CN115266348B - 一种基于动静载叠加试验的岩爆倾向性等级判断方法 - Google Patents

一种基于动静载叠加试验的岩爆倾向性等级判断方法 Download PDF

Info

Publication number
CN115266348B
CN115266348B CN202210895915.8A CN202210895915A CN115266348B CN 115266348 B CN115266348 B CN 115266348B CN 202210895915 A CN202210895915 A CN 202210895915A CN 115266348 B CN115266348 B CN 115266348B
Authority
CN
China
Prior art keywords
rock burst
test
dynamic
superposition
static
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210895915.8A
Other languages
English (en)
Other versions
CN115266348A (zh
Inventor
赵武胜
钟坤
高厚
陈卫忠
秦长坤
解佩瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Rock and Soil Mechanics of CAS
Changjiang Institute of Survey Planning Design and Research Co Ltd
Original Assignee
Wuhan Institute of Rock and Soil Mechanics of CAS
Changjiang Institute of Survey Planning Design and Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Rock and Soil Mechanics of CAS, Changjiang Institute of Survey Planning Design and Research Co Ltd filed Critical Wuhan Institute of Rock and Soil Mechanics of CAS
Priority to CN202210895915.8A priority Critical patent/CN115266348B/zh
Publication of CN115266348A publication Critical patent/CN115266348A/zh
Application granted granted Critical
Publication of CN115266348B publication Critical patent/CN115266348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0252Monoaxial, i.e. the forces being applied along a single axis of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0266Cylindrical specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种岩爆倾向性等级判断方法,步骤是:①工程现场取岩样制成标准圆柱形试样;②开展动静载叠加单轴压缩试验和劈裂试验;③获取不同单轴压缩试验组合条件下的全应力‑应变曲线、动静载叠加抗压强度σsd及劈裂试验下的抗拉强度σtd;④由全应力‑应变曲线获得动态破坏时间DT、弹性能量指数WET、冲击能指数KE,并计算脆性系数KTsdtd);⑤通过对各指标赋值去量纲化,得到可分别赋值为1、2和3三类的指数XDT、XWET、XKE、XKT;⑥根据公式Kc=0.3XDT+0.2XWET+0.2XKE+0.3XKT计算岩爆倾向性指标;⑦由岩爆倾向性指标判断岩爆倾向性等级。该方法考虑了岩体的不同受力状态,方法易行,操作简便,等级判别准确,较传统的静态评价方法更加科学。

Description

一种基于动静载叠加试验的岩爆倾向性等级判断方法
技术领域
本发明涉及岩体岩爆倾向性等级判别及隧道工程、岩土工程、采矿工程等地下工程岩爆监测技术领域,具体涉及一种基于动静载叠加试验的岩爆倾向性等级判断方法。
背景技术
随着开采矿井,深埋隧道工程等逐年向深部发展,围岩体长期处于“三高一扰动”的复杂地质力学环境,深部地应力特征、岩体赋存环境、围岩应力状态等力学特征发生变化,使得岩爆越来越成为深部高应力区地下工程中的主要动力灾害问题之一。岩爆往往是导致工程失稳、人员伤亡的直接原因,对其发生的可能性及其烈度级别的预测是工程建设过程中必须解决的重大问题。
岩爆的发生一般需要具备三个条件,一是岩体具有岩爆倾向性,二是局部应力集中,三是能量的释放空间。其中,岩爆倾向性为岩体的固有属性,一般认为岩爆倾向性越大,岩爆发生的危险性也越高。国家标准GBT25217.2-2010推荐采用动态破坏时间、弹性能指数、冲击能指数和单轴抗压强度四个指标确定煤体的岩爆(冲击)倾向性;后来有学者将四个指标中的单轴抗压强度替换成脆性系数,优化了参数,获得了煤矿顶板石灰岩的岩爆倾向性等级。目前众多学者从强度、刚度、能量、稳定性、断裂、损伤等方面对岩爆现象进行了分析,提出了一系列诸如强度应力比判别法、岩性判别法、能量判别法等岩爆倾向性判据,这些判据大多基于硬脆性岩石的单轴压缩试验结果,从单一角度考虑岩体的岩爆倾向性,而且单轴压缩试验方法均采用纯静态的加载方式,与岩体实际所受的动静载组合方式不符。因此,应充分考虑岩体的实际受力条件,采用不同动静载组合形式加载,同时考虑脆性系数、强度及能量的影响,对岩爆倾向性等级进行判别分析。
发明内容
针对上述存在的问题,提出了一种综合动态破坏时间DT、弹性能量指数WET、冲击能量指数KE以及脆性系数KTsdsd)四指标的岩爆倾向性指标Kc。本发明的目的在于提供一种基于动静载叠加试验的岩爆倾向性等级判断方法,方法易行,操作方便,为岩爆的预测及防治打下基础,保障井下人员与设备安全。
为解决上述技术问题,本发明采用以下技术方案:
一种基于动静载叠加试验的岩爆倾向性等级判断方法,步骤如下:
步骤1:取若干工程现场岩样(根据试验方案确定,同一种试验工况为避免试验误差一般至少取3个试样),将取得的岩样加工成标准圆柱形试样;
步骤2:确定动静载叠加试验方案中静载预应力的取值大小、级别以及动载应变率的等级,确实用于试验的试样数量;
步骤3:组合不同的静载预应力和动载应变率可得到试验方案的工况总数,对每一种工况分别进行单轴压缩试验和劈裂试验,得到叠加抗压强度σsd和叠加抗拉强度σtd
步骤4:由全应力-应变曲线获得每一种试验工况对应的动态破坏时间DT、弹性能量指数WET、冲击能指数KE,并计算脆性系数KTsdtd);
其中,DT为应力峰值点至应力突然下降点之间的时间,
式中,ΦSE是塑性应变能,为加载曲线和卸载曲线所包络的面积;ΦSP是弹性应变能,为卸载曲线下的面积;As为峰前集聚的变形能,等于塑性应变能和弹性应变能之和;Ax为峰后损耗的变形能;脆性系数KT为叠加抗压强度σsd与叠加抗拉强度σtd的比值;
步骤5:通过对各指标赋值去量纲化,得到可分别赋值为1、2和3三类的指数XDT、XWET、XKE、XKT
步骤6:根据公式Kc=0.3XDT+0.2XWET+0.2XKE+0.3XKT计算岩爆倾向性指标Kc,式中,XDT、XWET、XKE及XKT分别为去量纲化的动态破坏时间指标、弹性能量指标、冲击能指标和脆性系数指标,Kc为岩爆倾向性指标,取值结果在1.0~3.0之间;
步骤7:判断岩爆倾向性等级,当1.0<Kc≤1.5,等级为无岩爆倾向性,当1.5<Kc≤2.0,等级为弱岩爆倾向性,当2.0<Kc≤2.5,等级为中等岩爆倾向性,当2.5<Kc≤3.0,等级为强岩爆倾向性。
进一步地,步骤1中的圆柱形试样为直径50mm、高100mm的标准圆形试样,试样应保证两端面不平行度误差小于0.05mm,沿试样高度直径误差小于0.3mm,同时端面应垂直于试件轴线,偏差小于0.25°。
进一步地,步骤2中试验方案确定前需要先进行纯静态加载获得常规单轴抗压强度,采用位移控制加载,应变率为5×10-6s-1,静载预应力选取占纯静态加载抗压强度一定比例的值,一般分别取纯静态加载抗压强度的40%、50%、60%以及70%;动静载叠加试验整个过程采用位移控制模式加载,静载预应力施加阶段应变率控制在5×10-6s-1,直到加载值达到设定值,随后以不同的应变率对试样施加动载荷,应变率范围和等级根据现场受力条件确定。由动静载叠加试验结果可获取全应力-应变曲线和基本的强度参数。
进一步地,步骤3中,由每一种工况的动静载叠加单轴压缩试验获得叠加抗压强度σsd,动静载叠加劈裂试验的静载预应力及动载荷施加方式与动静载叠加单轴压缩试验类似,由该试验获得叠加抗拉强度σtd
进一步地,步骤5中,综合考虑4个指标分别将Ⅰ、Ⅱ、Ⅲ类岩爆倾向性赋值为1、2和3,赋值方法见下表,并采用步骤6中的公式完成岩爆倾向性指标的转换。
进一步地,以上各步骤中,试验方案的确定是岩爆倾向性等级判别的基础,试验结果的处理和分析是关键,只有确定了合适的试验工况及获得了正确的试验结果才能获取与工程现场条件一致的岩爆倾向性等级。
本发明提供的一种基于动静载叠加试验的岩爆倾向性等级判断方法主要解决了深埋隧道及采矿工程等领域岩爆倾向性风险判识能力不足,与工程现场动静载受力条件结合不够、考虑的因素有限等问题,相对于现有技术或方法,本发明的进步和有益效果主要表现在:
(1)同时考虑了脆性系数、强度及能量对岩爆发生的倾向及难易程度的影响,相对于浅部地下工程常用的应力强度比方法,该方法能更好地指导深部矿井及深埋隧道等地下工程的安全生产,在施工前或施工过程中进行岩爆风险等级预判,避免岩爆造成开挖掌子面或巷道的严重破坏,保护人员和设备安全。
(2)改变了传统的静态试验方法,考虑工程现场实际受力条件,采用不同静载预应力和动载荷扰动的组合加载试验方式,测试结果更加全面客观,更加符合工程现场不同施工条件或工况对应的岩爆发生的倾向性。
附图说明
通过阅读参照以下附图所做的对非限制性实施例所作的详细描述,本申请的其他特征、目的和优点将会变得更加明显:
图1为一种基于动静载叠加试验的岩爆倾向性等级判断方法的流程示意图;
图2为一全应力-应变曲线及动静载叠加单轴压缩试验加载路径示意图;
图3为一弹性能指数和冲击能指数计算示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清晰,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分而不是全部的实施例,为了便于描述,附图中仅示出了与本发明相关的部分,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
以某矿深埋坚硬顶板工作面上覆坚硬顶板岩爆倾向性评价为例,对一种基于动静载叠加试验的岩爆倾向性等级判断方法做进一步说明。
某矿煤层埋深大于1000m,且煤层上方顶板岩层为灰白色中细砂岩,以石英为主,含大量云母碎屑,中部夹薄层中砂岩,粒度自上而下变粗,属于典型深埋坚硬顶板,为了对坚硬顶板岩层的岩爆(冲击)倾向性进行客观全面地判断,采用动静载叠加试验方法对该坚硬顶板的岩爆(冲击)倾向性进行评价。
根据图1、图2、图3可知,一种基于动静载叠加试验的岩爆倾向性等级判断方法,其步骤是:
1、根据国际岩石力学学会(ISRM)相关规范将工程现场取回的岩块加工成若干直径为50mm、高度为100mm的标准岩样。
2、首先取制备好的3个试样置于RMT-201伺服控制测试系统进行纯静态单轴压缩试验,为后面的静载预应力参数提供基础,采用位移控制,应变率为5×10-6s-1,得到静态加载单轴抗压强度范围为71.3~81.5MPa,取结果的平均值77.1MPa。
3、图2显示了动静载叠加试验的加载路径示意图,σs为加载预应力,σsd为动静载叠加强度。根据煤矿现场的实测研究,煤层开采过程中顶板岩层应力集中程度高,当工作面距离监测断面11m左右时,最大垂直应力接近60MPa,基于该参数,采用四种不同的静载预应力(30.84MPa、38.55MPa、46.26MPa和53.97MPa),分别占纯静态加载条件下单轴抗压强度的40%、50%、60%及70%;在动静载叠加试验整个过程中采用位移控制模式加载,静载预应力的应变率为5×10-6s-1,直到加载值达到目标值,随后以4种不同的应变率(10-4s-1、10-3s-1、5×10-3s-1,10-2s-1)对试样施加动荷载,以上应变率覆盖了该矿动态应变率范围。需要特别注意的是,每个工程现场受力情况不一致,静载预应力和动载应变率的设定没有统一的要求,符合实际工程需要即可。请见表1,表1列出了16组动静载组合单轴压缩试验方案,该试验除了可以得到σsd外,还能得到全应力-应变曲线。
表1
4、动静载叠加抗拉强度σtd采用巴西劈裂试验获取,通过公式σtd=2P/πDH求得,式中,P为极限荷载,D为试样直径,H为试样高度。不同组合条件下的抗拉强度测试结果比较接近,本试验中取4.58MPa作为测试结果。
5、由全应力-应变曲线求取动态破坏时间DT、弹性能量指数WET、冲击能指数KE,并计算脆性系数KTsdtd)。如图3所示,DT为应力峰值点至应力突然下降点之间的时间;弹性能指数WET为弹性应变能ΦSE与塑性应变能ΦSP的比值,其中塑性应变能为加载曲线和卸载曲线所包络的面积,弹性应变能为卸载曲线下的面积;冲击能指数KE为峰前集聚的变形能As与峰后损耗的变形能Ax之比,其中峰前集聚的变形能为塑性应变能和弹性应变能之和;脆性系数KT为叠加抗压强度σsd与叠加抗拉强度σtd的比值。
6、综合考虑4个指标(动态破坏时间DT、弹性能量指数WET、冲击能指数KE、脆性系数KT)分别将Ⅰ、Ⅱ、Ⅲ类岩爆倾向性赋值为1、2和3三类的指数XDT、XWET、XKE、XKT,赋值方法在前文发明内容中已经说明,在此不再赘述。
7、根据公式Kc=0.3XDT+0.2XWET+0.2XKE+0.3XKT计算岩爆倾向性指标Kc并判断岩爆倾向性等级,当1.0<Kc≤1.5,等级为无岩爆倾向性,当1.5<Kc≤2.0,等级为弱岩爆倾向性,当2.0<Kc≤2.5,等级为中等岩爆倾向性,当2.5<Kc≤3.0,等级为强岩爆倾向性。试验汇总结果,请见表2所示。
表2
由上表可知不同的加载条件岩爆倾向指标Kc不同,最大为3.0,最小为1.5,平均值为2.3。试验结果表明,岩爆倾向性并不是一成不变的,与试验条件关系密切,由平均岩爆倾向指标可知,所取试样区域为中等岩爆倾向性,但个别条件下可为强岩爆倾向性。
该岩爆倾向性判断方法所选参数全面,充分考虑了工程现场实际受力状况,提高了深部地下工程岩爆倾向性分级判别的准确性,为岩爆动力灾害问题的预测、防治提供了借鉴指导意义,进一步确保了深部地下工程的安全生产。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (3)

1.一种基于动静载叠加试验的岩爆倾向性等级判断方法,其步骤是:
A、取工程现场岩样,将岩样加工成圆柱形试样;
B、确定动静载叠加试验方案中静载预应力的取值大小、级别及动载应变率的等级,用于试验的试样数量;
C、组合不同的静载预应力和动载应变率得到试验的工况总数,对每一种工况分别进行单轴压缩试验和劈裂试验,得到叠加抗压强度σ sd和叠加抗拉强度σ td
D、由全应力-应变曲线获得每一种试验工况对应的动态破坏时间D T、弹性能量指数W ET、冲击能指数K E,并计算脆性系数K T
其中,D T为应力峰值点至应力突然下降点之间的时间:
式中,ΦSE是塑性应变能,为加载曲线和卸载曲线所包络的面积;ΦSP是弹性应变能,为卸载曲线下的面积;A s为峰前集聚的变形能,等于塑性应变能和弹性应变能之和;A x为峰后损耗的变形能;脆性系数K T为叠加抗压强度σ sd与叠加抗拉强度σ td的比值;
E、通过对各指标赋值去量纲化,得到分别赋值为1、2和3三类的指数X DTX WETX KEX KT
F、根据公式K c =0.3X DT+0.2X WET+0.2X KE+0.3X KT计算岩爆倾向性指标K c ,式中,X DTX WETX KEX KT分别为去量纲化的动态破坏时间指标、弹性能量指标、冲击能指标和脆性系数指标,K c 为岩爆倾向性指标,取值结果在1.0~3.0之间;
G、判断岩爆倾向性等级,当1.0<K c ≤1.5,等级为无岩爆倾向性,当1.5<K c ≤2.0,等级为弱岩爆倾向性,当2.0<K c ≤2.5,等级为中等岩爆倾向性,当2.5<K c ≤3.0,等级为强岩爆倾向性;
所述的步骤B中试验方案先进行纯静态加载获得常规单轴抗压强度,采用位移控制加载,应变率为5×10-6 s-1,静载预应力选取占纯静态加载抗压强度一定比例的值,分别取纯静态加载抗压强度的40%、50%、60%以及70%;动静载叠加试验整个过程采用位移控制模式加载,静载预应力施加阶段应变率控制在5×10-6 s-1,直到加载值达到设定值,以不同的应变率对试样施加动载荷,应变率范围和等级根据现场受力条件确定;
所述步骤E中综合4个指标分别将Ⅰ、Ⅱ、Ⅲ类岩爆倾向性赋值为1、2和3,采用步骤F中的公式完成岩爆倾向性指标的转换:
2.根据权利要求1所述的一种基于动静载叠加试验的岩爆倾向性等级判断方法,其特征在于:所述的步骤A中的圆柱形试样为直径50 mm、高100 mm的标准圆形试样。
3.根据权利要求1所述的一种基于动静载叠加试验的岩爆倾向性等级判断方法,其特征在于:所述步骤C中每一种工况的动静载叠加单轴压缩试验获得叠加抗压强度σ sd,动静载叠加劈裂试验的静载预应力及动载荷施加方式与动静载叠加单轴压缩试验类似,由该试验获得叠加抗拉强度σ td
CN202210895915.8A 2022-07-27 2022-07-27 一种基于动静载叠加试验的岩爆倾向性等级判断方法 Active CN115266348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210895915.8A CN115266348B (zh) 2022-07-27 2022-07-27 一种基于动静载叠加试验的岩爆倾向性等级判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210895915.8A CN115266348B (zh) 2022-07-27 2022-07-27 一种基于动静载叠加试验的岩爆倾向性等级判断方法

Publications (2)

Publication Number Publication Date
CN115266348A CN115266348A (zh) 2022-11-01
CN115266348B true CN115266348B (zh) 2024-04-26

Family

ID=83771584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210895915.8A Active CN115266348B (zh) 2022-07-27 2022-07-27 一种基于动静载叠加试验的岩爆倾向性等级判断方法

Country Status (1)

Country Link
CN (1) CN115266348B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116167147B (zh) * 2023-04-25 2023-07-07 煤炭科学研究总院有限公司 基于多层感知机算法的煤岩冲击倾向性直接指数评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3331915A1 (de) * 1983-09-03 1985-04-04 Szecowka, Zdzislaw, Dr., 5600 Wuppertal Verfahren und vorrichtung zum messen der mechanischen eigenschaften von gestein und mineralien "in situ" zur bestimmung der gebirgsschlagneigung der lagerstaette und des nebengesteins
CN107748103A (zh) * 2017-09-01 2018-03-02 中国科学院武汉岩土力学研究所 一种隧道岩爆预测方法、设备、存储介质和系统
CN107991184A (zh) * 2017-11-27 2018-05-04 中南大学 一种基于剩余弹性应变能指标的岩爆倾向性等级判别方法
CN109827846A (zh) * 2019-02-02 2019-05-31 中南大学 一种基于加卸载响应滞后比指标的岩爆倾向性等级判别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3331915A1 (de) * 1983-09-03 1985-04-04 Szecowka, Zdzislaw, Dr., 5600 Wuppertal Verfahren und vorrichtung zum messen der mechanischen eigenschaften von gestein und mineralien "in situ" zur bestimmung der gebirgsschlagneigung der lagerstaette und des nebengesteins
CN107748103A (zh) * 2017-09-01 2018-03-02 中国科学院武汉岩土力学研究所 一种隧道岩爆预测方法、设备、存储介质和系统
CN107991184A (zh) * 2017-11-27 2018-05-04 中南大学 一种基于剩余弹性应变能指标的岩爆倾向性等级判别方法
CN109827846A (zh) * 2019-02-02 2019-05-31 中南大学 一种基于加卸载响应滞后比指标的岩爆倾向性等级判别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Analysis of rockburst in tunnels subjected to static and dynamic loads;Amin Manouchehrian et al.;《Journal of Rock Mechanics and Geotechnical Engineering》;20171231;第1-10页 *
动静组合加载条件岩爆特性及倾向性指标;殷志强 等;《中南大学学报(自然科学版)》;20140930;第45卷(第9期);第3249-3256页 *

Also Published As

Publication number Publication date
CN115266348A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Yu et al. Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures
Ng The state-of-the-art centrifuge modelling of geotechnical problems at HKUST
WO2018014477A1 (zh) 一种基于实测的充填材料力学特性曲线修正方法
Liu et al. Analysis of rock mass stability based on mining-induced seismicity: A case study at the Hongtoushan copper mine in China
Zhao et al. Controlling roof with potential rock burst risk through different pre-crack length: Mechanism and effect research
Gong et al. Load–unload response ratio characteristics of rock materials and their application in prediction of rockburst proneness
Bukowska Post-peak failure modulus in problems of mining geo-mechanics
Li et al. Characteristics of microseismic b-value associated with rock mass large deformation in underground powerhouse caverns at different stress levels
CN115266348B (zh) 一种基于动静载叠加试验的岩爆倾向性等级判断方法
Chang et al. Effects of the Loading and Unloading Conditions on Crack Propagation in High Composite Slope of Deep Open‐Pit Mine
Tuncay et al. Relation between Kaiser effect levels and pre-stresses applied in the laboratory
Fang et al. Physical simulation of upper protective coal layer mining with different coal seam inclinations
Li et al. The breaking span of thick and hard roof based on the thick plate theory and strain energy distribution characteristics of coal seam and its application
Li et al. Triaxial experimental study on changes in the mechanical properties of rocks under different rates of confining pressures unloading
Li et al. Investigation on acoustic emission characteristics of hole-joint contained granite under a compressive disturbance: experimental insights
CN114329680B (zh) 一种矿区地下水库矿柱坝体稳定性评价方法及其应用
Xiao et al. Characteristics of ground pressure disaster and rockburst proneness in deep gold mine
Wang et al. A roadway in close distance to coal seam in deep mine: location selection and supporting practice based on creep characteristics of surrounding rocks
Bacha et al. A review of rock burst’s experimental progress, warning, prediction, control and damage potential measures
Zhu et al. Reasonable determination of terminal mining lines using the stress field with seismic wave excitation in deep coalfaces
Qu et al. Experimental study of the strip coal pillar models failure with different roof and floor conditions
Chen et al. Energy distribution law of coal–rock combined body under confining pressure effect
CN111855412B (zh) 一种基于应力能量比的岩爆倾向性等级判别方法
Wang et al. Research on deformation and fracture characteristics of the fractured rock mass under coupling of heavy rainfall infiltration and mining unloading
Tang et al. Experimental research on the effect of bedding angle on the static and dynamic behaviors of burst-prone sandstone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240322

Address after: 430071 No. 2, little Wuchang, Wuhan, Hubei, Hongshan

Applicant after: INSTITUTE OF ROCK AND SOIL MECHANICS, CHINESE ACADEMY OF SCIENCES

Country or region after: China

Applicant after: CHANGJIANG SURVEY PLANNING DESIGN AND RESEARCH Co.,Ltd.

Address before: 430071 small Hongshan 2, fruit lake street, Wuchang District, Wuhan, Hubei.

Applicant before: INSTITUTE OF ROCK AND SOIL MECHANICS, CHINESE ACADEMY OF SCIENCES

Country or region before: China

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant