的通信方法还对协议栈中的MAC流程进行了重新划分和定义,以实现多个不同通信方式之间的载波聚合,进一步提高无线资源的利用率,提高用户和系统性能。

Description

一种通信方法及通信装置
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法及通信装置。
背景技术
载波聚合(carrier aggregation,CA)技术能够利用多个载波之间的无线资源来提高终端吞吐量,增加频谱带宽,提升上下行速率,满足用户日益正常的对网速和网络容量的需求。但现有的CA仅支持同一通信系统内不同载波间的聚合,而不支持不同通信系统间的载波聚合。
5G在非独立组网(non-standalone,NSA)架构下引入了双链接(dual connection,DC) 技术,手机可以同时连接到不同通信系统对应的基站,其中一个基站作为主节点(master node,MN),一个基站作为辅节点(slave node,SN),比如手机可以同时连接到第四代 (4th generation,4G)系统的基站和第五代(5th generation,5G)系统的基站,双链接技术可以提高无线资源利用率,降低系统切换时延,提高用户和系统性能。
在双链接技术中也能够实现载波聚合,但是也仅能实现同一通信系统内的载波聚合,比如主节点的载波聚合只能实现主节点对应的通信系统内的载波聚合,辅节点的载波聚合也只能实现辅节点对应的通信系统内的载波聚合,而无法实现主节点和辅节点之间不同通信系统之间的载波聚合。
因此,亟待提出一种能够实现多通信系统之间的载波聚合的方法,进一步提高无线资源的利用率,提高用户和系统性能。
发明内容
本申请提供一种通信方法及通信装置,能够实现不同通信方式之间的载波聚合,进一步提高无线资源的利用率,提高用户和系统性能。
第一方面,提供了一种通信方法,该通信方法包括:媒体接入控制层MAC层实体确定目标通信方式,该MAC层实体支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式;该MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程。
在一种可能的实现方式中,该通信方法包括:媒体接入控制层MAC层实体确定目标通信流程,该目标MAC流程属于第一通信方式对应的MAC流程和/或第二通信方式对应的MAC流程,该MAC层实体支持该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程;该MAC层实体根据该目标MAC流程对应的目标通信方式执行该目标MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式。
在一种可能的实现方式中,上述第一通信方式和第二通信方式包括第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统对应的通信方式和非3GPP通信系统对应的通信方式,其中,3GPP系统对应的通信方式包括4G、5G、6G或将来可能出现的3GPP通信系统对应的通信方式,或者3GPP系统中定义的MAC模块对应的通信方式 (如人工智能(artificial intelligence,AI)MAC、非人工智能(non-AI)MAC、太赫兹(THz) MAC、短距MAC(如侧行链路(sidelink,SL))、非地面网络(non-terrestrial network, NTN)MAC、无人机(unmanned aerial vehicle,UAV)MAC、感知(sensing)MAC),非3GPP通信系统对应的MAC也可以属于不同的通信技术,比如蓝牙(bluetooth,BT) 技术、无线网络通信技术(wireless fidelity,wifi)、专用短距离通信技术(dedicated short rangecommunication,DSRC)、近距离无线通信(near field communication,NFC)技术、射频识别(radio frequency identification,RFID)技术等。
需要说明的是,上述方案是以两种通信方式为例进行描述的,该第一通信方式和第二通信方式可以为不同的通信制式也可以为相同的通信制式,应理解,本申请中的技术方案中的MAC还可以支持两种以上通信方式的MAC流程,可以理解为,MR-CA可以是任意两个或多个通信方式之间进行跨系统、跨制式、或者跨MAC模块的载波聚合,本申请在此不作限定。
还需要说明的是,在实现方式中,该MAC层实体可以先确定目标MAC流程,再确定该目标MAC流程对应的该目标通信方式,也可以先确定目标通信方式,再确定该目标通信方式对应的目标MAC流程,也可以同时确定目标MAC流程和目标通信方式,本申请在此不作任何限定。
还需要说明的是,上述目标MAC流程可以由外部信息触发,具体的,可以是MAC 层实体基于接收到的信息触发的,比如对于UE侧可以由MAC层实体从物理下行控制信道(physical downlink control channel,PDCCH)接收到的下行控制信息(downlinkcontrol information,DCI)、从基站接收到的媒体接入控制信源(media access controlelement,MAC CE)相关的控制信令或者接收到的寻呼消息触发的,或者可以由协议栈的其他层(比如 PHY层、RLC层、PDCP层、SDAP层、RRC层或NAS层)的通知触发的,可选地,上述其他层发送的通知也可以是基于收到的基站的命令、或者是基于自身维护的定时器 (timer)或者计数器(counter)、或其他层自身判断满足预设条件后发送的;上述目标MAC 流程也可以由内部触发,具体的,可以是MAC层实体基于自身判断触发的,比如可以是 MAC层实体基于自身维护的定时器或者计数器触发的(比如触发条件可以是定时器超时或者计数器超过阈值),也可以是MAC层实体自身判断满足预设条件后(比如MAC层实体判断参考信号接收功率(reference signal receiving power,RSRP)大于预设值)触发的。
根据本申请实施例的通信方法,一个MAC层实体可以支持多个通信方式所对应的MAC流程,可以理解为,一个MAC层实体可以连接多个通信方式对应的PHY层实体,因此本申请通信方法对应的协议栈模型能够使得MAC所支持的每个通信方式的MAC流程都能够正常运作,该通信方法能够实现多种通信方式(包括多制式或者多种通信系统) 之间的载波聚合(multi radio-carrier aggregation,MR-CA),进一步提高无线资源的利用率,提高用户和系统性能。
可选地,该协议栈模型中MAC层也可相应的连接多个通信方式对应的其他层,比如一个MAC层实体可以连接多个通信方式对应的RLC层实体,每个RLC层实体还可与相同通信方式的PDCP层对接。
需要说明的是,上述协议栈模型中仅描述了MAC层和PHY层,应理解,本申请的协议栈模型并不仅限于此,协议栈模型还可以包括其他层,比如NAS层、RLC层、PDCP 层、SDAP层、RRC层等等,这里可参考现有技术,本申请在此就不作过多赘述。
还需要说明的是,本申请中的通信方法不仅适用于协议栈中的MAC层,也同样适用于协议栈中的其他层(比如PHY层、RLC层、PDCP层、SDAP层、RRC层或NAS层等),示例性的,一个RLC层实体可以支持多个通信方式所对应的RLC流程,可以理解为,一个RLC层实体可以连接多个通信方式对应的MAC层实体,或者该多个通信方式中每个通信方式分别对应一个RLC实体且每个RLC层实体通过通信接口相连,再或者还可以将该RLC层分为两层,第一层用于支持第一通信方式和第二通信方式中功能相同且实现流程相同的RLC流程,第二层用于支持第一通信方式和第二通信方式中功能相同且实现流程不相同的RLC流程和/或功能不相同且实现流程不相同的RLC流程。
可选地,在本申请通信方式对应的协议栈模型中,MAC层还可以与其他层合设为一层,比如PDCP层、RLC层、MAC层可以合并成统一高层(unified higher layer,UHL),应理解,该UHL层可以支持多种通信方式对应的MAC流程,此外,该UHL层还支持相应的PDCP层相关流程和RLC层相关流程。
需要说明的是,若协议栈中不同层之间进行合并,比如,若RLC层和PDCP层合并为统一高层(unified higher layer,UHL),该UHL层所支持的流程包括PDCP层相关流程以及RLC层相关流程,那么本申请中的通信方法还可以适用于不同的通信方式对应的 UHL层,示例性的,一个UHL层实体可以支持多个通信方式所对应的UHL流程,或者该多个通信方式中每个通信方式分别对应一个UHL实体且每个UHL层实体通过通信接口相连,再或者还可以将该UHL层分为两层,第一层用于支持第一通信方式和第二通信方式中功能相同且实现流程相同的UHL流程(例如,可以称为common UHL实体),第二层用于支持第一通信方式和第二通信方式中功能相同且实现流程不相同的UHL流程和 /或功能不相同且实现流程不相同的RLC流程(例如,可以称为UHL#1实体和UHL#2实体,其中UHL#1实体对应第一通信方式,UHL#2实体对应第二通信方式)。
结合第一方面,在第一方面的某些实现方式中,该MAC层实体包括第一MAC层实体和第二MAC层实体,该第一MAC层实体对应该第一通信方式,该第二MAC层实体对应该第二通信方式,以及该方法包括:该第一MAC层实体确定该目标通信方式;若该目标通信方式为该第一通信方式,该第一MAC层实体根据该目标通信方式执行该目标 MAC流程;或者若该目标通信方式为该第二通信方式,该第二MAC层实体根据该目标通信方式执行该目标MAC流程。
根据本申请实施例的通信方法,MAC层包括两个MAC层实体,该两个MAC层实体分别为第一通信方式对应的第一MAC层实体和第二通信方式对应的第二MAC层实体,该第一MAC层实体支持第一通信方式对应的完整MAC流程、该第二MAC层实体支持第二通信方式对应的完整MAC流程,或者说第一MAC层实体具备第一通信方式对应的完整MAC流程的定义、第二MAC层实体具备第二通信方式对应的完整MAC流程的定义,也可以理解为,第一MAC层实体完全继承了第一通信方式对应的MAC的所有功能、第二MAC层实体完全继承了第二通信方式对应的MAC的所有功能。其中,第一MAC层实体仅与PHY#1对接,而第二MAC层实体仅与PHY#2对接,在该协议栈模型下,该通信方法能够实现多种通信方式(包括多制式或者多种通信系统)之间的载波聚合,进一步提高无线资源的利用率,提高用户和系统性能。
需要说明的是,在该实现方式中,多个MAC层实体分别与其对应通信方式的PHY层实体相连,其中一个MAC层实体可以与上层(如RLC层)相连,该MAC层实体可称为主MAC层实体;对于上层发送给MAC层的数据,可以由上层决定发送给哪个MAC层实体以及相应的PHY层实体去处理,也可以由其中与上层相连的主MAC层实体在收到上层的数据后,自行决策通过哪个MAC层实体和/或相应的PHY层实体发送和处理,或者该主MAC层实体可以基于上层的辅助信息决策通过哪个MAC层实体和/或相应的PHY 层实体发送和处理,比如该上层的辅助信息决策可以包括LCH ID与相应通信方式的PHY 的绑定或者映射关系,或者该主MAC层实体可以不作判断直接发送给该主MAC层实体对应的PHY层实体和/或该协议栈中除了主MAC层实体外的其他辅MAC层实体。
应理解,协议栈中各层的相连或者对接的描述指各层之间能够互相进行通信。
结合第一方面,在第一方面的某些实现方式中,该MAC层实体包括第三MAC层实体、第四MAC层实体和第五MAC层实体,该第三MAC对应该第一通信方式和/或该第二通信方式,该第四MAC层实体对应该第一通信方式,该第五MAC层实体对应该第二通信方式,以及该方法包括:该第三MAC层实体确定目标通信方式;若该目标通信方式为该第一通信方式,该第三MAC层实体和/或该第四MAC层实体执行该第一通信方式对应的目标MAC流程;或者若该目标通信方式为该第二通信方式,该第三MAC层实体和/ 或该第五MAC层实体执行该第二通信方式对应的目标MAC流程。
需要说明的是,在实现方式中,该第三MAC层实体可以先确定目标MAC流程,再确定该目标MAC流程对应的该目标通信方式,也可以先确定目标通信方式,再确定该目标通信方式对应的目标MAC流程,也可以同时确定目标MAC流程和目标通信方式,本申请在此不作任何限定。
根据本申请实施例的通信方法,该第三MAC层实体为第一通信方式和第二通信方式共同的MAC层实体,该第四MAC层实体仅与该第一通信方式对应,该第五MAC层实体仅与该第二通信方式体对应,在确定了目标通信方式后可以由该目标通信方式对应的 MAC层实体去执行该目标通信方式对应的目标MAC流程,在该协议栈模型下,该通信方法能够实现多种通信方式(包括多制式或者多种通信系统)之间的载波聚合,进一步提高无线资源的利用率,提高用户和系统性能。
结合第一方面,在第一方面的某些实现方式中,该第三MAC层实体支持第一类MAC流程,该第四MAC层实体支持第二类MAC流程,该第五MAC层实体支持第三类MAC 流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程中相同的MAC流程,该第二类MAC流程包括该第一通信方式对应的MAC 流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的MAC流程中与该第一通信方式对应的MAC流程不同的MAC流程,以及该方法包括:若该目标MAC流程属于该第一类MAC流程,该第三MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第二类MAC流程,该第四MAC 层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该第五MAC层实体执行该目标MAC流程。
在一种可能的实现方式中,第三MAC层实体可以与上层实体(如RLC层实体)相连,第三MAC层实体再分别与第四MAC层实体和第五MAC层实体相连,第四MAC层实体仅与第一通信方式对应的PHY对接,而第五MAC层实体仅与第二通信方式对应的 PHY对接。作为示例而非限定,针对上层提供的数据,第三MAC层实体可以根据上层的决策确定交给哪一通信方式对应的MAC层实体和/或PHY层实体处理,也可以由第三 MAC层实体自行决策交给哪一通信方式对应的MAC层实体和/或PHY层实体处理,或者第三MAC层实体可以基于上层的辅助信息决策交给哪一通信方式对应的MAC层实体和 /或PHY层实体处理,比如该上层的辅助信息决策可以包括LCH ID与相应通信方式的 PHY的绑定或者映射关系;对于第四MAC层实体和第五MAC层实体从各自对应的PHY 层实体接收到的数据,第四MAC层实体和第五MAC层实体也可以都发送给第三MAC 层实体,并由第三MAC层实体统一发送给上层。
根据本申请实施例的通信方法,该第三MAC层实体为第一通信方式和第二通信方式共同的MAC层实体,该第三MAC层实体能够支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程中相同的流程,相应的,此时第四MAC层实体和第五MAC 层实体只需要支持去除了两者相同部分流程后各通信方式对应的MAC流程即可,可以理解为,第四MAC层实体支持该第一通信方式对应的MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程(即第二类MAC流程),第五MAC层实体支持该第二通信方式对应的MAC流程中与该第一通信方式对应的MAC流程不同的MAC流程(即第三类MAC流程),解决了第一通信方式对应的MAC流程和的第二通信方式对应的MAC 流程共有且相同的流程部分存在重复定义的问题,从而降低了UE的处理复杂度,减少了空口开销,进一步提高了无线资源的利用率。
结合第一方面,在第一方面的某些实现方式中,该MAC包括第六MAC层实体和第七MAC层实体,该第六MAC层实体对应该第一通信方式,该第七MAC层实体对应该第二通信方式,以及该方法包括:该第六MAC层实体和/或该第七MAC层实体确定目标通信方式;若该目标通信方式为该第一通信方式,该第六MAC层实体执行该目标MAC 流程;或者若该目标通信方式为该第二通信方式,该第六MAC层实体和/或该第七MAC 层实体执行该目标MAC流程。
需要说明的是,在实现方式中,该第六MAC层实体和/或该第七MAC层实体可以先确定目标MAC流程,再确定该目标MAC流程对应的该目标通信方式,也可以先确定目标通信方式,再确定该目标通信方式对应的目标MAC流程,也可以同时确定目标MAC 流程和目标通信方式,本申请在此不作任何限定。
根据本申请实施例的通信方法,该第六MAC层实体为第一通信方式和第二通信方式对应的MAC层实体,该第七MAC层实体仅与该第二通信方式对应,在确定了目标通信方式后可以由该目标通信方式对应的MAC层实体去执行该目标通信方式对应的目标 MAC流程,在该协议栈模型下,该通信方法能够实现多种通信方式(包括多制式或者多种通信系统)之间的载波聚合,进一步提高无线资源的利用率,提高用户和系统性能。
结合第一方面,在第一方面的某些实现方式中,该第六MAC层实体支持第一类MAC流程和第二类MAC流程,该第七MAC层实体支持第三类MAC流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程中相同的 MAC流程,该第二类MAC流程包括该第一通信方式对应的MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的 MAC流程中与该第一通信方式对应的MAC流程不同的MAC流程,以及该方法包括:该第六MAC层实体和/或该第七MAC层实体确定目标通信方式;若该目标MAC流程属于该第一类MAC流程或者该第二类MAC流程,该第六MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该第七MAC层实体执行该目标 MAC流程。
根据本申请实施例的通信方法,该第六MAC层实体可以定义为支持第一通信方式对应的完整MAC流程(即第一类MAC流程和第二类MAC流程),该第七MAC层实体可以定义为仅支持第二通信方式对应的完整MAC流程中部分流程的子集,比如,该第七 MAC层实体可以定义为仅支持第二通信方式对应的完整MAC功能中与第一通信方式对应的完整MAC功能存在差异的部分MAC流程(即第三类MAC流程)。该协议栈模型解决了第一通信方式对应的MAC流程和的第二通信方式对应的MAC流程共有且相同的流程部分存在重复定义的问题,从而降低了UE的处理复杂度,减少了空口开销,进一步提高了无线资源的利用率。
作为示例而非限定,上述重新定义MAC功能(或者流程)的实现方式包括但不限于以下几种。第一种可能的实现方式中,可以通过协议预定义的方式对不同通信方式对应的MAC进行功能划分。比如,若仅有第六MAC层实体和第七MAC层实体,可以通过协议预定义规定某个具体的MAC流程与第六MAC层实体或者第七MAC层实体进行强绑定。在第二种可能的实现方式中,可以通过灵活配置的方式对不同通信方式对应的MAC进行功能划分。比如,不减少第六MAC层实体和第七MAC层实体的原来的MAC流程的相关定义,只不过通过配置某个具体的MAC流程与第六MAC层实体或者第七MAC层实体的绑定关系来实现。
需要说明的是,在该实现方式中,多个MAC层实体可以分别与其对应通信方式的PHY 层实体相连,可将其中一个MAC层实体定义为支持该多个MAC层实体共同的MAC流程,此时可将该MAC层实体看做主MAC层实体,比如该主MAC层实体可以为主小区 (primary cell,PCell)对应的MAC层实体,而在其他的MAC层实体上只需要支持与主 MAC层实体有差异的MAC流程,此时可将其他的MAC层实体看做辅MAC层实体,比如该辅MAC层实体可以为SCell对应的MAC层实体。应理解,上述主MAC层实体不仅需要支持与辅MAC层实体共有且相同的MAC流程部分,还需要支持主MAC层实体与辅MAC层实体都支持但有差异的MAC流程部分以及主MAC层实体特有的MAC流程部分。
结合第一方面,在第一方面的某些实现方式中,该第一类MAC流程对应于该第一通信方式和该第二通信方式都支持的MAC功能,以及该第二类MAC流程对应于该第一通信方式支持但该第二通信方式不支持的MAC功能和/或该第一通信方式和该第二通信方式都支持的MAC功能,以及该第三类MAC流程对应于该第一通信方式不支持但该第二通信方式支持的MAC功能和/或该第一通信方式和该第二通信方式都支持的MAC功能。
在一种可能的实现方式中,可将上述第一通信方式和第二通信方式对应的MAC流程分为以下几类:A类MAC流程,若第一通信方式和第二通信方式中对应的MAC功能相同且实现该MAC功能的MAC流程相同,将该类MAC流程称为A类MAC流程,其中,将对应于第一通信方式的该类MAC流程称为A1类MAC流程,将对应于第二通信方式的该类MAC流程称为A2类MAC流程。B类MAC流程,若第一通信方式和第二通信方式中对应的MAC功能相同但实现该MAC功能的MAC流程不同,将该类MAC流程称为 B类MAC流程,其中,将对应于第一通信方式的该类MAC流程称为B1类MAC流程,将对应于第二通信方式的该类MAC流程称为B2类MAC流程。C类MAC流程,若第一通信方式和第二通信方式中对应的MAC功能不同且实现该MAC功能的MAC流程也不同,将该类MAC流程称为C类MAC流程,其中,将对应于第一通信方式的该类MAC 流程称为C1类MAC流程,将对应于第二通信方式的该类MAC流程称为C2类MAC流程。则上述第一类MAC流程包括该A1类MAC流程或者A2类MAC流程,上述第二类 MAC流程包括该B1类MAC流程和该C1类MAC流程,上述第三类MAC流程包括该 B2类MAC流程和该C2类MAC流程。
结合第一方面,在第一方面的某些实现方式中,该MAC流程包括以下MAC流程的一种或者多种:数据传输流程、MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,和广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程。
结合第一方面,在第一方面的某些实现方式中,若该目标MAC流程属于MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,或者广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程,该方法包括:该MAC层实体获取第一信息,该第一信息用于触发该目标MAC流程;该 MAC层实体确定该第一信息对应的目标通信方式;该MAC层实体根据该目标通信方式执行该目标MAC流程。
结合第一方面,在第一方面的某些实现方式中,若该目标MAC流程属于数据传输流程,该方法包括:该MAC层实体接收第一数据;该MAC层实体确定该第一数据对应的目标通信方式;该MAC层实体根据该目标通信方式发送第二数据,该第二数据根据该第一数据确定。
第二方面,提供了一种通信方法,该通信方法包括:主媒体接入控制层MAC层实体确定目标通信方式,该主MAC层实体支持第一通信方式对应的MAC流程,该主MAC层实体通过通信接口与辅MAC层实体相连,该辅MAC层实体支持第二通信方式对应的 MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式;该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程。
在一种可能的实现方式中,该通信方法包括:主媒体接入控制层MAC层实体确定目标MAC流程,该目标MAC流程属于第一通信方式对应的MAC流程和/或第二通信方式对应的MAC流程,该主MAC层实体支持该第一通信方式对应的MAC流程,该主MAC 层实体通过通信接口与辅MAC层实体相连,该辅MAC层实体支持第二通信方式对应的 MAC流程;该主MAC层实体根据该目标MAC流程对应的目标通信方式执行该目标MAC 流程,该目标通信方式为该第一通信方式或者该第二通信方式。
在一种可能的实现方式中,该通信方法包括:媒体接入控制层MAC层实体从多个MAC流程中确定目标MAC流程,该多个MAC流程与该MAC层实体支持的多种通信方式一一对应;该MAC层实体执行该目标MAC流程,以生成目标信息。
在一种可能的实现方式中,该通信方法还包括:该MAC层实体从该多种通信方式中确定发送该目标信息使用的目标通信方式;以及该媒体接入控制层MAC层实体从多个 MAC流程中确定目标MAC流程,包括:该MAC层实体根据该目标通信方式从多个MAC 流程中确定目标MAC流程,该目标MAC流程是该目标通信方式对应的MAC流程。
在一种可能的实现方式中,上述第一通信方式和第二通信方式包括第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统对应的通信方式和非3GPP通信系统对应的通信方式,其中,3GPP系统对应的通信方式包括4G、5G、6G或将来可能出现的3GPP通信系统对应的通信方式,或者3GPP系统中定义的MAC模块对应的通信方式 (如人工智能(artificial intelligence,AI)MAC、非人工智能(non-AI)MAC、太赫兹(THz) MAC、短距MAC(如侧行链路(sidelink,SL))、非地面网络(non-terrestrial network, NTN)MAC、无人机(unmanned aerial vehicle,UAV)MAC、感知(sensing)MAC),非3GPP通信系统对应的MAC也可以属于不同的通信技术,比如蓝牙(bluetooth,BT) 技术、无线网络通信技术(wireless fidelity,wifi)、专用短距离通信技术(dedicated short rangecommunication,DSRC)、近距离无线通信(near field communication,NFC)技术、射频识别(radio frequency identification,RFID)技术等。
需要说明的是,上述方案是以两种通信方式为例进行描述的,该第一通信方式和第二通信方式可以为不同的通信制式也可以为相同的通信制式,应理解,本申请中的技术方案中的MAC还可以支持更两种以上通信方式的MAC流程,可以理解为,MR-CA可以是任意两个或多个通信方式之间进行跨系统、跨制式、或者跨MAC模块的载波聚合,本申请在此不作限定。
还需要说明的是,上述目标MAC流程可以由外部信息触发,具体的,可以是MAC 层实体基于接收到的信息触发的,比如对于UE侧可以由MAC层实体从物理下行控制信道(physical downlink control channel,PDCCH)接收到的下行控制信息(downlinkcontrol information,DCI)、从基站接收到的媒体接入控制信源(media access controlelement,MAC CE)相关的控制信令或者接收到的寻呼消息触发的,或者可以由协议栈的其他层(比如 PHY层、RLC层、PDCP层、SDAP层、RRC层或NAS层)的通知触发的,可选地,上述其他层发送的通知也可以是基于收到的基站的命令、或者是基于自身维护的定时器 (timer)或者计数器(counter)、或其他层自身判断满足预设条件后发送的;上述目标MAC 流程也可以由内部触发,具体的,可以是MAC层实体基于自身判断触发的,比如可以是 MAC层实体基于自身维护的定时器或者计数器触发的(比如触发条件可以是定时器超时或者计数器超过阈值),也可以是MAC层实体自身判断满足预设条件后(比如MAC层实体判断参考信号接收功率(reference signal receiving power,RSRP)大于预设值)触发的。。
根据本申请实施例的通信方法,一个主MAC层实体可以与不同通信方式对应的辅MAC层实体进行通信,该主MAC层实体可以用于实现不同通信方式对应的MAC流程,比如,若目标MAC流程与该主MAC层实体对应的通信方式相同,则可以由该主MAC层实体执行该目标MAC流程,若目标MAC流程与该主MAC层实体对应的通信方式不同,则可以由该主MAC层实体通过通信接口使得该目标MAC流程对应的辅MAC层实体执行该目标MAC流程,因此本申请通信方法对应的协议栈模型能够使得主MAC层实体能够支持多种通信方式对应的MAC流程,并使得所支持的每个通信方式的MAC流程都能够正常运作,即该通信方法能够实现多种通信方式(包括多制式或者多种通信系统)之间的载波聚合(multi radio-carrieraggregation,MR-CA),进一步提高无线资源的利用率,提高用户和系统性能。
作为示例而非限定,上述该主MAC层实体通过通信接口使得该目标MAC流程对应的辅MAC层实体执行该目标MAC流程的方式可以是,该主MAC层实体通过该通信接口向该辅MAC层实体发送通知消息,让该辅MAC层实体执行该目标MAC流程。
结合第二方面,在第二方面的某些实现方式中,该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标通信方式为该第一通信方式,该主MAC层实体执行该目标MAC流程;或者若该目标通信方式为该第二通信方式,该主MAC层实体通过该通信接口使得该辅MAC层实体执行该目标MAC流程。
根据本申请实施例的通信方法,如果目标通信方式与该主MAC层实体对应的通信方式相同,则可以由该主MAC层实体执行该目标MAC流程,若目标通信方式与该主MAC 层实体对应的通信方式不同,则可以由该主MAC层实体通过通信接口使得该目标MAC 流程对应的辅MAC层实体执行该目标MAC流程,因此本申请通信方法对应的协议栈模型能够使得主MAC层实体能够支持多种通信方式对应的MAC流程,并使得所支持的每个通信方式的MAC流程都能够正常运作,即该通信方法能够实现多种通信方式(包括多制式或者多种通信系统)之间的载波聚合,进一步提高无线资源的利用率,提高用户和系统性能。
结合第二方面,在第二方面的某些实现方式中,该主MAC层实体支持第一类MAC 流程和第二类MAC流程,该辅MAC层实体支持第三类MAC流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程中相同的MAC 流程,该第二类MAC流程包括该第一通信方式对应的MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的MAC 流程中与该第一通信方式对应的MAC流程不同的MAC流程,以及该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标MAC流程属于该第一类MAC流程或者该第二类MAC流程,该主MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该主MAC层实体通过该通信接口使得该辅MAC层实体执行该目标MAC流程。
根据本申请实施例的通信方法,该主MAC层实体可以定义为支持第一通信方式对应的完整MAC流程(即第一类MAC流程和第二类MAC流程),该辅MAC层实体可以定义为仅支持第二通信方式对应的完整MAC流程中部分流程的子集,比如,该辅MAC层实体可以定义为仅支持第二通信方式对应的完整MAC功能中与第一通信方式对应的完整 MAC功能存在差异的部分MAC流程(即第三类MAC流程)。该协议栈模型解决了第一通信方式对应的MAC流程和的第二通信方式对应的MAC流程共有且相同的流程部分存在重复定义的问题,从而降低了UE的处理复杂度,减少了空口开销,进一步提高了无线资源的利用率。
结合第二方面,在第二方面的某些实现方式中,该主MAC层实体支持第一类MAC 流程和第二类MAC流程,该辅MAC层实体支持该第一类MAC流程和第三类MAC流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的 MAC流程中相同的MAC流程,该第二类MAC流程包括该第一通信方式对应的MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的MAC流程中与该第一通信方式对应的MAC流程不同的MAC流程,以及该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标MAC流程属于该第一类MAC流程,该主MAC层实体执行该目标MAC流程或者该主MAC层实体通过该通信接口使得该辅MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第二类MAC流程,该主MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该主MAC层实体通过该通信接口使得该辅MAC层实体执行该目标MAC流程。
根据本申请实施例的通信方法,根据第一通信方式和第二通信方式对应的MAC流程是否存在差异将MAC流程分为了三类,其中主MAC层实体支持该第一类和第二类MAC 流程,该第二类MAC流程和主MAC层实体都对应于第一通信方式,辅MAC层实体支持该第一类和第三类MAC流程,该第三类MAC流程和辅MAC层实体都对应于第二通信方式,当该目标MAC流程属于第一类MAC流程时,可以由主MAC层实体去执行,也可以由辅MAC层实体去执行,当该目标MAC流程属于第二类MAC流程时,可以由主MAC层实体去执行,当该目标MAC流程属于第三类MAC流程时,可以由主MAC层实体通过与辅MAC层实体的通信接口使得辅MAC层实体去执行,在本申请中的协议栈模型下,该通信方法能够实现多种通信方式(包括多制式或者多种通信系统)之间的载波聚合,进一步提高无线资源的利用率,提高用户和系统性能。
结合第二方面,在第二方面的某些实现方式中,该主MAC层实体包括第一主MAC 层实体和第二主MAC层实体,该第一主MAC对应该第一通信方式和该第二通信方式,该第二主MAC层实体对应该第一通信方式,以及该方法包括:该第一主MAC层实体确定目标通信方式;若该目标通信方式为该第一通信方式,该第一主MAC层实体和/或该第二主MAC层实体执行该目标MAC流程;或者若该目标通信方式为该第二通信方式,该第一主MAC层实体通过该通信接口使得该辅MAC层实体执行该目标MAC流程。
根据本申请实施例的通信方法,该第一主MAC层实体可以为第一通信方式和第二通信方式共同的MAC层实体,该第二主MAC层实体仅与该第一通信方式对应,该辅MAC 层实体仅与该第二通信方式对应,在确定了目标通信方式后可以由该目标通信方式对应的 MAC层实体去执行该目标通信方式对应的目标MAC流程,在该协议栈模型下,该通信方法能够实现多种通信方式(包括多制式或者多种通信系统)之间的载波聚合,进一步提高无线资源的利用率,提高用户和系统性能。
结合第二方面,在第二方面的某些实现方式中,该第一主MAC层实体支持第一类MAC流程,该第二主MAC层实体支持第二类MAC流程,该辅MAC层实体支持第三类MAC流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程中相同的MAC流程,该第二类MAC流程包括该第一通信方式对应的 MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的MAC流程中与该第一通信方式对应的MAC流程不同的MAC 流程,以及该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC 流程包括:若该目标MAC流程属于该第一类MAC流程,该第一主MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第二类MAC流程,该第二主MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该第一主 MAC层实体和/或该第二主MAC层实体通过该通信接口使得辅MAC层实体执行该目标MAC流程。
在一种可能的实现方式中,该第一主MAC层实体可以与上层实体(如RLC层实体)相连,第一主MAC层实体再分别通过通信接口与第二主MAC层实体和辅MAC层实体相连,第二主MAC层实体仅与第一通信方式对应的PHY对接,而辅MAC层实体仅与第二通信方式对应的PHY对接。作为示例而非限定,针对上层提供的数据,第一主MAC层实体可以根据上层的决策确定交给哪一通信方式对应的MAC层实体和/或PHY层实体处理,也可以由第一主MAC层实体自行决策交给哪一通信方式对应的MAC层实体和/或 PHY层实体处理,或者第一主MAC层实体可以基于上层的辅助信息决策交给哪一通信方式对应的MAC层实体和/或PHY层实体处理,比如该上层的辅助信息决策可以包括LCH ID与相应通信方式的PHY的绑定或者映射关系;对于第二主MAC层实体和辅MAC层实体从各自对应的PHY层实体接收到的数据,第二主MAC层实体和辅五MAC层实体也可以都发送给第一主MAC层实体,并由第一主MAC层实体统一发送给上层。
根据本申请实施例的通信方法,该第三MAC层实体为第一通信方式和第二通信方式共同的MAC层实体,该第三MAC层实体能够支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程中相同的流程,相应的,此时第四MAC层实体和第五MAC 层实体只需要支持去除了两者相同部分流程后各通信方式对应的MAC流程即可,可以理解为,第四MAC层实体支持该第一通信方式对应的MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程(即第二类MAC流程),第五MAC层实体支持该第二通信方式对应的MAC流程中与该第一通信方式对应的MAC流程不同的MAC流程(即第三类MAC流程),解决了第一通信方式对应的MAC流程和的第二通信方式对应的MAC 流程共有且相同的流程部分存在重复定义的问题,从而降低了UE的处理复杂度,减少了空口开销,进一步提高了无线资源的利用率。
结合第二方面,在第二方面的某些实现方式中,该第一类MAC流程对应于该第一通信方式和该第二通信方式都支持的MAC功能,以及该第二类MAC流程对应于该第一通信方式支持但该第二通信方式不支持的MAC功能和/或该第一通信方式和该第二通信方式都支持的MAC功能,以及该第三类MAC流程对应于该第一通信方式不支持但该第二通信方式支持的MAC功能和/或该第一通信方式和该第二通信方式都支持的MAC功能。
在一种可能的实现方式中,可将上述第一通信方式和第二通信方式对应的MAC流程分为以下几类:A类MAC流程,若第一通信方式和第二通信方式中对应的MAC功能相同且实现该MAC功能的MAC流程相同,将该类MAC流程称为A类MAC流程,其中,将对应于第一通信方式的该类MAC流程称为A1类MAC流程,将对应于第二通信方式的该类MAC流程称为A2类MAC流程。B类MAC流程,若第一通信方式和第二通信方式中对应的MAC功能相同但实现该MAC功能的MAC流程不同,将该类MAC流程称为 B类MAC流程,其中,将对应于第一通信方式的该类MAC流程称为B1类MAC流程,将对应于第二通信方式的该类MAC流程称为B2类MAC流程。C类MAC流程,若第一通信方式和第二通信方式中对应的MAC功能不同且实现该MAC功能的MAC流程也不同,将该类MAC流程称为C类MAC流程,其中,将对应于第一通信方式的该类MAC 流程称为C1类MAC流程,将对应于第二通信方式的该类MAC流程称为C2类MAC流程。则上述第一类MAC流程包括该A1类MAC流程或者A2类MAC流程,上述第二类 MAC流程包括该B1类MAC流程和该C1类MAC流程,上述第三类MAC流程包括该 B2类MAC流程和该C2类MAC流程。
结合第二方面,在第二方面的某些实现方式中,该MAC流程包括以下MAC流程的一种或者多种:数据传输流程、MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,和广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程。
结合第二方面,在第二方面的某些实现方式中,若该目标MAC流程属于MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,或者广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程,该方法包括:该主MAC层实体获取第一信息,该第一信息用于触发该目标MAC流程;该主MAC层实体确定该第一信息对应的目标通信方式;该主MAC层实体根据该目标通信方式执行该目标MAC流程。
结合第二方面,在第二方面的某些实现方式中,该目标MAC流程属于数据传输相关的MAC流程,该方法包括:该主MAC层实体接收第一数据;该主MAC层实体确定该第一数据对应的目标通信方式;该主MAC层实体根据该目标通信方式发送第二数据,该第二数据根据该第一数据确定。
第三方面,提供了一种通信装置,该装置包括:处理单元,用于媒体接入控制层MAC层实体确定目标通信方式,该MAC层实体支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式;该处理单元,还用于该MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC 流程。
结合第三方面,在第三方面的某些实现方式中,该MAC层实体包括第一MAC层实体和第二MAC层实体,该第一MAC层实体对应该第一通信方式,该第二MAC层实体对应该第二通信方式,以及该处理单元还用于该MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标通信方式为该第一通信方式,该处理单元用于该第一MAC层实体根据该目标通信方式执行该目标MAC流程;或者若该目标通信方式为该第二通信方式,该处理单元用于该第二MAC层实体根据该目标通信方式执行该目标MAC流程。
结合第三方面,在第三方面的某些实现方式中,该MAC层实体包括第三MAC层实体、第四MAC层实体和第五MAC层实体,该第三MAC对应该第一通信方式和/或该第二通信方式,该第四MAC层实体对应该第一通信方式,该第五MAC层实体对应该第二通信方式,以及该理单元用于该第三MAC层实体确定目标通信方式;以及该处理单元还用于该MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标通信方式为该第一通信方式,该理单元用于该第三MAC层实体和/或该第四MAC 层实体执行该第一通信方式对应的目标MAC流程;或者若该目标通信方式为该第二通信方式,该理单元用于该第三MAC层实体和/或该第五MAC层实体执行该第二通信方式对应的目标MAC流程。
结合第三方面,在第三方面的某些实现方式中,该第三MAC层实体支持第一类MAC流程,该第四MAC层实体支持第二类MAC流程,该第五MAC层实体支持第三类MAC 流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程中相同的MAC流程,该第二类MAC流程包括该第一通信方式对应的MAC 流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的MAC流程中与该第一通信方式对应的MAC流程不同的MAC流程,以及该处理单元还用于该MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标MAC流程属于该第一类MAC流程,该理单元用于该第三MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第二类MAC流程,该理单元用于该第四MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该理单元用于该第五MAC层实体执行该目标MAC流程。
结合第三方面,在第三方面的某些实现方式中,该MAC层实体包括第六MAC层实体和第七MAC层实体,该第六MAC层实体对应该第一通信方式,该第七MAC层实体对应该第二通信方式,以及该处理单元,用于该第六MAC层实体和/或该第七MAC层实体确定目标通信方式;以及若该目标通信方式为该第一通信方式,该处理单元还用于该第六MAC层实体执行该目标MAC流程;或者若该目标通信方式为该第二通信方式,该处理单元还用于该第六MAC层实体和/或该第七MAC层实体执行该目标MAC流程。
结合第三方面,在第三方面的某些实现方式中,该第六MAC层实体支持第一类MAC流程和第二类MAC流程,该第七MAC层实体支持第三类MAC流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程中相同的 MAC流程,该第二类MAC流程包括该第一通信方式对应的MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的 MAC流程中与该第一通信方式对应的MAC流程不同的MAC流程,以及若该目标MAC 流程属于该第一类MAC流程或者该第二类MAC流程,该处理单元用于该第六MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该处理单元用于该第七MAC层实体执行该目标MAC流程。
结合第三方面,在第三方面的某些实现方式中,该装置还包括:收发单元,用于该MAC 层实体获取第一信息,该第一信息用于触发该目标MAC流程;以及该处理单元,还用于该MAC层实体确定该第一信息对应的目标通信方式;该处理单元,还用于该MAC层实体根据该目标通信方式执行该目标MAC流程。
结合第三方面,在第三方面的某些实现方式中,该装置还包括:收发单元,用于该MAC 层实体接收第一数据;该处理单元,还用于该MAC层实体确定该第一数据对应的目标通信方式;该收发单元,还用于该MAC层实体根据该目标通信方式发送第二数据,该第二数据根据该第一数据确定。
第三方面提供的通信装置的有益效果参考第一方面及其各种可能的实现的有益效果,此处不再赘述。
第四方面,提供了一种通信装置,该装置包括:处理单元,用于主媒体接入控制层MAC 层实体确定目标通信方式,该主MAC层实体支持第一通信方式对应的MAC流程,该主MAC层实体通过通信接口与辅MAC层实体相连,该辅MAC层实体支持第二通信方式对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式;该处理单元,还用于该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程。
结合第四方面,在第四方面的某些实现方式中,该处理单元还用于该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标通信方式为该第一通信方式,该处理单元用于该主MAC层实体执行该目标MAC流程;或者若该目标通信方式为该第二通信方式,该通信装置还包括收发单元,以及该收发单元,用于该主MAC层实体向该辅MAC层实体发送第二信息,该第二信息用于触发该辅MAC层实体执行该目标MAC流程。
结合第四方面,在第四方面的某些实现方式中,该主MAC层实体支持第一类MAC 流程和第二类MAC流程,该辅MAC层实体支持第三类MAC流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程中相同的MAC 流程,该第二类MAC流程包括该第一通信方式对应的MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的MAC 流程中与该第一通信方式对应的MAC流程不同的MAC流程,以及该处理单元还用于该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标MAC流程属于该第一类MAC流程或者该第二类MAC流程,该处理单元用于该主MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该通信装置还包括收发单元,以及该收发单元,用于该主MAC层实体向该辅MAC 层实体发送第二信息,该第二信息用于触发该辅MAC层实体执行该目标MAC流程。
结合第四方面,在第四方面的某些实现方式中,该主MAC层实体支持第一类MAC 流程和第二类MAC流程,该辅MAC层实体支持该第一类MAC流程和第三类MAC流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的 MAC流程中相同的MAC流程,该第二类MAC流程包括该第一通信方式对应的MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的MAC流程中与该第一通信方式对应的MAC流程不同的MAC流程,以及该处理单元还用于该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标MAC流程属于该第一类MAC流程,该处理单元用于该主MAC层实体执行该目标MAC流程,或者该通信装置还包括收发单元,以及该收发单元,用于该主MAC层实体向该辅MAC层实体发送第二信息,该第二信息用于触发该辅 MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第二类MAC流程,该处理单元用于该主MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该通信装置还包括收发单元,以及该收发单元,用于该主MAC层实体向该辅MAC层实体发送第二信息,该第二信息用于触发该辅MAC层实体执行该目标MAC流程。
结合第四方面,在第四方面的某些实现方式中,该主MAC层实体包括第一主MAC 层实体和第二主MAC层实体,该第一主MAC对应该第一通信方式和该第二通信方式,该第二主MAC层实体对应该第一通信方式,以及该处理单元,用于该第一主MAC层实体确定目标通信方式;以及若该目标通信方式为该第一通信方式,该处理单元还用于该第一主MAC层实体和/或该第二主MAC层实体执行该目标MAC流程;或者若该目标通信方式为该第二通信方式,该处理单元还用于该第一主MAC层实体通过该通信接口使得该辅MAC层实体执行该目标MAC流程。
结合第四方面,在第四方面的某些实现方式中,该第一主MAC层实体支持第一类MAC流程,该第二主MAC层实体支持第二类MAC流程,该辅MAC层实体支持第三类 MAC流程,该第一类MAC流程包括该第一通信方式对应的MAC流程和该第二通信方式对应的MAC流程中相同的MAC流程,该第二类MAC流程包括该第一通信方式对应的 MAC流程中与该第二通信方式对应的MAC流程不同的MAC流程,该第三类MAC功能包括该第二通信方式对应的MAC流程中与该第一通信方式对应的MAC流程不同的MAC 流程,以及该处理单元还用于该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程包括:若该目标MAC流程属于该第一类MAC流程,该处理单元用于该第一主MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第二类MAC流程,该处理单元用于该第二主MAC层实体执行该目标MAC流程;或者若该目标MAC流程属于该第三类MAC流程,该通信装置还包括收发单元,以及该收发单元,用于该第一主MAC层实体和/或该第二主MAC层实体向该辅MAC层实体发送第二信息,该第二信息用于触发该辅MAC层实体执行该目标MAC流程。
结合第四方面,在第四方面的某些实现方式中,若该目标MAC流程属于MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,或者广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程,该通信装置还包括:收发单元,以及该收发单元,用于该主MAC层实体获取第一信息,该第一信息用于触发该目标MAC流程;该主MAC层实体确定该第一信息对应的目标通信方式;该主MAC层实体根据该目标通信方式执行该目标MAC流程。
结合第四方面,在第四方面的某些实现方式中,若该目标MAC流程属于数据传输相关的MAC流程,该通信装置还包括:收发单元,以及该收发单元,用于该主MAC层实体接收第一数据;该处理单元,用于该主MAC层实体确定该第一数据对应的目标通信方式;该收发单元,还用于该主MAC层实体根据该目标通信方式发送第二数据,该第二数据根据该第一数据确定。
第四方面提供的通信装置的有益效果参考第二方面及其各种可能的实现的有益效果,此处不再赘述。
第五方面,提供了一种通信装置,该通信装置可以用来执行第一方面及第一方面的任意可能的实现方式中的通信设备的操作,或者用来执行第二方面及第二方面的任意可能的实现方式中的通信设备的操作。具体地,通信装置包括用于执行上述第一方面所描述的步骤或功能相对应的部件(means),比如该通信装置可以包括MAC层实体,或者第一MAC层实体和第二MAC层实体,或者第三MAC层实体、第四MAC层实体和第五MAC层实体、或者第六MAC层实体和第七MAC层实体;或者通信装置包括用于执行上述第二方面所描述的步骤或功能相对应的部件(means),比如该通信装置可以包括主MAC层实体和辅MAC层实体,或者包括第一主MAC层实体、第二主MAC层实体和辅MAC层实体。该步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
第六方面,提供了一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得上述第一方面及其任一种可能的实现方式中的方法被执行,或者使得上述第二方面及其任一种可能的实现方式中的方法被执行。
第七方面,提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面及其任一种可能的实现方式中的方法,或者使得安装有该芯片系统的通信设备执行上述第二方面及其任一种可能的实现方式中的方法。
第八方面,提供了一种芯片,芯片包括处理器和通信接口,该通信接口用于与外部器件或内部器件进行通信,该处理器用于实现上述第一方面及其任一种可能的实现方式中的方法,或者用于实现上述第二方面及其任一种可能的实现方式中的方法。
在一种可能的实现方式中,该芯片还可以包括存储器,该存储器中存储有指令,处理器用于执行存储器中存储的指令或源于其他的指令。当该指令被执行时,处理器用于实现上述第一方面及其任一种可能的实现方式中的方法。
第九方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面及其任一种可能的实现方式中的方法,或者使得计算机执行上述第二方面及其任一种可能的实现方式中的方法。
第十方面,提供了一种通信设备,包括,处理器,存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行第一方面及其任一种可能的实现方式中的通信方法,或者使得该通信装置执行第二方面及其任一种可能的实现方式中的通信方法。
该处理器为一个或多个,该存储器为一个或多个。该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
一个可能的设计中,提供了一种通信设备,包括通信接口、处理器和存储器。该处理器用于控制通信接口收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信设备执行第一方面及其任一种可能的实现方式中的方法,或者使得该通信设备执行第二方面及其任一种可能的实现方式中的方法。
第十一方面,提供一种通信装置,其特征在于,包括输入输出接口和逻辑电路,输入输出接口用于获取第一信息或第一数据,逻辑电路用于根据上述第一方面及其各种可能的实现方式确定目标通信方式,执行目标MAC流程,或者用于根据上述第二方面及其各种可能的实现方式确定目标通信方式,执行目标MAC流程。
第十二方面,提供了一种通信系统,该通信系统包括至少一个终端设备和一个或多个网络设备,其中上述终端设备包括第一方面及其各种可能的实现中第一通信方式对应的 MAC层实体和第二通信方式对应的MAC层实体,上述网络设备包括第一方面及其各种可能的实现中的第一通信方式对应的MAC实体和/或第二通信方式对应的实体;或者上述网络设备包括第二方面及其各种可能的实现中的主MAC层实体或辅MAC层实体。
附图说明
图1是本申请实施例可应用的系统场景示意图。
图2是第五代通信系统中终端设备和基站的用户面协议栈和控制面板协议栈的架构示意图。
图3是载波聚合和双链接的架构对比示意图。
图4是第五代通信系统中载波聚合的协议栈示意图。
图5是多制式双链接的部署示意图。
图6是多制式双链接的一种基站协议栈示意图。
图7是多制式双链接的另一种基站协议栈示意图。
图8是多制式双链接的一种终端设备协议栈示意图。
图9是本申请实施例中通信方法的流程示意图。
图10是本申请实施例中通信方法的一例。
图11是本申请实施例提供的一种通信装置的结构示意图。
图12是本申请实施例提供的又一种通信装置的结构示意图。
图13是本申请实施例提供的再一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long termevolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统、新无线(new radio,NR),或者第六代(6th generation,6G)等将来可能出现的新的通信系统,或者其他通信系统等,本申请对此不做限定。
本申请实施例的技术方案可以适用于信号传输的场景,比如网络设备与终端设备之间的信号传输、网络设备与网络设备之间的信号传输、终端设备与终端设备间的信号传输、车联网、物联网、工业互联网等的通信以及卫星通信等等。以下本申请实施例中将以终端和基站的通信进行示例性说明。
本申请实施例的技术方案对于同构网络与异构网络的场景均适用,可以是宏基站与宏基站的多点协同传输、或者微基站与微基站的多点协同传输、或者宏基站与微基站间的多点协同传输,本申请对于传输点不作限制。
本申请实施例的技术方案即适用于低频电磁波通信场景(比如sub 6GHz对应的频段),也适用于高频电磁波通信场景(比如6GHz以上的频段),太赫兹通信场景,光通信场景等,本申请对此不做限定
本申请实施例的技术方案可以适用于集中单元(central unit,CU)和分布式单元(distributed unit,DU)架构,也可以适用于控制面(control plane,CP)和(user plane,UP)分离的架构,本申请对此不做限定
首先,结合图1对本申请实施例中涉及的系统架构作示例性介绍。如图1所示,该系统架构中包括终端设备、基站(或者称为接入网)以及核心网(core network,CN)。
核心网
核心网作为移动通信网络的核心部分,起着承上启下的作用,主要负责处理终端用户的移动管理,会话管理以及数据传输。5G核心网(5G CN)在4G核心网(4G CN)的基础上有3个新的增强的方面:1.以服务为基础的架构;2.支持网络切片;3.控制面和用户面分离。
在4G核心网的基础上,5G核心网再次向分离式的架构演进。其一是网络功能的分离,5G核心网吸收了网络功能虚拟化(network function virtualization,NFV)云原生的设计思想,以软件化、模块化、服务化的方式来构建网络;其二是控制面和用户面的分离,5G核心网让用户面功能摆脱“中心化”的约束,使其既可灵活部署于核心网,也可部署于接入网。
网络设备
网络设备用于与终端设备通信,可以是网络中的无线基站,也可以是无线接入网(radio access network,RAN)的网元,负责空中接口相关的所有功能。基站的功能包括:无线链路维护功能,保持与终端间的无线链路,同时负责无线链路数据和互联网协议(internet protocol,IP)数据质监的协议转换;无线资源管理功能,包括无线链路的建立和释放、无线资源的调度和分配等;部分移动性管理功能,包括配置终端进行测量、评估终端无线链路质量、决策终端在小区间的切换等。
该网络设备可以是LTE系统中的演进型基站(evoled nodeB,eNB或eNodeB)、5G 网络中的基站(gNodeB,gNB),还可以是云无线接入网络(cloud radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、卫星、可穿戴设备以及、传输点(transmitting and receiving point,TRP)、发射点(transmittingpoint, TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to- everything,V2X)、机器到机器(machine-to-machine,M2M)通信、物联网(Internet ofThings)通信中承担基站功能的设备等,或者6G等未来演进的网络中的基站等等,本申请实施例并不限定。
在本申请实施例中,以该网络设备为基站为例进行描述,应理解,此处不应对本申请造成任何限定。
终端设备
终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站(mobile station)、移动台、远方站、远程终端、移动设备、用户终端(terminal equipment)、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session Initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digitalassistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality, AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、卫星通信中的终端、5G网络或者未来通信网络中的终端设备等,本申请实施例对此并不限定。
接下来结合图2,以5G系统为例,对终端设备侧和基站侧的用户面协议栈和控制面板协议栈的架构进行示例性介绍。
需要说明的是,终端设备可以包括用户面(user plane,UP)协议和控制面(control plane, CP)协议。基站同样可以包括用户面(user plane,UP)协议和控制面(control plane,CP) 协议。其中,用户面协议栈指用户数据传输采用的协议簇,控制面协议栈指系统的控制信令传输采用的协议簇。
如图2所示,以5G系统为例,终端设备侧和基站侧的协议栈可以包括物理层(physical layer,PHY),媒体接入管理层(medium access control,MAC),无线链路管理层(radio link control,RLC),分组数据汇聚协议(packet data convergence protocol,PDCP),无线资源控制(radio resource control,RRC),业务数据适配协议(service dataadapation protocol, SDAP)。其中,SDAP位于用户面协议栈,RRC位于控制面协议栈。终端设备和基站的各个层之间可以相互连接,进行信息传递。
接下来对图2中协议栈涉及的模块进行进一步介绍。
1.物理层(physical layer,PHY)
PHY层为MAC层提供传输信道,PHY层主要负责处理编译码、调制解调、多天线映射以及其它电信物理层功能。PHY层以传输信道的方式为MAC层提供服务。PHY层主要功能包括无线接入,功率控制以及多进多出(multiple input multiple output,MIMO)。
2.媒体接入管理层(medium access control,MAC)
MAC层为RLC层提供逻辑信道,MAC层主要负责处理混合自动重传请求(hybridautomatic repeat request,HARQ)重传与上下行(downlink,DL)调度。MAC层将以逻辑信道的方式为RLC层提供服务。MAC层主要功能包括错误检测、前向纠错(forward errorcorrection,FEC)加密解密、速率匹配、物理信道的映射、调整和解调、频率同步和时间同步、无线测量、MIMO处理、射频处理。
3.无线链路管理层(radio link control,RLC)
RLC层位于PDCP层以下,RLC层为PDCP层提供RLC信道,RLC层主要负责分段与连接、重传处理,以及对高层数据的顺序传送。RLC层以无线承载的方式为PDCP层提供服务,其中,每个终端的每个无线承载配置一个RLC实体。RLC层主要功能包括协议数据单元(protocoldata unit,PDU)传输、HARQ以及包的组合与拆分。
4.分组数据汇聚协议(packet data convergence protocol,PDCP)
PDCP层为SDAP层提供无线承载,PDCP层主要负责将IP头压缩和解压、传输用户数据并维护为无损的无线网络服务子系统设置的无线承载的序列号。在接收端,PDCP协议将负责执行解密及解压缩功能。对于一个终端每个无线承载有一个PDCP实体。PDCP 主要功能包括加密和解密、排序和复制检测、和控制面完整性校验。
5.无线资源控制(radio resource control,RRC)
RRC主要用于处理终端设备和基站之间控制平面的第三层信息,包括,包括系统消息、准入控制、安全管理、小区重选、测量上报、切换和移动性、非接入层(non accessstratum,NAS)消息传输、无线资源管理等。RRC主要功能包括广播、寻呼、链路管理、无线承载控制、移动性以及UE测量上报和控制。
6.业务数据适配协议(service data adapation protocol,SDAP)
SDAP是5G新空口用户面新增加的一层协议,SDAP层位于PDCP层以上,SDAP层为5GC提供(quality of service,QoS)流,SDAP层直接承载IP数据包,只用于用户面。 SDAP主要用于服务质量QoS流与无线承载之间的映射以及在上下行数据包中为服务质量流添加服务质量流标记(QoS flow ID,QFI)。
需要说明的是,针对控制面协议栈,上述协议栈中还可以包括非接入层(nonaccess stratum,NAS),NAS层主要用于UE与接入和移动管理功能(access and mobitliyfunction, AMF)网元之间的连接和移动控制。UE与AMF之间交互的消息(比如附着、承载建立、服务请求等移动性和连接流程的相关信息)称为NAS消息,虽然AMF从基站接收消息,但不是由基站始发的,基站只是透传UE发给AMF的消息并不能识别或者更改这部分消息。
异构无线系统中,不同类型的基站协同组网时,由于单个基站的带宽资源和覆盖范围有限,因此,集中多个小区或者基站的无线资源来为用户提供服务,更易于满足用户的容量需求和覆盖要求,这种方式通常称之为多连接。LTE系统中,常用的多连接方式包括载波聚合、双链接以及协同多点传输(coordinated multiple points,CoMP)等。
图3示出了载波聚合CA和双链接DC的架构对比图。
其一,在DC中UE同时与两个基站或者两种无线制式保持连接,DC中允许UE通过主节点基站MN和辅节点基站SN同时发送或接收来自两个小区组上多个载波上的数据, DC可以提高用户吞吐量,提供移动健壮性,并支持MN和SN之间的负载平衡;而CA通常仅限于同一种无线制式下,大多数时候是同一个基站下的多个载波聚合,CA允许UE 同时从单个基站上发送或接收多个小区载波上的数据,CA可以提高峰值速率以及小区低负载下用户吞吐量。
其二,DC在PDCP层分流数据,在DC中在PDCP层分流的数据载体称为分离承载;而CA在MAC层分流数据,以两个载波间的载波聚合为例,其中一个载波作为主载波(比如可以为图3中的载波#1),一个载波作为辅载波(比如可以为图3中的载波#2),数据分别通过主载波和辅载波进行分流。
其三,一个DC中的UE有两个小区无线网络临时标识(cell radio networktempory iIdentity,C-RNTI):一个是在主小区组(master cell group,MCG)中的C-RNTI,UE在MCG 中有一个始终激活的小区,另一个是辅小区组(secondary cell group,SCG)中的C-RNTI, UE在SCG中也有一个始终激活的小区,UE在MCG和SCG中有单独的物理上行控制信道(physical uplink control channel,PUCCH)资源;而在一个CA中UE只有一个共同的 C-RNTI,该C-RNTI使用在所有的小区载波中,而且UE只有在主小区(primary cell, PCell)上有一个PUCCH。
其四,DC中MN和SN独立调度,或者说,UE需要有两个不同的MAC层实体,一个对应MN,另一个对应SN;而CA中所有的载波都只对应1个MAC层实体。
需要说明的是,CA与DC并不互相排斥,相反DC的主节点和辅节点可以分别进行载波聚合,例如,DC的主小区组中可以有多个载波可以进行载波聚合,DC的辅小区组中也可以有多个载波可以进行载波聚合。
接下来对本申请涉及的载波聚合技术进行进一步介绍。移动通信系统中,带宽越大,所能提供的吞吐量越高。LTE 3GPP R10(release 10)版本中提出了LTE演进(LTE-advanced,LTE-A)的载波聚合技术,实现了不同系统(比如FDD和TDD系统)、不同频段、不同带宽间频带的组合使用,利用了更大的带宽来提升系统性能。
载波聚合技术中,多个载波主要在MAC层进行聚合,多个分量载波共享MAC资源,MAC层需要支持跨载波调度,以控制载波间的时域和频域联合调度。载波聚合可以由一个主小区(primary cell,PCell)对应的主载波相对应和一个或多个辅小区(secondary cell,SCell)对应的一个或多个辅载波进行载波聚合。
载波聚合技术带来了许多性能增益。比如,载波聚合技术能够实现集中调度,比如可以实现多种载波的MIMO层数动态共享,功率符号级动态共享,并且可以联合优化资源配置;载波聚合技术还可以支持跨载波调度,可以灵活配置资源;载波聚合技术还可以支持上行探测参考信号(sounding reference signal,SRS)切换(SRS switching),以提升下行传输性能;载波聚合技术还可以支持联合上行控制信息反馈(joint UCI feedback),比如UE可以将多个载波的物理下行共享信道(physical downlink shared channel,PDSCH) 的确认(Ackonwledgement,ACK)或者非确认(non-Ackonwledgement,NACK)信息,和/或,多个载波的信道状态信息(channel static information,CSI)联合编码在一个载波上进行反馈,联合上行控制信息反馈可以降低上行反馈开销资源,提升频谱效率,提高上行 (uplink,UL)传输性能;此外,载波聚合技术还可以控制上行功率,进行载波聚合的不同载波之间可以实现符号级的动态功率共享,比如,UE可以根据优先级确定每个符号上的发送功率,每个符号上优先满足高优先级的载波上的高优先级的信道的传输,示例性的,载波优先级可以是主载波>辅载波,小区索引(index)越小优先级越高,信道的优先级可以是:主小区的物理随机接入信道(physical random access channel,PRACH)>带有高优先级标识的物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physicaluplink shared channel,PUSCH)>(优先级标识相同的情况下)PUCCH with HARQ-ACK>PUCCH with CSI>SRS(非周期SRS>半静态SRS>周期SRS)或者非主小区上的PRACH。
图4示出了5G通信系统中CA的协议栈,可以看出,现有的载波聚合技术也存在一定限制。现有的载波聚合技术中仅支持相同的制式(或者系统)的载波进行聚合,或者说,仅支持同构无线系统下的载波进行聚合,无法充分利用无线资源。比如,当UE接入5G 网络时,基站为该UE配置的载波都是5G载波。当UE接入4G网络时,基站为该UE配置的载波都是4G载波。
接下来对多制式双链接(multi radio-dual connectivity,MR-DC)技术进行进一步介绍。
3GPP R15中,5G NR有两种部署选择:部署独立组网(standalone,SA)或者部署非独立组网(non-standalone,NSA)。SA模式下,NR独立组网;NSA模式下,一个基站依赖于另外一个基站提供控制信道。其中NSA也可以理解为,利用现有的4G基础设施,进行5G网络的部署,基于NSA架构的5G载波仅承载用户数据,其控制信令仍通过4G 网络传输。核心网(corenetwork,CN)也有两种部署模式,一种是沿用4G核心网络(evolved packet core,EPC)架构升级软件支持eMBB业务作为过渡部署方式,另一种是部署基于服务化架构的全新5GC网络。
由于5G网络的部署是一个渐进的过程,在5G网络部署的初始阶段,不会大规模部署NR基站、NR基站仅作为部分热点进行局部部署,因此通常以非独立组网的方式服务 UE,并支持LTE系统和NR系统之间的分流,以提升UE的上下行传输速率。
在3GPP R15中,针对上述不同的部署场景提出了MR-DC技术。MR-DC中终端可以同时连接两个制式的基站,其中一个基站作为主节点(master node,MN),一个基站作为辅节点(slave node,SN),其中主节点与主小区(PCell)和辅小区(SCell)对应,辅节点与主辅小区(PSCell)和辅小区(SCell)对应。带载波聚合的主节点和辅节点又可以被分别称作主小区组(master cell group,MCG)和辅小区组(secondary cell group,SCG)。
MR-DC中,数据在包数据汇聚协议(packet data convergence protocol,PDCP)层进行分割和合并,随后用户数据流通过多个基站同时传送给用户,有助于实现用户性能提升,有利于用户总体吞吐量和切换时延的性能提升。
接下来结图5,以4G系统和5G系统的双链接模式为例,对本申请涉及的双链接技术进行进一步介绍。针对这种多样的5G部署场景,3GPP R15定义了多种可能的4G系统和5G系统双链接模式,其中独立组网模式包括opt2/2a/2x,非独立组网模式包括opt3/3a/3x,opt4/4a和opt7/7a/7x。
如图5所示,opt2/2a/2也称为为NR双链接(NR dual connectivity,NR-DC),表示主节点、辅节点都为NR基站(即gNB),连接5G CN(具体的与AMF和用户面功能(user planefunction,UPF)网元连接);opt3/3a/3x也称为接4G CN的4G和5G双链接(EUTRAN NR-dualconnectivity,EN-DC),表示主节点(master node,MN)为eLTE基站(即增强的 eNB(enhanced evolved NodeB,e-eNB))、辅节点(slave node,SN)为NR基站(即gNB),连接4GCN(也可称为EPC或4GC,具体的可以与移动管理实体(mobility management entity,MME)和业务网关(service gateway,SGW)连接);opt4/4a/4x也称为5G和4G 双链接(NR EUTRAN-dual connectivity,NE-DC),表示主节点为NR基站(即gNB)、辅节点为eLTE基站(即e-eNB),连接5G CN(具体的与AMF/UPF连接);opt7/7a/7x也称为接5G CN的4G和5G双链接(nextgeneration EUTRAN-dual connectivity,NGEN- DC),表示主节点为eLTE基站(即e-eNB)、辅节点为NR基站(即gNB),连接5G CN (具体的与AMF和UPF连接)。
接下来结合图5以opt3/3a/3x为例,对opt3、opt3a和opt3x进行介绍。其中,opt3是指CN用户面网关(在4GC中叫业务网关(service gate way,SGW),5GC中叫用户面功能(userplane function,UPF))仅连接主节点,并由主节点给辅节点进行UE数据分流,可以理解为数据分流点在主节点;opt3a是指CN用户面网关同时连接主节点和辅节点、并由CN网元进行数据分流决策、此时主节点和辅节点之间没有数据分流路径,可以理解为数据分流点在核心网;opt3x指CN用户面网关仅连接辅节点、并由辅节点进行数据分流决策、并与主节点之间有数据分流路径进行UE数据分流,可以理解为数据分流点在辅节点。其他opt2/2a/2x,opt4/4a/4x,opt7/7a/7x等与opt2/2a/2x类似,在此就不作赘述。
接下来结合图6至图8,对现有的MR-DC的基站侧和终端侧的相关协议栈进行介绍。在3GPP R15中提出了两套不同的协议栈及对应的方案,其中协议栈#1连接4G核心网,可称为MR-DC with EPC、协议栈#1包括上述EN-DC架构;协议栈#2连接5G核心网,可称为MR-DCwith 5GC,协议栈#2包括上述NE-DC、NGEN-DC和NR-DC对应的三种架构。
需要说明的是,演进的通用陆面无线接入(网络)(Evolved UniversalTerrestrial Radio Access(Network),E-UTRA(N))属于3GPP LTE的空中界面,可以理解为4G网络的基站。
图6示出了上述协议栈#1的基站侧的架构,在LTE和5G双链接模式3/3a/3x的场景下,LTE和5G基站都连接在4G核心网上,4G基作为主节点(即MN),5G基站作为辅节点(即SN),4G基站和5G基站通过X2接口连接,4G基站与4G核心网通过S1接口连接,UE与4G基站和5G基站通过Uu接口连接。控制面上S1接口终结在MN,MN和 SN之间的控制面信息通过X2接口进行交互;数据面(即用户面)无线承载可以由MN或者SN独立服务,也可以由MN和SN同时服务。仅由MN服务时称为MCG承载(MCG 是由MN控制的服务小区组),仅由SN服务时称为SCG承载(SCG是由SN控制的服务小区组),如图5中模式3a,同时由MN和SN服务时称为分离式承载,如图5中模式 3和模式3x。
如图6所示,在双链接模式的情况下,分离式承载建立在MN(即4G基站)上,通过分离式承载,PDCP包可以经X2接口转发到SN(即5G基站)的无线链路控制(radio linkcontrol,RLC)层,也可以直接通过本地RLC发送给终端。双链接模式3a的情况下,会在MN和SN分别建立承载,数据在核心网侧分离,这种模式对MN和SN的DCP层不会产生影响。双链接模式3x的情况下,分离式承载建立在SN(即5G基站)侧,SN可以通过X2接口将PDCP包转发给MN(即4G基站),也可以直接通过本地的NR RLC进行传输。
图7示出了上述协议栈#2的基站侧的架构,MN和SN都连接在5G核心网上,MN 和SN通过Xn接口连接,MN与5G核心网通过NG接口连接,UE与MN和SN通过Uu 接口连接。控制面上S1接口终结在MN,MN和SN之间的控制面信息通过Xn接口进行交互。数据面无线承载可以由MN或者SN独立服务,也可以由MN和SN同时服务。仅由MN服务时称为MCG承载(MCG是由MN控制的服务小区组),仅由SN服务时称为SCG承载(SCG是由SN控制的服务小区组),如图5中模式4a,同时由MN和SN 服务时称为分离式承载,如图5中模式4和模式4x。
如图7所示,若分离式承载建立在MN上,通过分离式承载,PDCP包可以经Xn接口转发到SN的RLC层,也可以直接通过本地RLC发送给终端。若在MN和SN分别建立承载,数据在核心网侧分离,这种模式对MN和SN的DCP层不会产生影响。若分离式承载建立在SN,SN可以通过Xn接口将PDCP包转发给MN,也可以直接通过本地的 SN RLC进行传输。
上述协议栈#1和协议栈#2的区别点主要在于:
1.是否有业务数据适配协议(service data adapation protocol,SDAP)层。SDAP层是在5GC新引入的一层,且仅针对用户面才有的,主要在空口上执行UE和5G基站之间的服务质量(quality of service,QoS)到数据无线承载(data radio bearer,DRB)映射的功能。针对协议栈#1,由于连接的是4G核心网(或者说连接的是MME/SGW),因此没有SDAP 层;但协议栈#2接的是5G核心网(AMF/UPF),因此有SDAP层;
2.MCG承载下对应的PDCP实体不同。在协议栈#1中,针对MCG承载,同时支持 LTEPDCP和NR PDCP两个模块,但在协议栈#2中,针对MCG承载,仅支持NR PDCP 模块;
3.MN与SN之间的连接方式不同。在协议栈#1中,MN和SN之间采用LTE的站间接口(X2)承载基站间的通信消息和信令,而在协议栈#2中,MN和SN之间统一采用NR 的站间接口(Xn)承载基站间的通信消息和信令。
接下来结合图8,以EN-DC为例(即LTE基站为MN、NR基站为SN)对MR-DC的 UE侧的协议栈进行示例性说明。
如图8所示,控制面协议栈包括RRC层、PDCP层、RLC层、MAC层和PHY层, MN和SN的控制面协议栈都有各自的RRC层,用户面协议栈包括SDAP层、PDCP层、 RLC层、MAC层和PHY层。
需要说明的是,针对MR-DC中的分离承载,用户面协议栈包括SDAP层、PDCP层、 RLC层、MAC层和PHY层,其中一个PDCP实体同时连接MN和SN的RLC层、MAC 层和PHY层,该PDCP可以进行数据分流来提升UE瞬时速率,比如,若有四个数据包,数据包1和数据包3通过MN发送后,数据包2和数据包4通过SN发送),该PDCP也可以进行包复制来提升信息传输的可靠性,比如,数据包1和数据包2即通过MN发送,同时也通过SN发送。
还需要说明的是,MN和SN之间可以通过Xn接口来传递PDCP层的协议数据单元(protocol data unit,PDU)数据包。示例性地,若PDCP实体在MN侧、则MN侧的PDCP 可以分流或复制给SN进行传输,具体的传输流程可以是,MN侧PDCP生成的PDCP PDU 数据包经过Xn接口传输、交给SN侧、并由SN侧发送给对应的RLC实体和MAC及PHY 等实体进行下行空口传输,同时UE在空口进行下行数据接收。
应理解,一个SDAP实体通常连接一个或多个PDCP实体,一个PDCP实体通常只连接一个SDAP实体。
需要说明的是,本申请中的实施例也可以应用于上述MR-DC的基站侧的协议栈和UE 侧协议栈架构中。
应理解,上述MR-DC中基站侧的协议栈#1的MAC层、协议栈#2的MAC层、以及 UE侧协议栈的MAC#1层或者MAC#2层都只能同时支持同一种通信系统的MAC流程,或者说,都只能与同一种通信系统的PHY层对接,且UE侧协议栈的MAC#1层和MAC#2 层之间相互独立不存在交互,无法实现不同通信系统(或者制式)之间的载波聚合。
在上述MR-DC提出之前,UE主要由同一制式的基站服务,或者说,UE主要处于同构的无线系统中,此时CA只需满足同一个制式内的不同载波间聚合即可,其中,同一制式的载波聚合过程可以是,一个MAC层实体连接物理层同一个制式的多个小区(Cell) 或载波(Carrier),从而实现载波聚合,以提升UE可用带宽以及最大化上下行瞬时速率。在该场景下,MAC层只需要支持同一制式的PHY层对应的MAC流程(MAC procedures) 就能够实现同一制式下的载波聚合。
但在MR-DC提出之后,UE能够由至少两个制式的基站服务,或者说,UE可以处于异构的无线系统中,但此时CA仍只能支持同一制式内的载波聚合,例如,MR-DC中的主节点和辅节点都可以进行载波聚合,其中主节点和辅节点可以分别对应不同的制式(或者说无线系统),但是主节点的载波聚合只能实现主节点对应的制式下的载波聚合,同样,辅节点的载波聚合只能实现辅节点对应的制式下的载波聚合,而无法实现主节点和辅节点之间不同制式的载波聚合,无法充分的利用无线资源。
为了使得异构的无线系统下不同制式的小区之间能够实现载波聚合,可以重用现有 NR CA的协议栈,可以将一个MAC层实体连接多个不同制式的PHY层,所有数据无线承载(data radio bearer,DRB)和/或逻辑信道(logical channel,LCH)所对应的SDAP、 PDCP和RLC实体都共享同一个MAC层实体。若想实现上述方法的不同制式间的载波聚合,MAC层需要同时支持至少两种不同制式对应的PHY层,但是现有系统中定义的MAC 层只能支持同一个制式对应的PHY层,比如,MAC层只支持4G对应的PHY层、或者 MAC层只支持5G对应的PHY层,而4G对应的MAC仅能与4G对应的PHY层对接才能使得整个4G系统工作,类似的,5G对应的MAC也仅能与5G对应的PHY对接才能使得整个5G系统工作。而没有一个MAC层(或者MAC层实体)可以同时支持多个不同制式的PHY层。
针对上述问题,本申请提出了一种通信方法,能够实现多种通信方式(包括多制式或者多种通信系统)之间的载波聚合(multi radio-carrier aggregation,MR-CA),进一步提高无线资源的利用率,提高用户和系统性能。在本申请提出的通信方法中,在基站侧的协议栈中MAC层可以同时支持多个不同通信方式对应的PHY层,不同通信方式的基站间的MAC层之间能够进行交互,对应的,在终端侧的协议栈中MAC层也可以同时支持多个不同通信方式对应的PHY层,不同通信方式的基站间对应的MAC层之间同样能够进行交互,同时本申请中的通信方法还对协议栈中的MAC流程进行了重新划分和定义,以实现多个不同通信方式之间的载波聚合。
应理解,本申请通信方法中的协议栈模型同时适用于基站侧和UE侧。
需要说明的是,以一个MAC层实体连接两个不同通信方式的PHY(5G对应PHY#1, 4G对应PHY#2)为例。针对网络侧协议栈,PHY#1、MAC、RLC、PDCP、SDAP等可以属于同一基站(记做基站#1),而PHY#2可以属于另一基站(记做基站#2),其中,若 MAC和PHY#1属于同一基站(即基站#1)、则MAC和PHY#1之间的接口属于产品内部实现问题,若MAC和PHY#2属于不同基站(即MAC属于基站#1,PHY#2属于基站 #2),则MAC和PHY#2之间的接口需要交互信息,该接口可以为同厂商的私有接口(比如PHY#1、PHY#2、MAC、RLC、PDCP、SDAP等实体都需属于同一厂商的情况下),也可以为标准化的接口(比如PHY#1、PHY#2、MAC、RLC、PDCP、SDAP等实体属于不同厂商的情况下);而针对UE侧协议栈,因为都属于同一UE,因此MAC和PHY#1 以及PHY#2之间的接口始终存在且都为内部接口,无需标准化。
接下来结合图9,对本申请中的通信方法100进行说明。
S101,MAC层确定目标通信方式,该MAC层支持第一通信方式(即通信方式#1)对应的MAC流程和第二通信方式(即通信方式#2)对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式。
在一种可能的实现方式中,该MAC流程可以包括以下MAC流程的一种或者多种:数据传输流程、MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,和广播控制信道BCCH和寻呼信道PCH 接收相关的MAC流程。
在一种可能的实现方式中,若该目标MAC流程属于MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,或者广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程,本申请中的通信方法包括:MAC层获取第一信息,该第一信息用于触发该目标MAC流程,MAC层确定该第一信息对应的目标MAC流程和目标通信方式,该MAC层支持第一通信方式对应的 MAC流程和第二通信方式对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式,该目标MAC流程属于该第一通信方式对应的MAC流程或者属于该第二通信方式对应的MAC流程。
在另一种可能的实现方式中,以基站侧的协议栈为例,若该目标MAC流程属于上行数据传输流程,本申请中的通信方法包括:MAC层接收PHY层发送的第三数据,MAC 层确定该第三数据对应的目标MAC流程和目标通信方式,该MAC层支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式,该目标MAC流程属于该第一通信方式对应的MAC流程或者属于该第二通信方式对应的MAC流程。应理解,上述方法同样适用于UE侧接收下行数据的流程。
在一种可能的实现方式中,以基站侧的协议栈为例,若该目标MAC流程属于下行数据传输流程,本申请中的通信方法包括:MAC层接收RLC层发送的第五数据,MAC层确定该第五数据对应的目标MAC流程和目标通信方式,该MAC层支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式,该目标MAC流程属于该第一通信方式对应的MAC流程或者属于该第二通信方式对应的MAC流程。应理解,上述方法同样适用于UE侧发送上行数据的流程。
需要说明的是,上述第一通信方式和第二通信方式包括第三代合作伙伴计划(3rdgeneration partnership project,3GPP)通信系统对应的通信方式和非3GPP通信系统对应的通信方式,其中,3GPP系统对应的通信方式包括4G、5G、6G或将来可能出现的3GPP 通信系统对应的通信方式,或者3GPP系统中定义的MAC模块对应的通信方式(如人工智能(artificial intelligence,AI)MAC、非人工智能(non-AI)MAC、太赫兹(THz)MAC、短距MAC(如侧行链路(sidelink,SL))、非地面网络(non-terrestrial network,NTN) MAC、无人机(unmanned aerial vehicle,UAV)MAC、感知(sensing)MAC),非3GPP 通信系统对应的MAC也可以属于不同的通信技术,比如蓝牙(bluetooth,BT)技术、无线网络通信技术(wirelessfidelity,wifi)、专用短距离通信技术(dedicated short range communication,DSRC)、近距离无线通信(near field communication,NFC)技术、射频识别(radio frequencyidentification,RFID)技术等。
S102,该MAC层根据该目标通信方式执行该目标通信方式对应的目标MAC流程。
在一种可能的实现方式中,若该目标MAC流程属于MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,或者广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程,MAC层确定该第一信息对应的目标MAC流程和目标通信方式后,MAC层根据该目标通信方式执行该第一信息对应的目标MAC流程。
在一种可能的实现方式中,以基站侧的协议栈为例,若该目标MAC流程属于上行数据传输流程,MAC层确定该第三数据对应的目标MAC流程和目标通信方式后,MAC层根据该目标通信方式向上层(如RLC层)发送第四数据,该第四数据根据该第三数据和目标MAC流程确定。应理解,上述方法同样适用于UE侧接收下行数据的流程。
在一种可能的实现方式中,以基站侧的协议栈为例,若该目标MAC流程属于下行数据传输流程,MAC层确定该第五数据对应的目标MAC流程和目标通信方式后,MAC层根据该目标通信方式向下层(如PHY层)发送第六数据,该第六数据根据该第五数据和目标MAC流程确定。应理解,上述方法同样适用于UE侧发送上行数据的流程。
需要说明的是,上述第一数据可以包括该第三数据或第五数据,上述第二数据可以包括该第四数据或第六数据。
还需要说明的是,上述目标MAC流程可以由外部信息触发,具体的,可以是MAC 层实体基于接收到的信息触发的,比如对于UE侧可以由MAC层实体从物理下行控制信道(physical downlink control channel,PDCCH)接收到的下行控制信息(downlinkcontrol information,DCI)、从基站接收到的媒体接入控制信源(media access controlelement,MAC CE)相关的控制信令或者接收到的寻呼消息触发的,或者可以由协议栈的其他层(比如 PHY层、RLC层、PDCP层、SDAP层、RRC层或NAS层)的通知触发的,可选地,上述其他层发送的通知也可以是基于收到的基站的命令、或者是基于自身维护的定时器 (timer)或者计数器(counter)、或其他层自身判断满足预设条件后发送的;上述目标MAC 流程也可以由内部触发,具体的,可以是MAC层实体基于自身判断触发的,比如可以是 MAC层实体基于自身维护的定时器或者计数器触发的(比如触发条件可以是定时器超时或者计数器超过阈值),也可以是MAC层实体自身判断满足预设条件后(比如MAC层实体判断参考信号接收功率(reference signal receiving power,RSRP)大于预设值)触发的。
接下来结合图10,以两个不同通信方式(记做通信方式#1和通信方式#2)之间的载波聚合为例,对本申请的通信方法进行说明。本申请的通信方法包括但不限于以下几种。
方法#A(对应于图10中模型#A)
在方法#A中,通信方式100中的MAC层包括一个MAC层实体,该一个MAC层实体对接通信方式#1对应的PHY#1和通信方式#2对应的PHY#2,该MAC同时支持通信方式#1对应的MAC流程和通信方式#2对应的MAC流程。
该MAC会根据所连接的是PHY#1还是PHY#2选择与其通信方式相对应的MAC流程,或者说,该MAC对于下层收到的数据需要判断接收的数据来自PHY#1还是PHY#2,再选择与其通信方式相对应的MAC流程。比如,假设一个MAC层实体对接LTE PHY和NR PHY,若MAC层收到了LTE PHY的数据,则会执行LTE对应的MAC流程,类似的,若MAC层收到了NR PHY的数据,则会执行NR对应的MAC流程。
应理解,上述模型#A以一个MAC层实体同时对接两种不同通信方式的PHY层实体为例进行说明,但本申请并不仅限于此,实际上方法#A中,一个MAC层实体可以同时连接多个PHY层实体,多个PHY层实体可以是相同通信方式或不同通信方式,该MAC层实体具备所连接的多个PHY对应的全部MAC流程。
该MAC层实体对于从某个PHY收到的信息、会判断该信息是来自于哪个通信方式对应的PHY发送的MAC PDU,然后再调用与该通信方式对应的MAC流程;该MAC层实体对于上层发送的信息、也会根据上层的指示信息发送给对应通信方式下的PHY,执行该通信方式对应的MAC流程,可选地,也可以由该MAC层实体自行判断发送给哪一通信方式对应的PHY,或者该MAC层实体可以基于上层的辅助信息决策发送给哪一通信方式对应的PHY,比如该上层的辅助信息决策可以包括LCH标识(LCH identity,LCH ID) 与相应通信方式的PHY的绑定或者映射关系。
需要说明的是,对于基站侧的协议栈,方法#A中的MAC层实体可以设置于该通信方式#1对应的基站侧,也可以设置于该通信方式#2对应的基站侧,若与该MAC层相连的还有其他的通信方式对应PHY,该MAC层实体还可以设置于其他通信方式对应的基站侧,本申请在此不作任何限定。
方法#B(对应于图10中模型#B)
在方法#B中,通信方式100中的MAC层包括两个MAC层实体,该两个MAC层实体分别为通信方式#1对应的MAC#1(即第一MAC层实体)和通信方式#2对应的MAC#2 (即第二MAC层实体),该MAC#1支持通信方式#1对应的完整MAC流程、该MAC#2 支持通信方式#2对应的完整MAC流程,或者说MAC#1具备通信方式#1对应的完整MAC 流程的定义、MAC#2具备通信方式#2对应的完整MAC流程的定义,也可以理解为, MAC#1完全继承了通信方式#1对应的MAC的所有功能、MAC#2完全继承了通信方式#2 对应的MAC的所有功能。其中,MAC#1仅与PHY#1对接,而MAC#2仅与PHY#2对接。
需要说明的是,该方法#B与方法#A的区别在于对应通信方式的PHY仅和同一通信方式的MAC相连,因此MAC不需要对接收到的PHY层的数据进行判断,判断该数据来自于PHY#1还是PHY#2。
还需要说明的是,在上述方法#B中,多个MAC层实体分别与其对应通信方式的PHY层实体相连,但一个DRB对应的RLC实体可以仅与其中一个MAC层实体相连,该MAC 层实体可称为主MAC层实体;同上述方法#A类似,对于上层发送给MAC层的数据,可以由上层决定发送给哪个MAC层实体和/或相应的PHY层实体去处理,也可以由其中与 RLC实体相连的主MAC层实体在收到上层的数据后,自行决策通过哪个MAC层实体和 /或相应的PHY层实体发送和处理,或者该主MAC层实体可以基于上层的辅助信息决策通过哪个MAC层实体和/或相应的PHY层实体发送和处理,比如该上层的辅助信息决策可以包括LCH ID与相应通信方式的PHY的绑定或者映射关系,或者该主MAC层实体可以不作判断直接发送给该主MAC层实体对应的PHY层实体和/或该协议栈中除了主MAC 层实体外的其他辅MAC层实体。
应理解,协议栈中各层的相连或者对接的描述指各层之间能够互相进行通信。
在一种可能的实现方式中,对于基站侧的协议栈,方法#B中的MAC#1层实体可以设置于该通信方式#1对应的基站侧,方法#B中的MAC#2层实体可以设置于该通信方式#2 对应的基站侧,该MAC#1和MAC#2通过通信接口相连,类似的,若还存在对应于其他通信方式的MAC层实体,也可以设置于其对应通信方式的相应的基站侧。
需要说明的是,对于基站侧的协议栈,方法#B中可以将该通信方式#1对应的基站侧的MAC#1层实体视作主MAC层实体,对应的,将该通信方式#2对应的基站侧的MAC#2 层实体视作辅MAC层实体,主MAC层实体与辅MAC层实体通过通信接口相连。
作为示例而非限定,可以由主MAC层实体确定上述目标通信方式和/或上述目标MAC 流程。若该主MAC层实体确定上述目标通信方式和/或上述目标MAC流程与该主MAC 层实体属于同一通信方式,可由该主MAC层实体执行该目标MAC流程;若该主MAC层实体确定上述目标通信方式和/或上述目标MAC流程与该主MAC层实体属于不同的通信方式,可由该主MAC层实体通知该目标通信方式对应的MAC层实体执行该目标MAC 流程。
应理解,方法#B中还可以包括其他通信通信方式对应的辅MAC层实体。
方法#C(对应于图10中模型#C)
由于不同通信方式对应的MAC流程之间可能会存在部分相同和重复的流程,因此通信方式#1和通信方式#2对应的完整MAC流程之间可能会存在冗余的部分,可能会造成空口资源的浪费。比如,如果通信方式#1和通信方式#2对应的MAC流程都存在调度请求(scheduling request,SR)、缓存状态上报(Buffer Status Report,BSR)流程、定时提前命令(timing advance command,TAC)流程等MAC流程,那么当UE在某个逻辑信道有上行数据要发送时,会触发两份BSR或SR,这样UE在空口上就会占用两份资源发送两份SR或BSR,实际上基站侧只需要接收其中一份即可知道UE需要发送上行数据,因此会造成空口资源的浪费;再比如,如果通信方式#1和通信方式#2对应的MAC流程都存在定时提前(timingadvance,TA)流程、会导致UE侧维护两套定时器和变量,但实际上维护的变量的TA值(即针对分别对应于两个通信方式的两个小区的上行定时时差)始终相同,这就会导致UE维护的变量重复,增加了复杂度,不利于UE的节能,此外,当 UE移动时,两个通信方式对应的小区都会给UE下发定时提前命令(timing advance command,TAC)命令来让UE更新上行定时、这也会导致空口发送两份TAC命令,同时也造成了空口资源的浪费。
因此,在方法#C中,提取了通信方式#1对应的MAC#1的完整流程和通信方式#2对应的MAC#2的完整流程中共同的MAC流程(即第一类MAC流程),形成了共同的MAC 层(commonMAC)(即第三MAC层实体),该共同的MAC层能够支持方法#A或者方法#B中MAC#1的完整MAC流程和MAC#2的完整MAC流程中的相同部分流程,相应的,此时方法#C中的MAC#1和MAC#2只需要支持去除了两者相同部分流程后的MAC 流程即可,可以理解为,方法#C中的MAC#1(即第四MAC层实体)支持该通信方式#1 对应的MAC流程中与该通信方式#2对应的MAC流程不同的MAC流程(即第二类MAC 流程),方法#C中的MAC#2(即第五MAC层实体)支持该通信方式#2对应的MAC流程中与该通信方式#1对应的MAC流程不同的MAC流程(即第三类MAC流程),从而降低了UE的处理复杂度,例如UE需要维护的变量减少,同时减少了空口开销,例如UE 仅需上报一份SR或BSR、和基站仅需下发一份TAC。
需要说明的是,在上述方法#C可以理解为,模型#C包括双层MAC协议栈,其中,第一层为共同的MAC层(common MAC),第二层包括MAC#1和MAC#2,解决了通信方式#1对应的MAC流程和的通信方式#2对应的MAC流程共有且相同的流程部分(比如 SR和BSR等流程)重复定义的问题。
在一种可能的实现方式中,模型#C中所有RLC实体可以仅与共同的MAC层实体相连,共同的MAC层实体再分别与MAC#1和MAC#2相连;针对上层提供的数据,共同的MAC层实体可以根据上层的决策确定交给哪一通信方式对应的MAC层实体和/或PHY 层实体处理,也可以由common MAC层实体自行决策交给哪一通信方式对应的MAC层实体和/或PHY层实体处理,或者common MAC层实体可以基于上层的辅助信息决策交给哪一通信方式对应的MAC层实体和/或PHY层实体处理,比如该上层的辅助信息决策可以包括LCH ID与相应通信方式的PHY的绑定或者映射关系;对于MAC#1实体和 MAC#2实体从各自对应的PHY层实体接收到的数据,MAC#1和MAC#2实体也可以都发送给共同的MAC层实体,并由共同的MAC层实体统一发送给上层。
需要说明的是,在上述方法#C中,对于基站侧的协议栈,共同的MAC层实体可以与MAC#1层实体一同设置于通信方式#1对应的基站侧,此时共同的MAC与MAC#1之间可以通过内部接口进行通信,共同的MAC与MAC#2之间可以通过外部接口进行通信,该外部接口可以为同厂商的私有接口,也可以为标准化的接口,类似的,共同的MAC层实体也可以与MAC#2层实体一同设置于通信方式#2对应的基站侧,本申请并不对具体的实现方式进行限定。可选地,该共同的MAC层实体还可以与对应于其他通信方式的MAC 层实体通过通信接口相连,可以理解为该协议栈模型还可以支持其他通信方式对应的 MAC流程。
需要说明的是,对于基站侧的协议栈,方法#C中可以将该通信方式#1对应的基站侧的共同的MAC层实体以及MAC#1层实体视作主MAC层实体,具体的,可将上述共同的MAC层实体视为第一主MAC层实体、MAC#1层实体视为第二主MAC层实体,也可将上述共同的MAC层实体视为第二主MAC层实体、MAC#1层实体视为第一主MAC层实体,对应的,将该通信方式#2对应的基站侧的MAC#2层实体视作辅MAC层实体;主 MAC层实体之间通过内部通信接口相连,主MAC层实体与辅MAC层实体通过外部通信接口相连。
作为示例而非限定,可以由主MAC层实体确定上述目标通信方式和/或上述目标MAC 流程。若该第一主MAC层实体确定上述目标通信方式和/或上述目标MAC流程与该主MAC层实体属于同一通信方式且该第一主MAC层实体能够支持该目标MAC流程,可由该第一主MAC层实体执行该目标MAC流程;若该第一主MAC层实体确定上述目标通信方式和/或上述目标MAC流程与该主MAC层实体属于同一通信方式且该第一主MAC 层实体不支持该目标MAC流程,可由该第二主MAC层实体执行该目标MAC流程;若该主MAC层实体确定上述目标通信方式和/或上述目标MAC流程与该主MAC层实体属于不同的通信方式,可由该主MAC层实体通知该目标通信方式对应的MAC层实体执行该目标MAC流程。
应理解,方法#C中还可以包括其他通信通信方式对应的辅MAC层实体。
在一种可能的实现方式中,上述方法#C中共同的MAC、MAC#1和MAC#2的MAC 流程定义互不相同,不会重复。
方法#D(对应于图10中模型#D)
针对上述方法#A和方法#B存在的重复定义的问题,除了可以采用方法#C为MAC#1和MAC#2设计一层共同的MAC外,还可以仍然采用模型#B的结构,但对模型#B中的 MAC#1和MAC#2的功能进行重新定义。示例性的,方法#D中的MAC#1(即第六MAC 层实体)可以与方法#B中的MAC#1一样,依然定义为支持通信方式#1对应的MAC流程,但方法#D中的MAC#2(即第七MAC层实体)可以定义为仅支持通信方式#2对应的完整MAC的功能中部分功能的子集,可以理解为模型#D中的MAC#2可以定义为模型#B 中MAC#2的子集,比如,MAC#2可以定义为仅支持通信方式#2对应的完整MAC功能中与通信方式#1对应的完整MAC功能存在差异的部分MAC流程。
作为示例而非限定,上述重新定义MAC功能(或者流程)的实现方式包括但不限于以下几种。
第一种可能的实现方式中,可以通过协议预定义的方式对不同通信方式对应的MAC 进行功能划分。比如,若仅有MAC#1和MAC#2,可以通过协议预定义规定某个具体的 MAC流程与MAC#1或者MAC#2进行强绑定,例如,可以通过协议预定义使得MAC#1 作为Scell时仅支持通信方式#1对应的MAC功能的子集,或者可以通过协议预定义使得 MAC#2作为Scell时仅支持通信方式#2对应的MAC功能的子集。
在第二种可能的实现方式中,可以通过灵活配置的方式对不同通信方式对应的MAC 进行功能划分。比如,不减少MAC#1和MAC#2的原来的MAC流程的相关定义,通过配置某个具体的MAC流程与MAC#1或者MAC#2的绑定关系来实现。例如,配置SR和 BSR的流程与MAC#1绑定,在此情况下MAC#1才有SR和BSR的功能。可选地,也可将某个具体的MAC流程与MAC#1对应的某个小区(或小区列表)、载波(或载波列表)、或者部分带宽(bandwidth part,BWP)(或部分带宽列表)进行绑定。这种通过自定义配置的方式更为灵活,例如可以通过更改配置的方式将原先配置给MAC#1才有的功能、更改到 MAC#2中才有。
还需要说明的是,在上述方法#D中,多个MAC层实体可以分别与其对应通信方式的PHY层实体相连,为了解决模型#A和模型#B中的通信方式#1对应的MAC流程和的通信方式#2对应的MAC流程共有且相同的流程部分(比如SR和BSR等流程)重复定义的问题,可以仅在其中一个MAC层实体上支持上述共有且相同的MAC流程部分,此时可将该MAC层实体看做主MAC层实体,比如该主MAC层实体可以为主小区(primary cell, PCell)对应的MAC层实体,而在其他的MAC层实体上只需要支持与主MAC层实体有区别的MAC流程(比如上述第二类MAC流程或者第三类MAC流程),此时可将其他的MAC层实体看做辅MAC层实体,比如该辅MAC层实体可以为SCell对应的MAC层实体。
在一种可能的实现方式中,对于基站侧的协议栈,方法#D中的MAC#1层实体(可视作主MAC层实体)可以设置于该通信方式#1对应的基站侧,方法#D中的MAC#2层实体(可视作辅MAC层实体)可以设置于该通信方式#2对应的基站侧,该MAC#1和MAC#2 通过通信接口相连,类似的,若还存在对应于其他通信方式的MAC层实体,也可以设置于其对应通信方式的相应的基站侧。
作为示例而非限定,可以由主MAC层实体确定上述目标通信方式和/或上述目标MAC 流程。
若该主MAC层实体确定上述目标通信方式和/或上述目标MAC流程与该主MAC层实体属于同一通信方式且该主MAC层实体能够支持该目标MAC流程,可由该主MAC 层实体执行该目标MAC流程;若该主MAC层实体确定上述目标通信方式和/或上述目标 MAC流程与该主MAC层实体属于不同的通信方式且该主MAC层实体不支持该目标 MAC流程,可由该主MAC层实体通知该目标MAC流程对应的MAC层实体执行该目标 MAC流程。应理解,方法#D中还可以包括其他通信通信方式对应的辅MAC层实体。
应理解,上述主MAC层实体不仅需要支持与辅MAC层实体共有且相同的MAC流程部分(比如下述A类MAC流程),还需要支持主MAC层实体与辅MAC层实体都支持但有差异的MAC流程部分(比如下述B类MAC流程)以及主MAC层实体特有的 MAC流程部分(比如下述C类MAC流程)。
在一种可能的实现方式中,可将上述通信方式#1和通信方式#2对应的MAC流程进行分类。
A类MAC流程
若通信方式#1和通信方式#2中对应的MAC功能相同且实现该MAC功能的MAC流程相同,将该类MAC流程称为A类MAC流程,其中,将对应于通信方式#1的该类MAC 流程称为A1类MAC流程,将对应于通信方式#2的该类MAC流程称为A2类MAC流程。
B类MAC流程
若通信方式#1和通信方式#2中对应的MAC功能相同但实现该MAC功能的MAC流程不同,将该类MAC流程称为B类MAC流程,其中,将对应于通信方式#1的该类MAC 流程称为B1类MAC流程,将对应于通信方式#2的该类MAC流程称为B2类MAC流程。
C类MAC流程
若通信方式#1和通信方式#2中对应的MAC功能不同且实现该MAC功能的MAC流程也不同,将该类MAC流程称为C类MAC流程,其中,将对应于通信方式#1的该类 MAC流程称为C1类MAC流程,将对应于通信方式#2的该类MAC流程称为C2类MAC 流程。
在该实现方式中,上述方法可以理解为,模型#A中的MAC支持上述A1类、A2类、 B1类、B2类、C1类和C2类MAC流程,其中,模型#A支持A1类MAC流程与A2类 MAC流程重复;模型#B中的MAC#1支持以上A1类、B1类和C1类MAC流程,模型 #B中的MAC#2支持以上A2类、B2类和C2类MAC流程,其中,模型#B中MAC#1支持A1类MAC流程与MAC#2支持的A2类MAC流程重复;模型#C中共同的MAC支持以上A1类或者A2类MAC流程,模型#C中的MAC#1支持以上B1类和C1类MAC流程,模型#C中的MAC#2支持以上B2类和C2类MAC流程;模型#D中的MAC#1支持以上A1类、B1类和C1类MAC流程,模型#D中的MAC#2支持以上B2类和C2类MAC 流程。
应理解,上述第一类MAC流程包括该A1类MAC流程或者A2类MAC流程,上述第二类MAC流程包括该B1类MAC流程和该C1类MAC流程,上述第三类MAC流程包括该B2类MAC流程和该C2类MAC流程。
在一种可能的实现方式中,将通信方式#1对应的小区(或者载波)作为载波聚合中的主小区(或者主载波),将通信方式#2对应的小区(或者载波)作为载波聚合中的辅小区(或者辅载波)。
可选地,该协议栈模型中MAC层也可相应的连接多个通信方式对应的其他层,比如一个MAC层实体可以连接多个通信方式对应的RLC层实体,每个RLC层实体还可与相同通信方式的PDCP层对接。
需要说明的是,上述协议栈模型中仅描述了MAC层和PHY层,应理解,本申请的协议栈模型并不仅限于此,协议栈模型还可以包括其他层,比如RLC层、PDCP层、SDAP 层、RRC层等等,这里可参考现有技术,本申请在此就不作过多赘述。
还需要说明的是,本申请中的通信方法不仅适用于协议栈中的MAC层,也同样适用于协议栈中的其他层(比如PHY层、RLC层、PDCP层、SDAP层、RRC层或NAS层等),示例性的,一个RLC层实体可以支持多个通信方式所对应的RLC流程,可以理解为,一个RLC层实体可以连接多个通信方式对应的MAC层实体,或者该多个通信方式中每个通信方式分别对应一个RLC实体且每个RLC层实体通过通信接口相连,再或者还可以将该RLC层分为两层,第一层用于支持第一通信方式和第二通信方式中功能相同且实现流程相同的RLC流程,第二层用于支持第一通信方式和第二通信方式中功能相同且实现流程不相同的RLC流程和/或功能不相同且实现流程不相同的RLC流程。
可选地,在本申请通信方式对应的协议栈模型中,MAC层还可以与其他层合设为一层,比如PDCP层、RLC层、MAC层可以合并成统一高层(unified higher layer,UHL),应理解,该UHL层可以支持多种通信方式对应的MAC流程,此外,该UHL层还支持相应的PDCP层相关流程和RLC层相关流程。
需要说明的是,若协议栈中不同层之间进行合并,比如,若RLC层和PDCP层合并为统一高层(unified higher layer,UHL),该UHL层所支持的流程包括PDCP层相关流程以及RLC层相关流程,那么本申请中的通信方法还可以适用于不同的通信方式对应的 UHL层,示例性的,一个UHL层实体可以支持多个通信方式所对应的UHL流程,或者该多个通信方式中每个通信方式分别对应一个UHL实体且每个UHL层实体通过通信接口相连,再或者还可以将该UHL层分为两层,第一层用于支持第一通信方式和第二通信方式中功能相同且实现流程相同的UHL流程(例如,可以称为common UHL实体),第二层用于支持第一通信方式和第二通信方式中功能相同且实现流程不相同的UHL流程和 /或功能不相同且实现流程不相同的RLC流程(例如,可以称为UHL#1实体和UHL#2实体,其中UHL#1实体对应第一通信方式,UHL#2实体对应第二通信方式)。
接下来以通信方式#1为LTE和通信方式#2为NR为例,对上述方法对应的模型的功能进行进一步阐述,应理解,如下阐述仅作为一种示例而非限定,不代表最终的功能划分结果。
表1示出了LTE和NR中的MAC流程的协议流程对比。从表1中可以看出,针对 LTEMAC和NR MAC都支持的功能,实现该功能的部分MAC流程是相同的,比如上述 A类MAC流程;实现该功能的部分MAC流程是有差异的,比如上述B类MAC流程。此外,部分MAC功能则是仅NRMAC或LTE MAC才支持的,比如上述C类MAC流程对应的MAC功能,具体的,如BWP、补充上行(supplementary uplink,SUL)、波束失败恢复(beam failure recovery,BFR)等都是NR中支持的新的MAC功能)。
表1
Figure BDA0003050534840000331
Figure BDA0003050534840000341
Figure BDA0003050534840000351
在一种可能的实现方式中,上述表格中的功能可以大致分成四类,第一类是LTEMAC 和NR MAC都支持且实现流程相同的功能(对应A类MAC流程),第二类是LTE MAC 和NRMAC都支持但实现流程有差异的功能(对应B类MAC流程),第三类是LTE MAC 支持但NR MAC不支持的功能(对应C1类MAC流程),第四类是LTE MAC不支持但NR MAC支持的功能(对应C2类MAC流程)。
对于方法#A中的模型#A,一个MAC层实体同时支持LTE MAC(即MAC#1)和NR MAC(即MAC#2)的所有MAC流程,或者说,一个MAC层实体同时支持LTE MAC和 NR MAC的所有MAC功能,可以理解为该MAC层实体支持以上A1类、A2类、B1类、 B2类、C1类和C2类MAC流程,且该MAC中包括两个重复的A1类和A2类MAC流程。
对于方法#B中的模型#B,具有LTE MAC和NR MAC两个MAC层实体,其中,LTE MAC定义了LTE中完整的MAC流程,NR MAC定义了NR中完整的MAC流程,或者说,LTE MAC支持LTE中所有的MAC功能,NR MAC支持NR中所有的MAC功能,且LTE MAC对接LTE PHY,NR MAC对接NRPHY。可以理解为,LTE MAC支持以上 A1类、B1类和C1类MAC流程,NR MAC支持以上A2类、B2类和C2类MAC流程。
对于方法#C中的模型#C,具有3个MAC层实体,其中提取LTE MAC和NR MAC 中都具备且相同的公共流程定义为common MAC支持的流程,此时NR MAC只需支持 NR MAC原流程中除了公共流程以外的流程,类似的,LTE MAC也只需支LTE MAC原流程中除了公共流程以外的流程。比如,common MAC具有的MAC流程可以包括以下 MAC流程的一种或多种(可参考表1):定时提前TA、寻呼信道接收(PCH reception)、广播信道接收(BCH reception)、MAC重置(MAC reset)或MAC重配置(MAC reconfiguration)、未知异常(unknown error)、调度请求SR、缓存状态上报BSR等MAC 功能对应的流程;LTE MAC流程可以包括以下MAC流程的一种或多种(可参考表1):随机接入信道RACH、下行接收(DL reception)、上行HARQ(UL HARQ)、逻辑信道优先LCP、不连续接收DRX、上行或下行半持续调度(UL/DL SPS)、多播信道接收(MCH reception)、媒体接入控制信源(media access control element,MAC CE)(比如辅小区激活或去激活、PDCP复制(PDCP duplication)等);NR MAC流程可以包括以下MAC流程的一种或多种(可参考表1):NR MAC流程和LTE MAC流程中都具备但是有差异的 MAC流程;以及NR MAC新支持的MAC流程(如表1中的部分带宽BWP、补充上行 SUL、波束失败恢复BFR等)。可以理解为,common MAC支持以上A1类或者A2类 MAC流程,LTE MAC支持以上B1类和C1类MAC流程,NR MAC支持以上B2类和 C2类MAC流程。
对于方法#D中的模型#D,可以通过协议预定义方式、或灵活配置功能是否支持的方式,使得LTE MAC支持所有LTE MAC定义的流程,NR MAC支持所有NR MAC定义的MAC流程中除了NR MAC流程中与LTE MAC流程中重复的MAC流程(如上述模型 c中common MAC中支持的MAC流程)。可以理解为,LTE MAC支持以上A1类、B1 类和C1类MAC流程,NR MAC支持以上B2类和C2类MAC流程。
需要说明的是,上述表格未详细描述LTE MAC流程和NR MAC流程中的差异以及差异产生的原因,比如针对RACH功能,NR支持波束(beam)相关的功能而LTE不支持波束相关的功能,此处内容可参考现有技术,本申请在此不作过多赘述。
还需要说明的是,上述实施例是以LTE和NR两种不同通信方式的MR-CA为例进行说明,实际也可以为其他的两种不同通信方式的MR-CA或者两种相同通信方式的MR- CA,比如2G/GSM、3G/WCDMA/UMTS/CDMA/TD-SCDMA、4G/LTE、5G/NR、6G等任意两种或者两种以上相同或者不同的制式或系统。可以理解为,MR-CA可以是任意两个或多个通信方式之间进行跨系统、跨制式、或者跨MAC模块的载波聚合,即PCell可以是任意通信方式,Scell可以是其他任意通信方式,比如,PCell可以是NR cell,SCell可以是6G Cell,或者,PCell是6G Cell,SCell是NR cell,本申请在此不作限定。
需要说明的是,若以通信方式#1为5G和通信方式#2为6G为例,上述方法对应的模型的定义与上述实施例通信方式#1为LTE和通信方式#2为NR对应的模型的定义(此处的定义也可以理解为MAC流程或者MAC功能)可能会存在差异。
在一种可能的实现方式中,可从MAC功能角度将上述5G和6G对应的MAC定义分为四类,第一类是5G MAC和6G MAC都支持且实现流程相同的功能(对应A类MAC 流程),第二类是5G MAC和6G MAC都支持但实现流程有差异的功能(对应B类MAC 流程),比如关于UE初始接入的功能(即RACH),第三类是5G MAC支持但6G MAC 不支持的功能(对应C1类MAC流程),第四类是5G MAC不支持但6G MAC支持的功能(对应C2类MAC流程),比如6G中新增的MAC功能。
则上述方法可以理解为,模型#A中的MAC具备上述四类功能,或者说,模型#A中的MAC同时支持5G MAC和6G MAC的所有MAC功能,还可以理解为,该MAC层实体支持以上A1类、A2类、B1类、B2类、C1类和C2类MAC流程,且该MAC中包括两个重复的A1类和A2类MAC流程。模型#B中的MAC#1具备以上第一类、第二类和第三类功能,模型#B中的MAC#2具备以上第一类、第二类和第四类功能,还可以理解为,5G MAC定义了5G中完整的MAC流程,6G MAC定义了6G中完整的MAC流程,或者说,5G MAC支持5G中所有的MAC功能,6G MAC支持6G中所有的MAC功能,且5G MAC对接5G PHY,6G MAC对接6G PHY。可以理解为,5G MAC支持以上A1 类、B1类和C1类MAC流程,6G MAC支持以上A2类、B2类和C2类MAC流程。模型#C中共同的MAC具备以上第一类功能,模型#C中的MAC#1具备以上第二类功能和第三类功能,模型#C中的MAC#2具备以上第二类和第四类功能,还可以理解为,共同的 MAC支持以上第一类功能A1类或者A2类MAC流程,5G MAC支持以上B1类和C1类 MAC流程,6G MAC支持以上B2类和C2类MAC流程。模型#D中的MAC#1具备以上第一类、第二类和第三类功能,模型#D中的MAC#2具备以上第二类和第四类功能,还可以理解为,5G MAC支持以上A1类、B1类和C1类MAC流程,6G MAC支持以上B2类和C2类MAC流程。
作为示例而非限定,针对模型#C,若5G MAC的MAC流程的定义不做修改地引入到6G MAC中,上述共同的MAC可以包括更多的MAC子功能和相应的流程,比如上述共同的MAC的定义中可以包括以下一种或多种:定时提前TA、寻呼信道接收(PCH reception)、广播信道接收(BCH reception)、MAC重置(MAC reset)或MAC重配置 (MAC reconfiguration)、未知异常(unknown error)、下行接收(DL reception)、上行 HARQ(UL HARQ)、逻辑信道优先LCP、调度请求SR、缓存状态上报BSR、不连续接收DRX、上行或下行半持续调度(UL/DL SPS)、部分带宽BWP、补充上行SUL、波束失败恢复BFR、以及媒体接入控制信源(media accesscontrol element,MAC CE)(比如辅小区激活或去激活、PDCP复制(PDCP duplication))等。
需要说明的是,若以通信方式#1为3GPP系统和通信方式#2为非3GPP(non-3GPP)系统为例,上述方法对应的模型的定义与上述实施例通信方式#1为LTE和通信方式#2为 NR对应的模型的定义(此处的定义也可以理解为MAC流程或者MAC功能)或者上述实施例通信方式#1为5G和通信方式#2为6G对应的模型的定义也可能会存在差异。
在一种可能的实现方式中,可从MAC功能是否相同以及该MAC功能的实现流程是否相同的角度将上述3GPP和非3GPP对应的MAC功能分为四类,第一类MAC功能是 3GPP MAC和非3GPP MAC都支持且实现流程相同的功能(对应A类MAC流程),比如调度请求SR、缓存状态上报BSR、不连续接收DRX、逻辑信道优先LCP;第二类MAC 功能是3GPP MAC和非3GPP MAC都支持但实现流程有差异的功能(对应B类MAC流程),比如RACH、下行接收(DL reception)、上行HARQ(UL HARQ)、上行或下行半持续调度(UL/DL SPS)、部分带宽BWP、补充上行SUL、波束失败恢复BFR随机接入信道、定时提前TA、寻呼信道接收(PCH reception)、广播信道接收(BCH reception)、 MAC重置(MAC reset)或MAC重配置(MAC reconfiguration)、未知异常(unknown error)、以及媒体接入控制信源(media access control element,MAC CE)(比如辅小区激活或去激活、PDCP复制(PDCP duplication))等;第三类MAC功能是3GPP MAC支持但非3GPP MAC不支持的功能(对应C1类MAC流程),第四类MAC功能是3GPP MAC 不支持但非3GPP MAC支持的功能(对应C2类MAC流程),比如非3GPP中特有的 MAC功能。
则上述方法,从MAC功能的角度,可以理解为,模型#A中的MAC具备上述四类 MAC功能,或者说,模型#A中的MAC同时支持3GPP MAC和非3GPP MAC的所有 MAC功能;模型#B中的MAC#1具备以上第一类、第二类和第三类功能,模型#B中的 MAC#2具备以上第一类、第二类和第四类功能,或者说,3GPP MAC支持3GPP中所有的MAC功能,非3GPP MAC支持非3GPP中所有的MAC功能,且3GPP MAC对接3GPP PHY,非3GPP MAC对接非3GPP PHY;模型#C中共同的MAC具备以上第一类MAC功能,模型#C中的MAC#1具备以上第二类MAC功能和第三类MAC功能,模型#C中的 MAC#2具备以上第二类MAC和第四类MAC功能;模型#D中的MAC#1具备以上第一类、第二类和第三类功能,模型#D中的MAC#2具备以上第二类和第四类功能。
上述方法从MAC流程的角度,还可以理解为,模型#A中的MAC层实体支持以上A1类、A2类、B1类、B2类、C1类和C2类MAC流程,且该MAC中包括两个重复的A1 类和A2类MAC流程;模#B中3GPP MAC定义了3GPP中完整的MAC流程,非3GPP MAC定义了非3GPP中完整的MAC流程,3GPP MAC定义了3GPP中完整的MAC流程,非3GPP MAC定义了非3GPP中完整的MAC流程,或者说,3GPP MAC支持以上 A1类、B1类和C1类MAC流程,非3GPP MAC支持以上A2类、B2类和C2类MAC流程;模型#C中,共同的MAC支持以上A1类或者A2类MAC流程,3GPP MAC支持以上B1类和C1类MAC流程,非3GPP MAC支持以上B2类和C2类MAC流程;模型#D 中3GPP MAC支持以上A1类、B1类和C1类MAC流程,非3GPP MAC支持以上B2类和C2类MAC流程。
需要说明的是,若通信方式#1(即3GPP系统)对应的MAC支持3GPP系统中MAC 的相关定义(比如第一类、第二类和第三类MAC功能或者A1类、B1类和C1类MAC流程),通信方式#2(即non-3GPP系统)对应的MAC支持non-3GPP系统中MAC的相关定义(比如第二类和第四类MAC功能或者B2类和C2类MAC流程),则其中通信方式 #1(即3GPP系统)对应的MAC类型可以包括人工智能(artificial intelligence,AI)MAC、非人工智能(non-AI)MAC、太赫兹(THz)MAC、短距MAC(如侧行链路(sidelink,SL))、非地面网络(non-terrestrial network,NTN)MAC、无人机(unmanned aerial vehicle,UAV) MAC、感知(sensing)MAC等,其中通信方式#2(即非3GPP系统)对应的MAC也可以属于不同的通信技术,比如蓝牙(bluetooth,BT)技术、无线网络通信技术(wireless fidelity, wifi)、专用短距离通信技术(dedicated shortrange communication,DSRC)、近距离无线通信(near field communication,NFC)技术、射频识别(radio frequency identification,RFID) 技术等。
还需要说明的是,上述通信方式#1(即3GPP系统)对应的MAC包括的AI MAC、 Non-AI MAC、THz MAC、短距MAC(如侧行链路(sidelink,SL))、NTN MAC、UAV MAC、sensing MAC等虽然为现有技术中3GPP定义的MAC模块,但是由于其功能与传统的eMBB或URLLC等系统中的MAC层实体对应的功能存在较大差异,因此可以设计为单独的MAC层或MAC层实体。
还需要说明的是,上述实施例中涉及的MAC流程根据对应的MAC功能可以包括以下一种或者多种:
①.与上行数据传输相关的MAC流程,比如UL SR、BSR、RACH等相关流程;
②.与上行或者下行或者侧行授权(UL/DL/SL grant)调度相关的MAC流程,比如由下行控制信息(downlink control information,DCI)调度上述UL/DL/SL grant的MAC流程、小区组(cell group,CG)或者半持续调度SPS相关的MAC流程(比如由RRC配置和激活上行或者下行或侧行小区组(UL/DL/SL CG)、或由RRC配置和由DCI激活上行或者下行或侧行小区组);
③.与上行数据封装和发送相关的MAC流程,比如LCP、Multiplexing、HARQ;
④.与下行数据接收和HARQ反馈相关的MAC流程,比如DL HARQ处理数据接收、 ULHARQ反馈流程;
⑤.与MAC控制信令和流程相关的MAC流程,比如TA、功率余量报告(powerheadroom report,PHR)、DRX、BWP、SUL、BFR;
⑥.与广播控制信道(broadcast control channel,BCCH)和PCH接收相关的MAC流程,比如广播消息接收、寻呼消息接收;
⑦.与MAC CE相关的MAC流程,比如SCell激活/去激活、PDCP duplication激活/去激活等;
⑧.其他MAC流程,比如MAC reset/reconfiguration、unknown error等。
在一种可能的实现方式中,基于上述MAC流程的分类,对于上述实施例中3GPP或者non-3GPP所具有的MAC功能可以有如下划分:
1.针对non-3GPP中BT或者wifi对应的MAC,可以不具备网络的调度功能(比如 UL/DL/SL grant调度功能),而是由终端自行竞争资源(类似wifi的先听后说(listen beforetalk,LBT)方式),也可以不具备MAC控制信令&流程,也可以不具备BCCH和PCH 接收功能(比如频谱和承载配置是协议定义好并预置在终端芯片中,而不是通过终端听取系统广播获得,网络也不需寻呼空闲态或者非激活态(idle/inactive)UE),也可以具备其他上述MAC流程(比如若wifi芯片与3GPP芯片共享射频(radio frequency,RF)和功放、则也要支持PHR上报、且包括wifi模块的功率);
2.针对非地面通信网络(non-terrestrial networks,NTN)(比如卫星、无人机基站、热气球基站等)对应的MAC,可以不具备HARQ反馈功能及相关流程;
3.针对sensing MAC,可以不具备上下行数据传输的相关流程,比如上述①、③、④、⑥、⑦对应的MAC流程,也可以具有上述②和⑤对应的MAC流程,其中②可以用于sensing遥感(remote sensing,RS)的接收、或Sensing Grant的分配,⑤也可以用于sensing 信号处理(比如可以用于TA上行定时、sensing和data共享RF时的PHR上报、sensing DRX使能节能、sensing BWP的支持、sensing BFR以支持sensing在beam场景下的应用)。
本申请的通信方法中提出了多种支持多通信方式的载波聚合的协议栈模型并对其中相应的MAC流程的相应功能进行了重定义,相比于多通信方式的双链接能够进一步提高无线资源的利用率,提高用户和系统性能。
需要说明的是,上述实施例中的协议栈模型中仅示出了MAC层和PHY层,应理解,本申请的协议栈模型并不仅限于此,协议栈模型还可以包括其他层,比如图4示出的RLC 层、PDCP层等等,这里可参考现有技术,本申请在此就不作过多赘述。
以上结合图9至图10,对本申请提供的通信方法作了详细说明。基于同一技术构思,本申请还提供了相应的通信装置,本申请提供的通信装置可以包括执行上述方法实施例中的方法/操作/步骤/动作所一一对应的模块或单元,该单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。下面结合图11至图13,对本申请提供的通信装置进行说明。
图11给出了一种通信装置200的结构示意图。该通信装置包括收发单元210、处理单元220。
应理解,该通信装置200可以应用于网络设备,也可以应用于终端设备,本申请在此不作限定。
在一种可能的设计中,该通信装置200可实现图9至图10中任意一图所示的任意一种通信方法。
例如,处理单元220,用于媒体接入控制层MAC层实体确定目标通信方式,该MAC 层实体支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式。
该处理单元220,还用于第一MAC层实体确定该目标通信方式,该第一MAC层实体对应该第一通信方式。
该处理单元220,还用于第三MAC层实体确定该目标通信方式,该第三MAC对应该第一通信方式和/或该第二通信方式。
该处理单元220,还用于第六MAC层实体和/或第七MAC层实体确定目标通信方式,该第六MAC层实体对应该第一通信方式,该第七MAC层实体对应该第二通信方式。
该处理单元220,还用于该MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程。
该处理单元220,还用于该第一MAC层实体根据该目标通信方式执行该目标MAC 流程或者该第二MAC层实体根据该目标通信方式执行该目标MAC流程。
该处理单元220,还用于该第三MAC层实体和/或该第四MAC层实体执行该第一通信方式对应的目标MAC流程,或者该第三MAC层实体和/或该第五MAC层实体执行该第二通信方式对应的目标MAC流程。
该处理单元220,还用于该第六MAC层实体执行该目标MAC流程或者该第七MAC 层实体执行该目标MAC流程。
该处理单元220,还用于该MAC层实体根据第一数据确定第二数据。
收发单元210,用于该MAC层实体获第一信息,该第一信息用于触发该目标MAC流程。
该收发单元210,还用于该MAC层实体接收第一数据。
该收发单元210,还用于该MAC层实体发送第二数据,该第二数据根据该第一数据确定。
再例如,处理单元220,用于主媒体接入控制层MAC层实体确定目标通信方式,该主MAC层实体支持第一通信方式对应的MAC流程,该主MAC层实体通过通信接口与辅MAC层实体相连,该辅MAC层实体支持第二通信方式对应的MAC流程,该目标通信方式为该第一通信方式或者该第二通信方式。
该处理单元220,还用于该主MAC层实体根据该目标通信方式执行该目标通信方式对应的目标MAC流程。
该处理单元220,还用于该第一主MAC层实体确定目标通信方式。
该处理单元220,还用于该第一主MAC层实体和/或该第二主MAC层实体执行该目标MAC流程。
该处理单元220,还用于该第一主MAC层实体通过该通信接口使得该辅MAC层实体执行该目标MAC流程。
作为示例而非限定,上述该主MAC层实体通过通信接口使得该目标MAC流程对应的辅MAC层实体执行该目标MAC流程的方式可以是,该主MAC层实体通过该通信接口向该辅MAC层实体发送通知消息,让该辅MAC层实体执行该目标MAC流程。
收发单元210,用于该主MAC层实体向该辅MAC层实体发送第二信息,该第二信息用于触发该辅MAC层实体执行该目标MAC流程。
该收发单元210,还用于该第一主MAC层实体和/或该第二主MAC层实体向该辅 MAC层实体发送第二信息,该第二信息用于触发该辅MAC层实体执行该目标MAC流程。
该收发单元210,还用于该主MAC层实体获取第一信息,该第一信息用于触发该目标MAC流程。
该收发单元210,还用于该主MAC层实体接收第一数据。
该收发单元210,还用于该主MAC层实体根据该目标通信方式发送第二数据,该第二数据根据该第一数据确定。
图12是根据本申请实施例所提供的通信装置300的结构框图。图12所示的通信装置 300包括:处理器310、存储器320和通信接口330。该处理器310与存储器耦合,用于执行存储器中存储的指令,以控制通信接口330发送信号和/或接收信号。
应理解,该通信装置300可以应用于网络设备,也可以应用于终端设备,本申请在此不作限定。
应理解,上述处理器310和存储器320可以合成一个处理装置,处理器310用于执行存储器320中存储的程序代码来实现上述功能。具体实现时,该存储器320也可以集成在处理器310中,或者独立于处理器310。
在一种可能的设计中,该通信装置300可以是上文方法实施例中的通信装置,也可以是用于实现上文方法实施例中通信装置的功能的芯片。
具体地,该通信装置300可对应于根据本申请实施例中图9至图10中通信方法所对应的通信设备,该通信装置300可以包括用于执行图9至图10中通信方法的单元。并且,该通信装置300中的各单元和上述其他操作和/或功能分别为了执行通信方法的相应流程。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置300为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供了一种处理装置,包括处理器和接口。该处理器可用于执行上述方法实施例中的通信方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列 (field programmable gate array,FPGA),可以是专用集成芯片(applicationspecific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(networkprocessor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit, MCU),还可以是可编程控制器(programmable logicdevice,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM, EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rateSDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch-link DRAM, SLDRAM)和直接内存总线随机存取存储器(direct ram-bus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
参见图13,本申请实施例还提供了一种装置400,可用于实现上述方法中通信装置的功能,该装置400可以是通信装置或者通信装置中的芯片。该通信装置包括:
至少一个输入输出接口410和逻辑电路420。输入输出接口410可以是输入输出电路,也可以称为通信接口。逻辑电路420可以是信号处理器、芯片,或其他可以实现本申请方法的集成电路。
其中,至少一个输入输出接口410用于信号或数据的输入或输出。举例来说,当该装置为通信装置或者用于通信装置时,输入输出接口410用于获取该第一信息或者该第一数据,输入输出接口410还用于发送该第二数据。
其中,逻辑电路420用于执行本申请实施例提供的任意一种方法的部分或全部步骤。逻辑电路可以实现上述通信装置200中的处理单元220、通信装置300中的处理器 310所实现的功能。举例来说,当该装置为通信装置或者用于通信装置时,用于执行上述方法实施例中各种可能的实现方式中通信装置执行的步骤,例如逻辑电路420用于根据上述方法实施例中各种可能的实现方式确定目标通信方式,执行目标通信方式对应的目标MAC流程。
当上述通信装置为应用于通信装置的芯片时,该芯片实现上述方法实施例中通信装置的功能。该芯片从通信装置中的其它模块(如射频模块或天线)接收信息;或者,该芯片向通信装置中的其它模块(如射频模块或天线)发送信息。
根据本申请实施例提供的通信方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得图9和图10所示实施例中任意一个实施例的任意一种通信方法被执行。
根据本申请实施例提供的通信方法,本申请还提供一种计算机程序,当计算机程序在计算机上运行时,使得图9和图10所示实施例中任意一个实施例的任意一种通信方法被执行。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序或指令,当该程序或指令在计算机上运行时,使得图9和图10所示实施例中任意一个实施例的任意一种通信方法被执行。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的装置或设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digitalsubscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digitalvideo disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drive, SSD))等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
上述各个装置实施例中通信装置和方法实施例中的通信方法,由相应的模块或单元执行相应的步骤,例如通信单元(通信接口)执行方法实施例中接收或发送或获取的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”、“第二”、“第三”、“第四”、“A 类”、“B类”、“C类”等只是为了区分不同的对象,比如,区分不同类型的“MAC流程”,或,“MAC层实体”等等,对具体对象以及不同对象间的对应关系的理解应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上该,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (30)

1.一种通信方法,其特征在于,包括:
媒体接入控制层MAC层实体确定目标通信方式,所述MAC层实体支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程,所述目标通信方式为所述第一通信方式或者所述第二通信方式;
所述MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程。
2.根据权利要求1所述的方法,其特征在于,所述MAC层实体包括第一MAC层实体和第二MAC层实体,所述第一MAC层实体对应所述第一通信方式,所述第二MAC层实体对应所述第二通信方式,以及
所述方法包括:
所述第一MAC层实体确定所述目标通信方式;
若所述目标通信方式为所述第一通信方式,所述第一MAC层实体根据所述目标通信方式执行所述目标MAC流程;或者
若所述目标通信方式为所述第二通信方式,所述第二MAC层实体根据所述目标通信方式执行所述目标MAC流程。
3.根据权利要求1所述的方法,其特征在于,所述MAC层实体包括第三MAC层实体、第四MAC层实体和第五MAC层实体,所述第三MAC对应所述第一通信方式和/或所述第二通信方式,所述第四MAC层实体对应所述第一通信方式,所述第五MAC层实体对应所述第二通信方式,以及
所述方法包括:
所述第三MAC层实体确定目标通信方式;
若所述目标通信方式为所述第一通信方式,所述第三MAC层实体和/或所述第四MAC层实体执行所述第一通信方式对应的目标MAC流程;或者
若所述目标通信方式为所述第二通信方式,所述第三MAC层实体和/或所述第五MAC层实体执行所述第二通信方式对应的目标MAC流程。
4.根据权利要求3所述的方法,其特征在于,所述第三MAC层实体支持第一类MAC流程,所述第四MAC层实体支持第二类MAC流程,所述第五MAC层实体支持第三类MAC流程,所述第一类MAC流程包括所述第一通信方式对应的MAC流程和所述第二通信方式对应的MAC流程中相同的MAC流程,所述第二类MAC流程包括所述第一通信方式对应的MAC流程中与所述第二通信方式对应的MAC流程不同的MAC流程,所述第三类MAC功能包括所述第二通信方式对应的MAC流程中与所述第一通信方式对应的MAC流程不同的MAC流程,以及
所述方法包括:
若所述目标MAC流程属于所述第一类MAC流程,所述第三MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第二类MAC流程,所述第四MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第三类MAC流程,所述第五MAC层实体执行所述目标MAC流程。
5.根据权利要求1所述的方法,其特征在于,所述MAC层实体包括第六MAC层实体和第七MAC层实体,所述第六MAC层实体对应所述第一通信方式,所述第七MAC层实体对应所述第二通信方式,以及
所述方法包括:
所述第六MAC层实体和/或所述第七MAC层实体确定目标通信方式;
若所述目标通信方式为所述第一通信方式,所述第六MAC层实体执行所述目标MAC流程;或者
若所述目标通信方式为所述第二通信方式,所述第六MAC层实体和/或所述第七MAC层实体执行所述目标MAC流程。
6.根据权利要求5所述的方法,其特征在于,所述第六MAC层实体支持第一类MAC流程和第二类MAC流程,所述第七MAC层实体支持第三类MAC流程,所述第一类MAC流程包括所述第一通信方式对应的MAC流程和所述第二通信方式对应的MAC流程中相同的MAC流程,所述第二类MAC流程包括所述第一通信方式对应的MAC流程中与所述第二通信方式对应的MAC流程不同的MAC流程,所述第三类MAC功能包括所述第二通信方式对应的MAC流程中与所述第一通信方式对应的MAC流程不同的MAC流程,以及
所述方法包括:
所述第六MAC层实体和/或所述第七MAC层实体确定目标通信方式;
若所述目标MAC流程属于所述第一类MAC流程或者所述第二类MAC流程,所述第六MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第三类MAC流程,所述第七MAC层实体执行所述目标MAC流程。
7.根据权利要求4或6所述的方法,其特征在于,所述第一类MAC流程对应于所述第一通信方式和所述第二通信方式都支持的MAC功能,以及
所述第二类MAC流程对应于所述第一通信方式支持但所述第二通信方式不支持的MAC功能和/或所述第一通信方式和所述第二通信方式都支持的MAC功能,以及
所述第三类MAC流程对应于所述第一通信方式不支持但所述第二通信方式支持的MAC功能和/或所述第一通信方式和所述第二通信方式都支持的MAC功能。
8.根据权利要求1-7中任一项所述的方法,其特征在于,所述MAC流程包括以下MAC流程的一种或者多种:
数据传输相关的MAC流程、MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,和广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程。
9.根据权利要求8所述的方法,其特征在于,若所述目标MAC流程属于MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,或者广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程,所述方法包括:
所述MAC层实体获取第一信息,所述第一信息用于触发所述目标MAC流程;
所述MAC层实体确定所述第一信息对应的目标通信方式;
所述MAC层实体根据所述目标通信方式执行所述目标MAC流程。
10.根据权利要求8所述的方法,其特征在于,若所述目标MAC流程属于数据传输相关的MAC流程,所述方法包括:
所述MAC层实体接收第一数据;
所述MAC层实体确定所述第一数据对应的目标通信方式;
所述MAC层实体根据所述目标通信方式发送第二数据,所述第二数据根据所述第一数据确定。
11.一种通信方法,其特征在于,包括:
主媒体接入控制层MAC层实体确定目标通信方式,所述主MAC层实体支持第一通信方式对应的MAC流程,所述主MAC层实体通过通信接口与辅MAC层实体相连,所述辅MAC层实体支持第二通信方式对应的MAC流程,所述目标通信方式为所述第一通信方式或者所述第二通信方式;
所述主MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程。
12.根据权利要求11所述的方法,其特征在于,所述主MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程包括:
若所述目标通信方式为所述第一通信方式,所述主MAC层实体执行所述目标MAC流程;或者
若所述目标通信方式为所述第二通信方式,所述主MAC层实体通过所述通信接口使得所述辅MAC层实体执行所述目标MAC流程。
13.根据权利要求11或12所述的方法,其特征在于,所述主MAC层实体支持第一类MAC流程和第二类MAC流程,所述辅MAC层实体支持第三类MAC流程,所述第一类MAC流程包括所述第一通信方式对应的MAC流程和所述第二通信方式对应的MAC流程中相同的MAC流程,所述第二类MAC流程包括所述第一通信方式对应的MAC流程中与所述第二通信方式对应的MAC流程不同的MAC流程,所述第三类MAC功能包括所述第二通信方式对应的MAC流程中与所述第一通信方式对应的MAC流程不同的MAC流程,以及
所述主MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程包括:
若所述目标MAC流程属于所述第一类MAC流程或者所述第二类MAC流程,所述主MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第三类MAC流程,所述主MAC层实体通过所述通信接口使得所述辅MAC层实体执行所述目标MAC流程。
14.根据权利要求11或12所述的方法,其特征在于,所述主MAC层实体支持第一类MAC流程和第二类MAC流程,所述辅MAC层实体支持所述第一类MAC流程和第三类MAC流程,所述第一类MAC流程包括所述第一通信方式对应的MAC流程和所述第二通信方式对应的MAC流程中相同的MAC流程,所述第二类MAC流程包括所述第一通信方式对应的MAC流程中与所述第二通信方式对应的MAC流程不同的MAC流程,所述第三类MAC功能包括所述第二通信方式对应的MAC流程中与所述第一通信方式对应的MAC流程不同的MAC流程,以及
所述主MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程包括:
若所述目标MAC流程属于所述第一类MAC流程,所述主MAC层实体执行所述目标MAC流程或者所述主MAC层实体通过所述通信接口使得所述辅MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第二类MAC流程,所述主MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第三类MAC流程,所述主MAC层实体通过所述通信接口使得所述辅MAC层实体执行所述目标MAC流程。
15.根据权利要求11所述的方法,其特征在于,所述主MAC层实体包括第一主MAC层实体和第二主MAC层实体,所述第一主MAC对应所述第一通信方式和所述第二通信方式,所述第二主MAC层实体对应所述第一通信方式,以及
所述方法包括:
所述第一主MAC层实体确定目标通信方式;
若所述目标通信方式为所述第一通信方式,所述第一主MAC层实体和/或所述第二主MAC层实体执行所述目标MAC流程;或者
若所述目标通信方式为所述第二通信方式,所述第一主MAC层实体通过所述通信接口使得所述辅MAC层实体执行所述目标MAC流程。
16.根据权利要求15所述的方法,其特征在于,所述第一主MAC层实体支持第一类MAC流程,所述第二主MAC层实体支持第二类MAC流程,所述辅MAC层实体支持第三类MAC流程,所述第一类MAC流程包括所述第一通信方式对应的MAC流程和所述第二通信方式对应的MAC流程中相同的MAC流程,所述第二类MAC流程包括所述第一通信方式对应的MAC流程中与所述第二通信方式对应的MAC流程不同的MAC流程,所述第三类MAC功能包括所述第二通信方式对应的MAC流程中与所述第一通信方式对应的MAC流程不同的MAC流程,以及
所述主MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程包括:
若所述目标MAC流程属于所述第一类MAC流程,所述第一主MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第二类MAC流程,所述第二主MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第三类MAC流程,所述第一主MAC层实体和/或所述第二主MAC层实体通过所述通信接口使得辅MAC层实体执行所述目标MAC流程。
17.根据权利要求11-16中任一项所述的方法,其特征在于,所述MAC流程包括以下MAC流程的一种或者多种:
数据传输相关的MAC流程、MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,和广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程。
18.根据权利要求17所述的方法,其特征在于,若所述目标MAC流程属于MAC控制信源相关的MAC流程、上行或者下行或者侧行授权调度相关的MAC流程、MAC控制信令相关的MAC流程,或者广播控制信道BCCH和寻呼信道PCH接收相关的MAC流程,所述方法包括:
所述主MAC层实体获取第一信息,所述第一信息用于触发所述目标MAC流程;
所述主MAC层实体确定所述第一信息对应的目标通信方式;
所述主MAC层实体根据所述目标通信方式执行所述目标MAC流程。
19.根据权利要求17所述的方法,其特征在于,若所述目标MAC流程属于数据传输相关的MAC流程,所述方法包括:
所述主MAC层实体接收第一数据;
所述主MAC层实体确定所述第一数据对应的目标通信方式;
所述主MAC层实体根据所述目标通信方式发送第二数据,所述第二数据根据所述第一数据确定。
20.一种通信装置,其特征在于,所述装置包括:
处理单元,用于媒体接入控制层MAC层实体确定目标通信方式,所述MAC层实体支持第一通信方式对应的MAC流程和第二通信方式对应的MAC流程,所述目标通信方式为所述第一通信方式或者所述第二通信方式;
所述处理单元,还用于所述MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程。
21.根据权利要求20所述的通信装置,其特征在于,所述MAC层实体包括第一MAC层实体和第二MAC层实体,所述第一MAC层实体对应所述第一通信方式,所述第二MAC层实体对应所述第二通信方式,以及
所述处理单元还用于所述MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程包括:
若所述目标通信方式为所述第一通信方式,所述处理单元用于所述第一MAC层实体根据所述目标通信方式执行所述目标MAC流程;或者
若所述目标通信方式为所述第二通信方式,所述处理单元用于所述第二MAC层实体根据所述目标通信方式执行所述目标MAC流程。
22.根据权利要求20所述的通信装置,其特征在于,所述MAC层实体包括第三MAC层实体、第四MAC层实体和第五MAC层实体,所述第三MAC对应所述第一通信方式和/或所述第二通信方式,所述第四MAC层实体对应所述第一通信方式,所述第五MAC层实体对应所述第二通信方式,以及
所述理单元用于所述第三MAC层实体确定目标通信方式;以及
所述处理单元还用于所述MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程包括:
若所述目标通信方式为所述第一通信方式,所述理单元用于所述第三MAC层实体和/或所述第四MAC层实体执行所述第一通信方式对应的目标MAC流程;或者
若所述目标通信方式为所述第二通信方式,所述理单元用于所述第三MAC层实体和/或所述第五MAC层实体执行所述第二通信方式对应的目标MAC流程。
23.根据权利要求22所述的通信装置,其特征在于,所述第三MAC层实体支持第一类MAC流程,所述第四MAC层实体支持第二类MAC流程,所述第五MAC层实体支持第三类MAC流程,所述第一类MAC流程包括所述第一通信方式对应的MAC流程和所述第二通信方式对应的MAC流程中相同的MAC流程,所述第二类MAC流程包括所述第一通信方式对应的MAC流程中与所述第二通信方式对应的MAC流程不同的MAC流程,所述第三类MAC功能包括所述第二通信方式对应的MAC流程中与所述第一通信方式对应的MAC流程不同的MAC流程,以及
所述处理单元还用于所述MAC层实体根据所述目标通信方式执行所述目标通信方式对应的目标MAC流程包括:
若所述目标MAC流程属于所述第一类MAC流程,所述理单元用于所述第三MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第二类MAC流程,所述理单元用于所述第四MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第三类MAC流程,所述理单元用于所述第五MAC层实体执行所述目标MAC流程。
24.根据权利要求20所述的通信装置,其特征在于,所述MAC层实体包括第六MAC层实体和第七MAC层实体,所述第六MAC层实体对应所述第一通信方式,所述第七MAC层实体对应所述第二通信方式,以及
所述处理单元,用于所述第六MAC层实体和/或所述第七MAC层实体确定目标通信方式;以及
若所述目标通信方式为所述第一通信方式,所述处理单元还用于所述第六MAC层实体执行所述目标MAC流程;或者
若所述目标通信方式为所述第二通信方式,所述处理单元还用于所述第六MAC层实体和/或所述第七MAC层实体执行所述目标MAC流程。
25.根据权利要求24所述的通信装置,其特征在于,所述第六MAC层实体支持第一类MAC流程和第二类MAC流程,所述第七MAC层实体支持第三类MAC流程,所述第一类MAC流程包括所述第一通信方式对应的MAC流程和所述第二通信方式对应的MAC流程中相同的MAC流程,所述第二类MAC流程包括所述第一通信方式对应的MAC流程中与所述第二通信方式对应的MAC流程不同的MAC流程,所述第三类MAC功能包括所述第二通信方式对应的MAC流程中与所述第一通信方式对应的MAC流程不同的MAC流程,以及
若所述目标MAC流程属于所述第一类MAC流程或者所述第二类MAC流程,所述处理单元用于所述第六MAC层实体执行所述目标MAC流程;或者
若所述目标MAC流程属于所述第三类MAC流程,所述处理单元用于所述第七MAC层实体执行所述目标MAC流程。
26.根据权利要求20-25中任一项所述的通信装置,其特征在于,所述装置还包括:
收发单元,用于所述MAC层实体获取第一信息,所述第一信息用于触发所述目标MAC流程;以及
所述处理单元,还用于所述MAC层实体确定所述第一信息对应的目标通信方式;
所述处理单元,还用于所述MAC层实体根据所述目标通信方式执行所述目标MAC流程。
27.根据权利要求20-25中任一项所述的通信装置,其特征在于,所述装置还包括:
收发单元,用于所述MAC层实体接收第一数据;
所述处理单元,还用于所述MAC层实体确定所述第一数据对应的目标通信方式;
所述收发单元,还用于所述MAC层实体根据所述目标通信方式发送第二数据,所述第二数据根据所述第一数据确定。
28.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序运行时,使得如权利要求1至10中任意一项所述的方法被执行,或者使得如权利要求11至19中任意一项所述的方法被执行。
29.一种计算机程序产品,包括计算机程序,当所述计算机程序在计算机上运行时,使得如权利要求1至10中任意一项所述的方法被执行,或者使得如权利要求11至19中任意一项所述的方法被执行。
30.一种通信装置,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至10中任一项所述的通信方法,或者,使得所述通信装置执行权利要求11至19中任一项所述的通信方法。
CN202110485642.5A 2021-04-30 2021-04-30 一种通信方法及通信装置 Pending CN115278943A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110485642.5A CN115278943A (zh) 2021-04-30 2021-04-30 一种通信方法及通信装置
PCT/CN2022/088993 WO2022228389A1 (zh) 2021-04-30 2022-04-25 一种通信方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110485642.5A CN115278943A (zh) 2021-04-30 2021-04-30 一种通信方法及通信装置

Publications (1)

Publication Number Publication Date
CN115278943A true CN115278943A (zh) 2022-11-01

Family

ID=83745133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110485642.5A Pending CN115278943A (zh) 2021-04-30 2021-04-30 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN115278943A (zh)
WO (1) WO2022228389A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2723134B1 (en) * 2012-10-18 2014-11-26 Fujitsu Limited Wireless communication in Multi-RAT System
US10805836B2 (en) * 2017-05-05 2020-10-13 Qualcomm Incorporated Packet duplication at a packet data convergence protocol (PDCP) entity
CN109150415B (zh) * 2017-06-15 2022-01-21 夏普株式会社 基站、用户设备和相关方法
US10750501B2 (en) * 2018-05-04 2020-08-18 At&T Intellectual Property I, L.P. Carrier aggregation and dual connectivity capability exchange
US20200045581A1 (en) * 2018-08-06 2020-02-06 Verizon Patent And Licensing Inc. Carrier aggregation management for dual-connectivity wireless access

Also Published As

Publication number Publication date
WO2022228389A1 (zh) 2022-11-03

Similar Documents

Publication Publication Date Title
EP3280218B1 (en) Apparatus and method for providing multi-connection using different wireless connection technologies in wireless communication system
US11838978B2 (en) NR PDCP preservation upon RRC resume/suspend
KR102407395B1 (ko) 멀티 무선 액세스 기술 캐리어 결합을 수행하는 방법, 장치 및 시스템
KR102036778B1 (ko) 무선 통신 시스템에서의 d2d 데이터 전송 방법 및 장치
WO2015192726A1 (zh) 无线通信系统中的用户设备侧的电子设备和无线通信方法
US20220286234A1 (en) Method for sidelink interface duplication transmission, terminal, and network-side device
CN113938947A (zh) 一种数据发送方法、数据接收方法和装置
US20230198671A1 (en) Method and apparatus for configuring network coding and controlling network coding activation
CN112514522A (zh) 用于恢复时挂起不活动和挂起时恢复不活动的方法
KR102664557B1 (ko) Dual Connectivity 지원 망에서 RRC_IDLE 상태 단말을 위한 SN(Secondary Node)에서의 V2X 자원 할당 방법 및 장치
US20210337516A1 (en) Communication control method
CN112469025B (zh) 一种通信方法及装置
US20200092045A1 (en) Radio Node and Methods in a Wireless Communications Network
CN112423393A (zh) 数据传输方法及装置
US20230091236A1 (en) Communication control method and user equipment
CN115278943A (zh) 一种通信方法及通信装置
US10182461B2 (en) Efficient use of HS-SCCH orders and MAC control information
TWI838072B (zh) 用於中繼節點配置的方法及其使用者設備
EP4319024A1 (en) Communication method, apparatus and system
US20230042752A1 (en) Method and apparatus for supporting power headroom report for multiple transmission reception points in next generation mobile communication system
WO2024125621A1 (zh) 一种数据传输的方法、装置及系统
US20220046587A1 (en) Interaction Of Multicast Band Width Part (BWP) With Multiple BWP
TW202345623A (zh) 用於中繼節點配置的方法及其使用者設備
CN118077297A (zh) 通过无线局域网进行的连接建立和双连通性通信
KR20210039884A (ko) 무선 통신 시스템에서 단말 간 통신을 수행하기 위한 방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination