CN115261293A - Genetic engineering bacterium for producing hydroxyadipic acid - Google Patents

Genetic engineering bacterium for producing hydroxyadipic acid Download PDF

Info

Publication number
CN115261293A
CN115261293A CN202110475909.2A CN202110475909A CN115261293A CN 115261293 A CN115261293 A CN 115261293A CN 202110475909 A CN202110475909 A CN 202110475909A CN 115261293 A CN115261293 A CN 115261293A
Authority
CN
China
Prior art keywords
gene
encoding
codon
dehydrogenase
optimized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110475909.2A
Other languages
Chinese (zh)
Other versions
CN115261293B (en
Inventor
谭天伟
刘猛
张洋
王萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202110475909.2A priority Critical patent/CN115261293B/en
Publication of CN115261293A publication Critical patent/CN115261293A/en
Application granted granted Critical
Publication of CN115261293B publication Critical patent/CN115261293B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01031L-Aminoadipate-semialdehyde dehydrogenase (1.2.1.31), i.e. alpha-aminoadipate reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01015Lysine dehydrogenase (1.4.1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/010392-Aminoadipate transaminase (2.6.1.39)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to a genetic engineering bacterium for producing hydroxy adipic acid. The genetic engineering bacterium is obtained by adopting escherichia coli as a host cell, introducing genes for encoding lysine dehydrogenase, aminoadipate semialdehyde dehydrogenase, aminoadipate transaminase and ketoadipate reductase, and carrying out chassis microbial transformation on the escherichia coli by strengthening a precursor synthesis path and knocking out or weakening genes related to a competitive metabolic path, and is the genetic engineering bacterium for high-yield hydroxyl adipic acid.

Description

Genetic engineering bacterium for producing hydroxyadipic acid
Technical Field
The invention belongs to the technical field of biology, and relates to a genetic engineering bacterium for producing hydroxyadipic acid, in particular to a genetic engineering bacterium for producing hydroxyadipic acid and application thereof in producing hydroxyadipic acid.
Background
The molecular formula of 2-hydroxyadipic acid (2-hydroxyadipic acid) is C6H10O5The formula weight is 162.14. It is an adipic acid derivative with 2-hydroxy substitution, which can be used as adipic acid (precursor of nylon 6, 6)Synthetic intermediates. Due to the need of technological development in recent years, hydroxyadipic acid has attracted much attention as a small molecule compound that plays an important role in scientific research fields such as medicine, chemical synthesis, and biosynthesis.
Currently, hydroxyadipic acid is produced mainly by chemical synthesis. However, the traditional chemical synthesis method has the defects of large pollution, high cost, low yield and the like. With the rapid development of synthetic biology, the biological synthesis of hydroxyadipic acid becomes the most potential strategy for replacing chemical synthesis.
Therefore, research and development of a biosynthesis technology of hydroxyadipic acid, which has high conversion rate and good economical efficiency and is easy for industrial production, are needed.
Disclosure of Invention
The invention aims to provide a genetic engineering bacterium for producing hydroxyadipic acid, which is a genetic engineering bacterium for producing the hydroxyadipic acid with high yield, has high conversion rate and good economy and is easy for industrial production.
Therefore, the invention provides a genetic engineering bacterium for producing hydroxy adipic acid.
According to an embodiment of the first aspect of the present invention, the genetically engineered bacterium producing hydroxyadipic acid is a recombinant host bacterium comprising a gene encoding lysine dehydrogenase, a gene encoding aminoadipate semialdehyde dehydrogenase, a gene encoding aminoadipate aminotransferase and a gene encoding ketoadipate reductase.
In some embodiments of the invention, the gene encoding lysine dehydrogenase is selected from the group consisting of a lysine dehydrogenase-encoding gene lysDH-Am derived from bacillus 12AMOR1 or a codon-optimized lysine dehydrogenase-encoding gene lysDH-Am derived from bacillus 12AMOR1, a lysine dehydrogenase-encoding gene lysDH-Bt derived from bacillus thermophilus 1A1 or a codon-optimized lysine dehydrogenase-encoding gene lysDH-Bt derived from bacillus thermophilus 1A1, a lysine dehydrogenase-encoding gene lysDH-Ab derived from acidic bacterium adurb.
In further embodiments of the invention, the gene encoding an aminoadipate semialdehyde dehydrogenase is selected from the group consisting of the gene Psefu _1272 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X or the gene Psefu _1272 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X and codon-optimized, the gene ALDH7A1 encoding an aminoadipate semialdehyde dehydrogenase derived from human or the gene ALDH7A1 encoding an aminoadipate semialdehyde dehydrogenase derived from human and codon-optimized, the gene PMI27 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas GM41 (2012) or the gene PMI27 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas GM41 (2012) and codon-optimized, preferably the gene Psefu _1272 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X and codon-optimized.
In further embodiments of the invention, the gene encoding an aminoadipate transaminase is selected from the group consisting of the gene ARO8 encoding an aminoadipate transaminase derived from S288c of saccharomyces cerevisiae or the codon-optimized gene ARO8 encoding an aminoadipate transaminase derived from S288c of saccharomyces cerevisiae, the gene lysN encoding an aminoadipate transaminase derived from thermus thermophilus HB27 or the gene lysN encoding an aminoadipate transaminase derived from thermus thermophilus HB27 and codon-optimized, preferably the gene ARO8 encoding an aminoadipate transaminase derived from S288c of saccharomyces cerevisiae and codon-optimized.
In still further embodiments of the invention, the gene encoding ketoadipate reductase is selected from the group consisting of a ketoadipate reductase-encoding gene AeLDH derived from Chlorella eutrophic H16 or a codon-optimized ketoadipate reductase-encoding gene AeLDH derived from Chlorella eutrophic H16, a ketoadipate reductase-encoding gene HgdH derived from Micrococcus fermentans, or a codon-optimized ketoadipate reductase-encoding gene HgdH derived from Micrococcus fermentans, preferably a ketoadipate reductase-encoding gene AeLDH derived from Chlorella eutrophic H16.
According to an embodiment of the second aspect of the present invention, the genetically engineered bacterium is a genetically engineered bacterium which is modified by a chassis microorganism and produces hydroxyadipic acid; preferably, the chassis microbial engineering comprises the intensification of precursor synthetic pathways and the knock-out or attenuation of genes associated with competing metabolic pathways.
In the present invention, the reinforcement of the precursor synthesis pathway comprises overexpression of a key gene of the precursor synthesis pathway in the genetically engineered bacterium.
In some embodiments of the invention, the key genes of the precursor synthesis pathway include a gene aspC encoding aspartate aminotransferase, a gene lysC encoding aspartate kinase, a gene dapA encoding dihydrodipicolinate synthase, and a gene lysA encoding diaminopimelate decarboxylase.
In the present invention, the competitive metabolic pathway-related genes include lysine degradation pathway-related genes, lactate pathway-related genes, and acetate pathway-related genes.
In some embodiments of the invention, the lysine degradation pathway-related genes comprise the genes cadA and ldcC encoding lysine decarboxylase.
In other embodiments of the present invention, the lactate pathway-associated gene comprises a gene ldh encoding lactate dehydrogenase.
In other embodiments of the invention, the acetate pathway-related genes include a gene pta encoding phosphoacetyltransferase, a gene ackA encoding acetate kinase, and a gene poxB encoding pyruvate dehydrogenase.
According to the invention, the host bacteria comprise Escherichia coli, corynebacterium glutamicum, yeast, and modified bacteria and fungi.
In some preferred embodiments of the invention, the host bacterium is E.coli.
In some further preferred embodiments of the invention, the host bacterium is Escherichia coli JM109 (DE 3).
The invention also provides an application of the genetic engineering bacteria in the production of the hydroxy adipic acid.
According to the invention, the application comprises the steps of inoculating the genetic engineering bacteria for producing the hydroxy adipic acid into a fermentation culture medium, carrying out fermentation culture, and then separating and purifying the obtained fermentation culture solution to prepare the hydroxy adipic acid.
In some embodiments of the invention, the fermentation culture conditions are: the fermentation culture time is 72h, when the thallus grows to OD600= 0.6-0.8, adding IPTG, after adding IPTG, the fermentation temperature is changed from 37 ℃ to 30 ℃, and the induction concentration of IPTG is 0.8-1.2mM; further preferably, lysine is added in vitro, and the amount of lysine added is 2 to 10g/L, more preferably 5 to 10g/L.
In some embodiments of the present invention, the isolation and purification of the obtained fermentation broth comprises:
step S1, carrying out first centrifugal separation on a fermentation culture solution to obtain first supernatant;
step S2, diluting the supernatant I by 20 times with ultrapure water, uniformly mixing to obtain a solution A, diluting the solution A by 10 times with methanol containing 0.1% formic acid, uniformly mixing, and performing centrifugal separation for the second time to obtain a supernatant II;
and S3, filtering the second supernatant by using a 0.22-micron organic phase filter membrane to obtain the hydroxy adipic acid.
The invention adopts Escherichia coli as host cells, carries out chassis microbial transformation on the Escherichia coli by introducing genes for coding lysine dehydrogenase, amino adipic acid semialdehyde dehydrogenase, amino adipic acid transaminase and ketoadipic acid reductase and strengthening a precursor synthesis way and knocking out or weakening genes related to a competitive metabolic way, constructs and obtains the gene engineering bacteria of the hydroxy adipic acid, and the bacteria are the gene engineering bacteria for producing the hydroxy adipic acid with high yield.
Drawings
The invention is described in further detail below with reference to the attached drawing figures:
FIG. 1 shows the reaction mechanism for the biosynthesis of hydroxyadipic acid;
FIG. 2 is a graph of the production of hydroxyadipic acid by fermentation based on strain 109-H with the addition of 5g/L lysine;
FIG. 3 is a graph of the production of hydroxyadipic acid based on the fermentation of strain 109-H without addition of lysine.
The strain 109-H carries a pET-H plasmid, and the plasmid carries a codon-optimized lysine dehydrogenase encoding gene lysDH-Bt (shown in SEQ No. 4), a codon-optimized aminoadipate semialdehyde dehydrogenase encoding gene Psefu _1272 (shown in SEQ No. 10), a codon-optimized aminoadipate transaminase encoding gene ARO8 (shown in SEQ No. 16) and a codon-optimized ketoadipate reductase encoding gene AeLDH (shown in SEQ No. 20).
Detailed Description
In order that the invention may be readily understood, a more particular description thereof will be rendered by reference to the appended drawings. However, before the present invention is described in detail, it is to be understood that this invention is not limited to particular embodiments described. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
Unless otherwise defined, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described.
Term of
The term "Chassis microorganism" also referred to as "Chassis microbial cell" as used herein means a functional biological system using a microbial cell as a platform, which is capable of providing a function required by a human being for biosynthesis. It is more likely that the vehicle has a chassis base on which various vehicle bodies can be manufactured and various functional components can be mounted. Therefore, the underpan microbial cells need to be simplified in functions, but have the most basic self-replication and metabolism capabilities, so that the underpan microbial cells become a blank platform capable of continuously adding functions.
The term "genetically engineered bacterium" as used herein refers to a bacterium or fungus, such as Escherichia coli, which is transformed by introducing a desired gene into a host organism (i.e., a host cell or a basal disc microorganism or a bacterial body) to express the gene, or by modifying the bacterial body to produce a desired protein by a basal disc microorganism including the knock-out or attenuation of genes involved in the enhanced and competitive metabolic pathways of the precursor synthesis pathway. The core technology of genetic engineering is the recombination technology of DNA, therefore, the genetic engineering bacteria are also called recombinant microorganisms in the invention.
The term "recombinant" as used herein refers to the construction of a transgenic organism that utilizes the genetic material of a donor organism or an artificially synthesized gene, which is cleaved with restriction enzymes in vitro or ex vivo and then ligated with a suitable vector to form a recombinant DNA molecule, which is then introduced into a recipient cell or a recipient organism to construct a transgenic organism that exhibits a certain property of another organism according to a human blueprint that has been previously designed.
Embodiments II
In order to achieve the above-mentioned objective of biosynthesis of hydroxyadipic acid, the present inventors have conducted extensive studies on a process technique for synthesizing hydroxyadipic acid by a biological method. The inventor finds that escherichia coli is adopted as a host cell, the genes for coding lysine dehydrogenase, aminoadipic semialdehyde dehydrogenase, aminoadipic transaminase and ketoadipic reductase are introduced, a precursor synthesis path is enhanced, and genes related to a competitive metabolic path are knocked out or weakened to carry out chassis microbial transformation on the escherichia coli, so that the genetically engineered bacterium for producing high-yield hydroxyadipic acid is successfully constructed and obtained, and the genetically engineered bacterium for producing the hydroxyadipic acid is high in conversion rate, good in economy and easy for industrial production. The present invention was thus obtained.
Therefore, the invention provides a new way for synthesizing the hydroxyadipic acid, which realizes the high-efficiency synthesis of the hydroxyadipic acid by using the lysine as the precursor through a genetic engineering bacterium for high-yield production of the hydroxyadipic acid.
As used herein, "hydroxyadipic acid" refers to an adipic acid derivative having 2-hydroxy substitution, i.e., 2-hydroxyadipic acid.
In order to realize the technical scheme, the invention provides a host strain capable of producing the hydroxyadipic acid, which expresses genes in a hydroxyadipic acid synthesis path in original or modified bacterial and fungal cells to prepare a host capable of synthesizing the hydroxyadipic acid.
In an embodiment of the first aspect of the present invention, the present invention provides a hydroxyadipic acid-producing genetically engineered bacterium, which is a recombinant host bacterium expressing a gene in a hydroxyadipic acid synthesis pathway.
The reaction mechanism for biosynthesis of hydroxyadipic acid in the present invention is shown in FIG. 1, and it can be understood from FIG. 1 that the genes in the synthesis pathway of hydroxyadipic acid include a gene encoding lysine dehydrogenase, a gene encoding aminoadipate semialdehyde dehydrogenase, a gene encoding aminoadipate transaminase, and a gene encoding ketoadipate reductase.
Based on the above, it can be easily understood that the genetically engineered bacterium producing hydroxyadipic acid referred to in the present invention is a recombinant host bacterium comprising genes encoding lysine dehydrogenase, aminoadipate semialdehyde dehydrogenase, aminoadipate transaminase, and ketoadipate reductase.
In some embodiments of the invention, the gene encoding lysine dehydrogenase is selected from the group consisting of a lysine dehydrogenase-encoding gene lysDH-Am derived from bacillus 12AMOR1 or a codon-optimized lysine dehydrogenase-encoding gene lysDH-Am derived from bacillus 12AMOR1, a lysine dehydrogenase-encoding gene lysDH-Bt derived from bacillus thermophilus 1A1 or a codon-optimized lysine dehydrogenase-encoding gene lysDH-Bt derived from bacillus thermophilus 1A1, a lysine dehydrogenase-encoding gene lysDH-Ab derived from acidic bacterium adurb.
In some embodiments of the invention, the nucleotide sequence of lysDH-Am (GenBank: AKM 17750.1) of the gene encoding lysine dehydrogenase derived from Bacillus 12AMOR1 is shown in SEQ No. 1.
In other embodiments of the invention, the codon-optimized lysDH-Am gene encoding a lysine dehydrogenase derived from Bacillus 12AMOR1 has the nucleotide sequence shown in SEQ No. 2.
In some embodiments of the invention, the nucleotide sequence of the gene lysDH-Bt (GenBank: CEE 01557.1) encoding lysine dehydrogenase derived from Bacillus thermophilus 1A1 is shown in SEQ No. 3.
In other embodiments of the invention, the nucleotide sequence of the codon-optimized gene lysDH-Bt encoding lysine dehydrogenase derived from Bacillus thermophilus 1A1 is shown in SEQ No. 4.
In some embodiments of the invention, the nucleotide sequence of the gene lysDH-Ab (GenBank: OQC 42178.1) encoding lysine dehydrogenase derived from acid bacterium ADurb. Bin051 is shown in SEQ No. 5.
In other embodiments of the invention, the codon-optimized lysDH-Ab gene from acid bacterium ADurb. Bin051 has the nucleotide sequence shown in SEQ No. 6.
In some embodiments of the invention, the nucleotide sequence of the gene lysDH-Bb (GenBank: OQB 61741.1) encoding lysine dehydrogenase derived from Bacteroides bacterium ADurb. Bin 141 is shown in SEQ No. 7.
In other embodiments of the invention, the codon-optimized nucleotide sequence of lysDH-Bb gene encoding lysine dehydrogenase derived from Bacteroides bacterium ADurb. Bin 141 is shown in SEQ No. 8.
In further embodiments of the invention, the gene encoding an aminoadipate semialdehyde dehydrogenase is selected from the group consisting of the gene Psefu _1272 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X or the gene Psefu _1272 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X and codon-optimized, the gene ALDH7A1 encoding an aminoadipate semialdehyde dehydrogenase derived from human or the gene ALDH7A1 encoding an aminoadipate semialdehyde dehydrogenase derived from human and codon-optimized, the gene PMI27 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas GM41 (2012) or the gene PMI27 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas GM41 (2012) and codon-optimized, preferably the gene Psefu _1272 encoding an aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X and codon-optimized.
In some embodiments of the invention, the nucleotide sequence of the gene Psefu _1272 (GenBank: AEF 21248.1) encoding aminoadipate semialdehyde dehydrogenase derived from Pseudomonas 12-X is shown in SEQ No. 9.
In other embodiments of the invention, the codon-optimized gene Psefu _1272 encoding aminoadipate semialdehyde dehydrogenase derived from Pseudomonas 12-X has the nucleotide sequence shown in SEQ No. 10.
In some embodiments of the invention, the nucleotide sequence of the human-derived gene ALDH7A1 (GenBank: NM-001182.5) encoding aminoadipate semialdehyde dehydrogenase is shown as SEQ No. 11.
In some specific embodiments of the invention, the nucleotide sequence of the human-derived and codon-optimized gene ALDH7A1 encoding aminoadipate semialdehyde dehydrogenase is shown in SEQ No. 12.
In some embodiments of the invention, the nucleotide sequence of the gene PMI27 (GenBank: EUB 77087.1) encoding aminoadipate semialdehyde dehydrogenase derived from Pseudomonas GM41 (2012) is shown as SEQ No. 13.
In some specific embodiments of the invention, the codon-optimized nucleotide sequence of the gene PMI27 derived from pseudomonas GM41 (2012) and encoding aminoadipate semialdehyde dehydrogenase is as shown in SEQ No. 14.
In further embodiments of the invention, the gene encoding an aminoadipate transaminase is selected from the group consisting of the gene ARO8 encoding an aminoadipate transaminase derived from saccharomyces cerevisiae S288c or the codon-optimized gene ARO8 encoding an aminoadipate transaminase derived from saccharomyces cerevisiae S288c, the gene lysN encoding an aminoadipate transaminase derived from thermus thermophilus HB27 or the gene lysN encoding an aminoadipate transaminase derived from thermus thermophilus HB27 and codon-optimized, preferably the gene ARO8 encoding an aminoadipate transaminase derived from saccharomyces cerevisiae S288 c.
In some embodiments of the invention, the nucleotide sequence of the gene ARO8 (GenBank: CAA 73946.1) encoding aminoadipate transaminase derived from Saccharomyces cerevisiae S288c is shown as SEQ No. 15.
In other embodiments of the invention, the codon-optimized nucleotide sequence of the gene ARO8 encoding aminoadipate transaminase derived from saccharomyces cerevisiae S288c is shown in SEQ No. 16.
In some embodiments of the invention, the nucleotide sequence of the gene lysN (GenBank: AAS 80391.1) encoding aminoadipate aminotransferase, derived from Thermus thermophilus HB27, is shown in SEQ No. 17.
In other embodiments of the invention, the codon-optimized nucleotide sequence of lysN, a gene encoding aminoadipate aminotransferase, which is derived from Thermus thermophilus HB27, is shown in SEQ No. 18.
In still further embodiments of the invention, the gene encoding ketoadipate reductase is selected from the group consisting of a ketoadipate reductase-encoding gene AeLDH derived from Chlorella eutrophic H16 or a codon-optimized ketoadipate reductase-encoding gene AeLDH derived from Chlorella eutrophic H16, a ketoadipate reductase-encoding gene HgdH derived from Micrococcus fermentans, or a codon-optimized ketoadipate reductase-encoding gene HgdH derived from Micrococcus fermentans, preferably a ketoadipate reductase-encoding gene AeLDH derived from Chlorella eutrophic H16.
In some embodiments of the invention, the nucleotide sequence of the gene AeLDH (GenBank: QCB 99744.1) encoding ketoadipate reductase derived from Chlorella eutrophic H16 is shown in SEQ No. 19.
In other embodiments of the invention, the codon-optimized nucleotide sequence of the gene AeLDH encoding ketoadipate reductase derived from Chlorella eutrophic H16 is shown in SEQ No. 20.
In some embodiments of the invention, the nucleotide sequence of the gene HgdH (GenBank: ADB 47349.1) encoding ketoadipate reductase from Zymococcus amino acid is shown in SEQ No. 21.
In other embodiments of the invention, the codon-optimized nucleotide sequence of the gene HgdH encoding ketoadipate reductase, derived from s.fermentum, is shown in SEQ No. 22.
In some embodiments of the invention, the synthesis of hydroxy-adipate as precursor is achieved by efficiently expressing genes of enzymes involved in the hydroxy-adipate synthesis pathway in a host bacterium (e.g., original or modified bacteria, fungi), preferably a gene lysDH-Bt (GenBank: CEE 01557.1) encoding lysine dehydrogenase derived from Bacillus thermophilus 1A1 (Bacillus thermoaminogenes 1A 1), a gene Psefu _1272 (GenBank: AEF 21248.1) encoding aminoadipate semialdehyde dehydrogenase derived from Pseudomonas 12-X (Pseudomonas fulva 12-X), a gene ARO8 (GenBank: CAA 73946.1) encoding aminoadipate transaminase derived from Saccharomyces cerevisiae S288c (Saccharomyces cerevisiae S288 c), and a gene AecataLDH (GenBank: QC9999B.744) encoding ketoadipate reductase derived from Chlorella vulgaris H16 (Cupriavidiner H16), in a host bacterium, preferably lysine.
In some particularly preferred embodiments of the present invention, the lysine-precursor hydroxyadipic acid synthesis is achieved by efficiently expressing a gene of a relevant enzyme in the hydroxyadipic acid synthesis pathway in a host bacterium (e.g., original or modified bacterium, fungus), preferably lysDH-Bt (nucleotide sequence shown in SEQ No. 4) which is derived from Bacillus thermophilus 1A1 and is codon-optimized for a lysine dehydrogenase gene, psefu _1272 (nucleotide sequence shown in SEQ No. 10) which is derived from Pseudomonas 12-X and is codon-optimized for an aminoadipate semialdehyde dehydrogenase gene, ARO8 (nucleotide sequence shown in SEQ LDH No. 16) which is derived from Saccharomyces cerevisiae S288c and is codon-optimized for an aminoadipate transaminase gene, and Aeketoreductase (nucleotide sequence shown in SEQ No. 20) which is derived from Chlorella eutrophic H16.
According to the invention, the host bacteria comprise escherichia coli, corynebacterium glutamicum, yeast, and modified bacteria and fungi; preferably, the host bacterium is escherichia coli; specifically, the host bacterium is Escherichia coli JM109 (DE 3).
In the invention, the type of the expression plasmid has no special requirement, and can be correspondingly adjusted according to the selection of a host, and the construction method for expressing the target gene in the escherichia coli can adopt various methods commonly used in the field, for example, the target gene and the expression vector are connected after enzyme digestion treatment, and the details are not repeated.
In some particularly preferred embodiments, the E.coli strain Trans10 is used for vector construction and E.coli JM109 (DE 3) is used as the fermentation strain.
The genetically engineered bacterium producing hydroxyadipic acid according to the embodiment of the first aspect of the present invention is Escherichia coli JM109 (DE 3) expressing a gene encoding lysine dehydrogenase, a gene encoding aminoadipate semialdehyde dehydrogenase, a gene encoding aminoadipate transaminase, and a gene encoding ketoadipate reductase.
In some specific preferred examples, the gene engineering bacteria are constructed by using codon-optimized genes lysDH-Bt, psefu _1272, ARO8 and AeLDH, the relevant primers for constructing the recombinant plasmids are shown in Table 1, and the corresponding sequences are shown in SEQ Nos. 23-30.
TABLE 1 primers related to the construction of recombinant plasmids
Figure BDA0003047386260000081
In an embodiment of the second aspect of the present invention, the genetically engineered bacterium is a genetically engineered bacterium that produces hydroxyadipic acid and is subjected to chassis microbial modification, wherein the chassis microbial modification comprises strengthening of a precursor synthesis pathway and knockout or attenuation of a gene associated with a competitive metabolic pathway.
In the invention, the reinforcement of the precursor synthesis pathway comprises the overexpression of key genes of the precursor synthesis pathway in genetic engineering bacteria, and the efficient synthesis of the hydroxyadipic acid from simple carbon sources such as glucose or xylose is realized by enhancing the synthesis of precursor lysine.
In some embodiments of the invention, the key genes of the precursor synthesis pathway include a gene aspC encoding aspartate aminotransferase, a gene lysC encoding aspartate kinase, a gene dapA encoding dihydrodipicolinate synthase, and a gene lysA encoding diaminopimelate decarboxylase.
In some particularly preferred embodiments of the invention, the nucleotide sequence of the gene aspC (GenBank: QPA 14779.1) encoding aspartate aminotransferase is shown in SEQ ID No. 31.
In some particularly preferred embodiments of the invention, the nucleotide sequence of the gene lysC (GenBank: QPA 17672.1) encoding aspartate kinase is shown in SEQ No. 32.
In some particularly preferred embodiments of the present invention, the nucleotide sequence of the gene dapA (GenBank: QPA 16247.1) encoding dihydrodipicolinate synthase is set forth in SEQ No. 33.
In some particularly preferred embodiments of the invention, the nucleotide sequence of the gene lysA (GenBank: QPA 16577.1) encoding diaminopimelate decarboxylase is shown as SEQ No. 34.
In the invention, the chassis microorganism transformation is carried out by knocking out or weakening genes related to competitive metabolic pathways, so that the carbon metabolic flux can be regulated and controlled, more metabolic flux flows to the synthesis of the hydroxy adipic acid, more substrates flow to the synthesis of the hydroxy adipic acid, and the Escherichia coli genetic engineering bacteria with high yield of the hydroxy adipic acid is obtained.
In some embodiments of the invention, the competing metabolic pathway-related genes include lysine degradation pathway-related genes, lactate pathway-related genes, and acetate pathway-related genes; wherein the lysine degradation pathway-related genes include genes encoding lysine decarboxylase cadA and ldcC; the lactate pathway-associated gene is preferably a gene ldh encoding lactate dehydrogenase; the acetate pathway-related genes include a gene pta encoding phosphoacetyltransferase, a gene ackA encoding acetate kinase, and a gene poxB encoding pyruvate dehydrogenase.
In some embodiments of the invention, the nucleotide sequence of the gene cadA (GenBank: QPA 17778.1) encoding lysine decarboxylase is shown in SEQ No. 35.
In some embodiments of the invention, the nucleotide sequence of the gene ldcC (GenBank: QHB 66407.1) encoding lysine decarboxylase is shown in SEQ No. 36.
In some embodiments of the invention, the nucleotide sequence of the gene ldh (GenBank: QPA 15202.1) encoding lactate dehydrogenase is shown in SEQ No. 37.
In some embodiments of the invention, the nucleotide sequence of the gene pta encoding phosphotransacetylase (GenBank: QPA 16074.1) is shown in SEQ No. 38.
In some embodiments of the invention, the nucleotide sequence of the gene ackA (GenBank: QPA 16073.1) encoding acetate kinase is shown in SEQ No. 39.
In some embodiments of the invention, the nucleotide sequence of the gene poxB (GenBank: QPA 14724.1) encoding pyruvate dehydrogenase is shown in SEQ No. 40.
The invention utilizes the embodiments of the first and second aspects to regulate the carbon metabolic flow, thereby achieving the purpose of regulating the synthesis of the hydroxyadipic acid.
The invention adopts escherichia coli as a host cell, and successfully constructs and obtains the genetic engineering bacteria for high-yield hydroxyl adipic acid by introducing a gene for coding lysine dehydrogenase, a gene for coding amino adipic acid semialdehyde dehydrogenase, a gene for coding amino adipic acid transaminase, a gene for coding ketoadipic acid reductase and a reinforced precursor synthesis way, knocking out or weakening genes related to a competitive metabolic way to carry out chassis microbial transformation on the escherichia coli.
Actually, the enzyme activities of lysine dehydrogenase, aminoadipic semialdehyde dehydrogenase, aminoadipic transaminase and ketoadipic reductase coded in escherichia coli or genetic engineering bacteria producing hydroxyadipic acid are regulated and controlled by means of promoter engineering, RBS (RBS) regulation strategy or enzyme modification and the like, so that a novel genetic engineering bacteria capable of producing hydroxyadipic acid at high yield can be further constructed and obtained; for example, by promoter engineering, a highly efficient promoter was selected to enhance transcription of the gene lysDH-Bt encoding lysine dehydrogenase, the gene Psefu _1272 encoding aminoadipate semialdehyde dehydrogenase, the gene ARO8 encoding aminoadipate aminotransferase and the gene AeLDH encoding ketoadipate reductase, thereby enhancing the conversion of lysine into hydroxyadipate.
The present invention relates to the use of the genetically engineered bacteria as described above in the production of hydroxyadipic acid, which can be understood as a method for producing hydroxyadipic acid by using the genetically engineered bacteria as described above.
According to the invention, the application comprises the steps of inoculating the genetic engineering bacteria for producing the hydroxy adipic acid into a fermentation culture medium, carrying out fermentation culture, and then separating and purifying the obtained fermentation culture solution to prepare the hydroxy adipic acid.
In some embodiments of the present invention, inoculating the genetically engineered bacterium producing hydroxyadipic acid into a fermentation medium for fermentation culture comprises: inoculating the genetic engineering bacteria producing the hydroxy adipic acid into a fermentation culture medium, performing fermentation culture at 200rpm, adding IPTG (isopropyl-beta-D-thiogalactoside) with the final concentration of 0.8-1.2mM, preferably 1-1.2mM and more preferably 1mM when OD600 is between 0.6-0.8, inducing, and after adding IPTG, changing the fermentation temperature from 37 ℃ to 30 ℃, and culturing for 72 hours to obtain a fermentation culture solution; lysine is added to the medium as needed, and the amount of lysine added is 2-10g/L, preferably 5-10g/L, and more preferably 5g/L.
In other embodiments of the present invention, the isolation and purification of the obtained fermentation broth comprises:
step S1, carrying out first centrifugal separation on a fermentation culture solution at the rotating speed of 12000rpm to obtain first supernatant;
step S2, diluting the supernatant fluid I by 20 times by using ultrapure water, uniformly mixing to obtain a solution A, diluting the solution A by 10 times by using methanol containing 0.1% (volume) formic acid, uniformly mixing, and performing centrifugal separation for the second time at the rotating speed of 15000rpm to obtain a supernatant fluid II;
and S3, filtering the second supernatant by using a 0.22-micron organic phase filter membrane to obtain the hydroxy adipic acid.
The fermentation medium in the present invention is not particularly limited as long as it is a fermentation medium for producing hydroxyadipic acid, and preferably, the M9 fermentation medium formulation is: glucose 10g/L, yeast powder 3g/L, M9 salt (10X) 100mL,1M MgSO 44 1mL,1M CaCl20.3mL,1g/L biotin 1mL,1g/L thiamine 1mL, M9 trace elements (100X) 10mL (1L system); wherein, the M9 salt (10 x) component is: na (Na)2HPO4 67.8g/L,KH2PO4 30g/L,NaCl 5g/L,NH4Cl 10g/L; the trace elements of M9 (100 ×) were: EDTA 5g/L, feCl2·6H2O 0.83g/L,ZnCl284mg/L,CuCl2·2H2O 13mg/L,CoCl2·2H2O 10mg/L,H3BO3 10mg/L MnCl2·4H2O 1.6mg/L。
III example
The present invention will be specifically described below with reference to specific examples. The experimental methods described below are, unless otherwise specified, all routine laboratory procedures. The experimental materials described below, unless otherwise specified, are commercially available.
Example 1:
the primers used in this example are shown in Table 1 above.
The shihuada gene was assigned to lysDH-Bt (GenBank: CEE01557.1, the codon optimized nucleotide sequence is shown as SEQ No. 4), the gene Psefu _1272 (GenBank: AEF21248.1, the codon optimized nucleotide sequence is shown as SEQ No. 10) which is derived from Pseudomonas 12-X (Pseudomonas fulva 12-X) and codes for aminoadipate semialdehyde dehydrogenase, the gene ARO8 (GenBank: CAA73946.1, the codon optimized nucleotide sequence is shown as SEQ No. 16) which is derived from Saccharomyces cerevisiae S288c and codes for aminoadipate transaminase, and the gene AeLDH (GenBank: QCB99744.1, the codon optimized nucleotide sequence is shown as SEQ No. 20) which is derived from Chlorella eutrophic (Cupriavidus necator H16) and codes for ketoadipate reductase are subjected to whole gene pUC synthesis to obtain all the plasmids of the genes Psefu _ 1278, the AefO gene and the codon optimized gene AefO 57-57 (the codon optimized genes of AefO _ 12757, aefO _1272, aefO _ 57 and AefO _ 57-7, wherein the genes are respectively. Amplification of the genes of interest, lysDH-Bt, psefu _1272, ARO8, and pUC57-AeLDH, was carried out using lysDH-Bt-F/lysDH-Bt-R, psefu _1272-F/Psefu _1272-R, ARO8-F/ARO8-R, and AeLDH-F/AeLDH-R as primers and pUC57-lysDH-Bt, pUC57-Psefu _1272, pUC57-ARO8, and pUC57-AeLDH as templates, respectively. The vector was then digested with the corresponding restriction enzymes, the digested fragments were recovered by gel cutting, and the 4 target genes were inserted into E.coli expression vector pETDuet-1 by Gibson ligation to obtain plasmid pET-H (see Table 2).
Example 2:
competent cells of Escherichia coli JM109 (DE 3) were prepared and dispensed in 100. Mu.L into 1.5mL centrifuge tubes for electrotransformation. 2-4. Mu.L of the constructed pET-H recombinant plasmid is added into a 1.5mL centrifuge tube containing 100. Mu.L of competent cells and mixed evenly. The plasmid is then electrotransferred into competent cells using an electrotransfer instrument. After the electrotransfer was completed, LB medium [ peptone 10g/L, yeast powder 5g/L, naCl 5g/L ] was added rapidly, and the mixture was transferred to a 1.5mL centrifuge tube and allowed to resuscitate at 37 ℃ for 1h. Then, the bacterial liquid is coated on a plate containing corresponding antibiotics, and cultured for 12-24h at 37 ℃. Strain 109-H (see Table 2) was prepared which produced hydroxyadipic acid.
TABLE 2 plasmids and strains
Figure BDA0003047386260000111
Figure BDA0003047386260000121
In Table 2, the T7 promoter is the original promoter of pETDuet-1 plasmid; the ColE1 replicon is a replicon of pETDuet-1 plasmid; the pETDuet-1 plasmid is commercially available.
Example 3:
(1) Shake flask culture of genetic engineering strain for producing hydroxy adipic acid
A single colony is picked from a plate of a strain 109-H (the strain carries pET-H plasmid) for producing hydroxyl adipic acid, the single colony is inoculated into 4mL of liquid LB with resistance, the liquid LB with resistance is cultured for 12H at 37 ℃, then the bacterial liquid is inoculated into 20mL of LB seed culture medium (10 g/L of peptone, 5g/L of yeast powder, 5g/L of NaCl, and sterilized for 25min at 116 ℃), the bacterial liquid is inoculated into 50mL of fermentation medium according to 10 percent of inoculum size, lysine with corresponding concentration is added into the culture medium when needed, when the bacterial grows to OD600= 0.6-0.8, IPTG with final concentration of 1mM is added for induction, after the IPTG is added, the fermentation temperature is changed from 37 ℃ to 30 ℃, the rotation speed is 200rpm, and the culture time is 72H.
(2) Biological quantity measurement
Adding appropriate amount of sterile distilled water into the fermentation liquid, diluting until OD600 is 0.2-0.8, placing 200 μ L diluted fermentation liquid into 96-well plate, and measuring absorbance at 600nm wavelength with microplate reader (Thermo).
(3) Sample processing and detection
The fermentation broth was centrifuged at 12000rpm for 10min at 4 ℃. mu.L of the supernatant was diluted 20 times with 950. Mu.L of ultrapure water to obtain a solution A, and 100. Mu.L of the 20-fold diluted solution (i.e., solution A) was diluted 10 times with 900. Mu.L of methanol containing 0.1 vol% of formic acid to obtain a 200-fold diluted solution. After mixing, the mixture was centrifuged at 15000rpm for 15min at 4 ℃. The supernatant was filtered through a 0.22 μm organic phase filter. Product identification was then performed by gas chromatography-mass spectrometry (7890B-5977A, agilent Technologies) and quantitative detection was performed by liquid chromatography-mass spectrometry (QTRAP 5500, AB SCIEX) or high performance liquid chromatography (UltMate 3000, thermo). The final yield of strain 109-H (which carries the pET-H plasmid) is shown in FIGS. 2 and 3, with 5g/L lysine added in vitro and de novo synthesis yields of 268mg/L and 13mg/L, respectively.
It should be noted that the above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention, and any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Sequence listing
<110> Beijing university of chemical industry
<120> gene engineering bacterium for producing hydroxy adipic acid
<130> RB2100681-FF
<160> 40
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1161
<212> DNA
<213> (Gene lysDH-Am encoding lysine dehydrogenase)
<400> 1
atgaaagtgc tcgtgcttgg agcggggctg atgggaaaag aagcggcgcg cgatttagtg 60
caaagccaag atgttgaggc ggtgacgttg gcggatgtcg atttggccaa ggcggagcag 120
acggtgcggc agcttcattc cgaaaagctt gccgctgtgc gggtggatgc cggcgatccg 180
caacaactgg cagcggccat gcaagggcat gatgtcgtcg tcaatgcctt gttttaccgc 240
ttcaatgaaa cggtggcgaa aacagcgatc gaaacgggtg ttcattccgt tgatttaggc 300
ggccatatcg gccatattac cgatcgggtg cttgaaatgc acgaggaggc tcagaaagcg 360
ggggtgacga tcattccgga tcttggcgtc gcgccgggga tgatcaacat tttatccggc 420
tatggggcga gtcaactcga tgaggtggaa tccatcttgc tgtatgttgg cggcatcccc 480
gtccgccctg agccgccgct cgagtacaac catgtgtttt cgctcgaggg gctgcttgac 540
cattacaccg atccgtctct cattatccgc gacggccaaa agcaggaagt gccgtcgctt 600
tcggaagtcg agccgattta tttcgaccgg ttcgggccgc ttgaagcgtt tcacacctca 660
ggcgggacgt cgacgctctc gcgctcgttt ccgaacttga agcggctcga gtacaaaacg 720
atccgctacc gcggccatgc agaaaaattt aagctgctcg tcgatttgaa cttgacgcgc 780
cacgatgtgg aagtggaggt caatggatgc aaagtcaaac cgcgcgatgt gctgctttcc 840
gtcctgaagc cgctgcttga tttgaaaggg aaagatgatg tggtgttgct tcgggtcatc 900
gtcggcggta gaaaagatgg aaaagaaacg gtgctggaat acgaaaccgt cacgttcaat 960
gaccgcgaaa ataaggtgac ggcgatggcg cgtacgacgg cctacaccat ttccgctgtc 1020
gcccagctca tcggccgtgg ggtgatcaca aagcgcggcg tctatccgcc ggagcaagcc 1080
gtgccaggag aggtgtatat tgaggaaatg aaaaggcgcg gggtcgtgat tagcgagaaa 1140
caaacgattc gcccttgcta a 1161
<210> 2
<211> 1161
<212> DNA
<213> (codon-optimized lysine dehydrogenase-encoding gene lysDH-Am)
<400> 2
atgaaagttc tggttctggg tgctggtctg atgggtaaag aagctgctcg tgacctggtt 60
cagtctcagg acgttgaagc tgttaccctg gctgacgttg acctggctaa agctgaacag 120
accgttcgtc agctgcactc tgaaaaactg gctgctgttc gtgttgacgc tggtgacccg 180
cagcagctgg ctgctgctat gcagggtcac gacgttgttg ttaacgctct gttctaccgt 240
ttcaacgaaa ccgttgctaa aaccgctatc gaaaccggtg ttcactctgt tgacctgggt 300
ggtcacatcg gtcacatcac cgaccgtgtt ctggaaatgc acgaagaagc tcagaaagct 360
ggtgttacca tcatcccgga cctgggtgtt gctccgggta tgatcaacat cctgtctggt 420
tacggtgctt ctcagctgga cgaagttgaa tctatcctgc tgtacgttgg tggtatcccg 480
gttcgtccgg aaccgccgct ggaatacaac cacgttttct ctctggaagg tctgctggac 540
cactacaccg acccgtctct gatcatccgt gacggtcaga aacaggaagt tccgtctctg 600
tctgaagttg aaccgatcta cttcgaccgt ttcggtccgc tggaagcttt ccacacctct 660
ggtggtacct ctaccctgtc tcgttctttc ccgaacctga aacgtctgga atacaaaacc 720
atccgttacc gtggtcacgc tgaaaaattc aaactgctgg ttgacctgaa cctgacccgt 780
cacgacgttg aagttgaagt taacggttgc aaagttaaac cgcgtgacgt tctgctgtct 840
gttctgaaac cgctgctgga cctgaaaggt aaagacgacg ttgttctgct gcgtgttatc 900
gttggtggtc gtaaagacgg taaagaaacc gttctggaat acgaaaccgt taccttcaac 960
gaccgtgaaa acaaagttac cgctatggct cgtaccaccg cttacaccat ctctgctgtt 1020
gctcagctga tcggtcgtgg tgttatcacc aaacgtggtg tttacccgcc ggaacaggct 1080
gttccgggtg aagtttacat cgaagaaatg aaacgtcgtg gtgttgttat ctctgaaaaa 1140
cagaccatcc gtccgtgcta a 1161
<210> 3
<211> 1149
<212> DNA
<213> (Gene lysDH-Bt encoding lysine dehydrogenase)
<400> 3
atgaaaatcg gtgtgttagg ctctggactt atgggcaaag aagcagcccg ggacttggtg 60
gaaagttccg gtgtaacgac tgtcggattg gctgatcttg attttaaccg tgcaaaaaca 120
gtatgtgaac aaattcaatc tcaaaaattg actccctttc aagtcgatgc tcgtaatgaa 180
gaagaactgg cgaattttat gagtcaattt gattgtatta ttaatgcact attttactcg 240
tttaatgaaa tcgtcgcaaa aacagcaatt aaagtgggtg ttcattctgt agatttaggt 300
ggtcatatcg gtcatatgac ggataaagta cttgcactaa aaaatgatgc gaaaaacgcc 360
ggagttacca ttatccctga tttaggggta gctccgggta tgattaatat tttatcaggt 420
tatggataca gtaagcttga taaagcaaca gcggtaaaat tgtacgtggg cggaattccg 480
gtaagaccgg atccaccatt agaatacaat catgtgttct caatggaagg tttacttgat 540
cactacactg atccttcttt aattattcgt aatggaaaat taatggttgt accatcgtta 600
tctgaaatag aaccgattta ttttgaaaaa tttggtccac tggaagcctt tcatacatca 660
ggcggaactt caacattatc tatttcttat ccggaattag aaacattgga atataaaacg 720
attcgttatc caggtcatgc gaaaaagatg aaattacttg ttgatttaaa tcttacaaga 780
acagattatg aagttgaagt tgacggaaaa accattaatc caaggaaagt actattaaag 840
gtcctagatc cgattgttga attaaaagat aaagacgatg tcactttatt acgggtaatc 900
gtttcagggg aaaaagattt aaatccagct acttatacgt atgaaatggt gacatttaag 960
gattcgacta aaaatatcac cgcgatggcg agagcaacag cgaatacgat ttcagttgtt 1020
gcacaaatga ttgcaaatgg tattattaca aaaagaggcg tttatccacc tgaacaaatt 1080
gttcccggtg atatttatat tgaagaaatg aaaaagcgtg gtgtggttat atcggaaaat 1140
ttaagttga 1149
<210> 4
<211> 1149
<212> DNA
<213> (codon-optimized gene lysDH-Bt encoding lysine dehydrogenase)
<400> 4
atgaaaattg gcgtgctggg cagcggcctg atgggcaaag aagcggcgcg tgatttagtt 60
gaaagcagcg gtgttaccac cgtgggtctg gcggatttag attttaatcg cgcgaaaacc 120
gtgtgcgaac agattcagag ccagaaactg accccgtttc aggtggatgc gcgcaatgaa 180
gaagaactgg cgaattttat gagccagttt gattgcatta tcaacgcgct gttttacagc 240
ttcaatgaga tcgtggcgaa aaccgcgatt aaagtgggcg tgcatagcgt ggatctgggc 300
ggccatattg gccatatgac cgataaagtg ctggcgctga aaaatgatgc gaaaaatgcg 360
ggcgtgacca ttattccgga tctgggcgtt gcgccgggca tgattaatat tctgagcggc 420
tatggctata gcaaactgga taaagcgacc gcggtgaaac tgtatgtggg cggcattccg 480
gtgcgcccgg atcctccatt agaatataat catgtgttta gcatggaggg cctgctggat 540
cattataccg atccgagcct gattattcgc aatggcaaac tgatggtggt gccgagcctg 600
agcgaaattg aaccgattta ttttgagaag ttcggcccgc tggaagcgtt tcataccagc 660
ggcggtacca gcaccttaag cattagctat ccggaactgg aaaccctgga atataaaacc 720
attcgctatc cgggccatgc gaaaaaaatg aaactgctgg tggatctgaa tctgacccgc 780
accgattatg aagtggaagt ggatggcaaa accattaatc cgcgcaaagt gctgctgaaa 840
gtgctggatc cgattgtgga actgaaagat aaagatgacg tgaccctgct gcgcgtgatt 900
gtgagcggcg aaaaagatct gaatccggcg acctatacct atgaaatggt gacctttaaa 960
gacagcacca agaatattac cgcgatggcg cgcgcgaccg cgaatactat tagcgttgtt 1020
gcgcaaatga ttgcgaatgg cattattacc aaacgcggcg tgtatccgcc ggaacagatt 1080
gtgccaggtg atatttatat tgaagagatg aaaaagcgcg gcgtggtgat tagcgaaaat 1140
ctgagctaa 1149
<210> 5
<211> 1176
<212> DNA
<213> (Gene lysDH-Ab encoding lysine dehydrogenase)
<400> 5
atgagccgga agaccaggat cgccctgctc ggcgccggcc gcgtcggtgc ggcaatggcg 60
ctcgatctcg ccgccgaccc cgggctcgag gtcgtggtgg ccgaccgcga cgagcgggcg 120
ctcgccccgc tggcggcgcg cgggctcgcc gtgcggaagg ccgatctcgg cggccccggc 180
ctcgacgaaa tcctcgccgc ctgcgatctc gccgtcggcg cggtacccgg ctacctcggc 240
ttcgccaccg cccgccgggt catcgaagcc ggccgggggc tcgtcgacat ctccttcttc 300
ccggaagacg ccttcgcgct cgacgagctc gcgcgcgagc gcggggtcac ggcgctcgtc 360
gactgcggcg tcgcccccgg cctctcgaac ctcctgctcg gcgccgtggc ggcccagatg 420
gagcgcgtcg aacggttcac ctgctacgtc ggcggcctgc cggagcaccc gcagccgccc 480
tgggagtaca aggcaccgtt ctctccggtc gacgtgctcg aggagtacac ccggccggcc 540
cgctacgtgc gcggcggccg gatcgtcacc gagccggcgc tcgccggcct cgaatggcgc 600
gaattcccgg ggatcggctc cctcgaggcg tttctcaccg acggcctccg cagcctgctg 660
accacgatgc cgcagatccc ggagatgcgg gagctgacgc tccgctaccc gggacacgtg 720
gcgaaggtgc agctgctgcg cgacagcggc ttcctctctt ccgaggcgct ggaggtcagc 780
ggcacccggg tgcggccggt cgacctcgcg ttgcggctgc tcctgccgca ctgggagttc 840
gctcccggcg agcccgatct gaccgtcttc gaggtgatcg tcgagggagt ggaaaagggc 900
ggtcgcgtgc gccgggtctt cttcttcctc gaccgtttcg acgccgcgac cggtacgctc 960
tcgatggcgc gcaccacggg ttataccggc accgccatcg tccggctcgt cgcccgcggc 1020
ctcttccacc gcccggggat ccatcctccc gagcacctcg cgaccgcgcc cggctgcgtc 1080
gacttcgtcc tgggcgagct cgccgcccgc ggcatccgcc tggcggaaag gagggagtcc 1140
ctcccgcccg cggcgactca ctcctcgtcg agatag 1176
<210> 6
<211> 1176
<212> DNA
<213> (codon-optimized lysine dehydrogenase-encoding gene lysDH-Ab)
<400> 6
atgtctcgta aaacccgtat cgctctgctg ggtgctggtc gtgttggtgc tgctatggct 60
ctggacctgg ctgctgaccc gggtctggaa gttgttgttg ctgaccgtga cgaacgtgct 120
ctggctccgc tggctgctcg tggtctggct gttcgtaaag ctgacctggg tggtccgggt 180
ctggacgaaa tcctggctgc ttgcgacctg gctgttggtg ctgttccggg ttacctgggt 240
ttcgctaccg ctcgtcgtgt tatcgaagct ggtcgtggtc tggttgacat ctctttcttc 300
ccggaagacg ctttcgctct ggacgaactg gctcgtgaac gtggtgttac cgctctggtt 360
gactgcggtg ttgctccggg tctgtctaac ctgctgctgg gtgctgttgc tgctcagatg 420
gaacgtgttg aacgtttcac ctgctacgtt ggtggtctgc cggaacaccc gcagccgccg 480
tgggaataca aagctccgtt ctctccggtt gacgttctgg aagaatacac ccgtccggct 540
cgttacgttc gtggtggtcg tatcgttacc gaaccggctc tggctggtct ggaatggcgt 600
gaattcccgg gtatcggttc tctggaagct ttcctgaccg acggtctgcg ttctctgctg 660
accaccatgc cgcagatccc ggaaatgcgt gaactgaccc tgcgttaccc gggtcacgtt 720
gctaaagttc agctgctgcg tgactctggt ttcctgtctt ctgaagctct ggaagtttct 780
ggtacccgtg ttcgtccggt tgacctggct ctgcgtctgc tgctgccgca ctgggaattc 840
gctccgggtg aaccggacct gaccgttttc gaagttatcg ttgaaggtgt tgaaaaaggt 900
ggtcgtgttc gtcgtgtttt cttcttcctg gaccgtttcg acgctgctac cggtaccctg 960
tctatggctc gtaccaccgg ttacaccggt accgctatcg ttcgtctggt tgctcgtggt 1020
ctgttccacc gtccgggtat ccacccgccg gaacacctgg ctaccgctcc gggttgcgtt 1080
gacttcgttc tgggtgaact ggctgctcgt ggtatccgtc tggctgaacg tcgtgaatct 1140
ctgccgccgg ctgctaccca ctcttcttct cgttaa 1176
<210> 7
<211> 1131
<212> DNA
<213> (Gene lysDH-Bb encoding lysine dehydrogenase)
<400> 7
atgagtaaaa ttatagtatt aggctcaggt atggttggca gtgctatggc attggactta 60
gccacaaatc atcaggttac tgttgccgac attaacactg cttccttaga aaaactaaag 120
gcaaagagca acgcaataaa tgtgttgact gctgatgtac gcaactcagc tgaattaata 180
aagatgcttg agccattcga cctggtggta tgtgcagtgc cgggatttct cggatatcaa 240
accttaaaaa acattattga agcaggaaaa aataccgttg atatttcatt cttccctgaa 300
aattgtcttg agctgaatga ccttgctgta caaaaaaatg ttacggcaat tgtagattgc 360
ggagtagctc ccggaatggg aaacattatt ttaggatatt ataatgagaa gtttcaaatt 420
acagattttg aatgtttagt aggcggtttg cctaagataa aaaaatggcc ttttgcttat 480
aaagcacctt tctcacctat tgatgtgata gaagaataca ctcgtcctgc gcgttatgtg 540
gagaatggtt gtatcgtaac aagagaagca ctgagtgatg tagagcaggt ggagtttgaa 600
ggtgttggaa cactggagtc ttttaacagt gatggtttac gttccttgct gttcaccatg 660
ccgcacataa aaaacatgaa agaaaaaaca ctgcggtatc ccggccatgt tgaatatgtc 720
agggtgctca ggtcaacagg ctttttcagt accacacctg tagaaataaa tggaacaaaa 780
atccgtccga tagattttac ctcacgtttg ctttttgatg aatggaaatt gggcgaaaca 840
gaagaagagc gtaccgttat gcgtattacc ataaagggtt ttgatgataa aggacaacaa 900
accatcgttt atcatttgca tgacaattac aaccatgcca ccaacacttc ttcaatggcg 960
cgtacaacag gatatacagc cacagctgct gcacatttaa tcttaaacgg tatgtttgat 1020
aacaaaggag tgtttccacc ggagttggtt ggaaaatatg aaaactgttt tcactccatc 1080
atgcaatacc ttaacgaaag aggtgttcaa tatgtaaaaa cacaatactg a 1131
<210> 8
<211> 1131
<212> DNA
<213> (codon-optimized lysine dehydrogenase-encoding gene lysDH-Bb)
<400> 8
atgtctaaaa tcatcgttct gggttctggt atggttggtt ctgctatggc tctggacctg 60
gctaccaacc accaggttac cgttgctgac atcaacaccg cttctctgga aaaactgaaa 120
gctaaatcta acgctatcaa cgttctgacc gctgacgttc gtaactctgc tgaactgatc 180
aaaatgctgg aaccgttcga cctggttgtt tgcgctgttc cgggtttcct gggttaccag 240
accctgaaaa acatcatcga agctggtaaa aacaccgttg acatctcttt cttcccggaa 300
aactgcctgg aactgaacga cctggctgtt cagaaaaacg ttaccgctat cgttgactgc 360
ggtgttgctc cgggtatggg taacatcatc ctgggttact acaacgaaaa attccagatc 420
accgacttcg aatgcctggt tggtggtctg ccgaaaatca aaaaatggcc gttcgcttac 480
aaagctccgt tctctccgat cgacgttatc gaagaataca cccgtccggc tcgttacgtt 540
gaaaacggtt gcatcgttac ccgtgaagct ctgtctgacg ttgaacaggt tgaattcgaa 600
ggtgttggta ccctggaatc tttcaactct gacggtctgc gttctctgct gttcaccatg 660
ccgcacatca aaaacatgaa agaaaaaacc ctgcgttacc cgggtcacgt tgaatacgtt 720
cgtgttctgc gttctaccgg tttcttctct accaccccgg ttgaaatcaa cggtaccaaa 780
atccgtccga tcgacttcac ctctcgtctg ctgttcgacg aatggaaact gggtgaaacc 840
gaagaagaac gtaccgttat gcgtatcacc atcaaaggtt tcgacgacaa aggtcagcag 900
accatcgttt accacctgca cgacaactac aaccacgcta ccaacacctc ttctatggct 960
cgtaccaccg gttacaccgc taccgctgct gctcacctga tcctgaacgg tatgttcgac 1020
aacaaaggtg ttttcccgcc ggaactggtt ggtaaatacg aaaactgctt ccactctatc 1080
atgcagtacc tgaacgaacg tggtgttcag tacgttaaaa cccagtacta a 1131
<210> 9
<211> 1494
<212> DNA
<213> (Gene Psefu _1272 encoding aminoadipate semialdehyde dehydrogenase)
<400> 9
atggtcaact cgctactcga acgtctcggt gtcagcgcca gcgcctacca gaacggcagt 60
cacgcggttc atacgccgat cgacggcagc cagatcggca gcctgaccct tgagggcgca 120
gacgccgtgc gtgccaagat caccgccggc cacgacgcct ttctggcctg gcgcaaggtg 180
ccggcgccgc ggcgtggcga gctggtgcgt ctgttcggcg aggtgctgcg tgagcacaag 240
gccgatctcg gcgagctggt gtccatcgaa gccggcaaga tcactcagga aggcctgggc 300
gaagtgcagg aaatgatcga catctgcgac ttcgccgtcg gcctgtcgcg ccagctctac 360
ggcctgacca tcgcctccga gcgctcgggc caccatatgc gtgaaacctg gcacccgctg 420
ggcgtggtcg gcgtgatcag cgccttcaac ttcccggtcg ccgtgtgggc gtggaacacc 480
accctggccc tggtcgccgg caacgcggtg atctggaagc cgtcggaaaa gaccccgctg 540
accgccctgg cctcccaggc actgttcgac aaggccctcg agcgcttcgg cagcgacgcc 600
ccgcaaggcc tggcgcaact ggtgatcggt gatcgcgaag ccggcgaagt gctggtcgac 660
gacccgcgcg tgccgctgat cagcgcgacc ggcagcaccc gcatgggccg cgaagtcgcc 720
ccgcgggtgg ctgcccgctt cggccgcagc attctggaac tgggcggcaa caacgccatg 780
atcctcgccc ccagcgccga cctcgacctg gccgtgcgcg gcatcctgtt cagcgccgtc 840
ggcaccgccg gccagcgttg caccaccctg cgccgcctga tcgtccatcg ttcgatcaag 900
gacgaggtgg tcgcccgcgt caaagccgcc tacgccaagg tacgcatcgg cgacccgcgc 960
cagggcaacc tgatcggccc gctgatcgac aagcaggcgt tcagcgccat gcaggacgcc 1020
ctcgccaagg cccgcgacga aggcggccag gtgttcggtg gcgagcgcca gctggccgac 1080
accttcccca acggctacta cgtgagccct gccatcgtcg agatgccggg ccagactgca 1140
gtggtgcgcc atgaaacctt cgcgccgatc ctctacgtgc tcgcctacga cgacttcgaa 1200
gaggcgctgc gcctgaacaa cgaagtgccc cagggcctgt cctcgtgcat cttcaccacc 1260
gacgtgcgtg aagccgaagc cttccagggc gcggccggca gcgactgcgg catcgccaac 1320
gtcaacatcg gcaccagcgg tgcggaaatc ggcggcgcct ttggcggcga gaaggaaacc 1380
ggtggcggtc gcgagtccgg ctccgatgcc tggaaggcct acatgcgccg ccagaccaat 1440
accgtcaact actcccgaga gttgccgctg gcccagggca tcgtgttcga ctga 1494
<210> 10
<211> 1494
<212> DNA
<213> (codon-optimized Gene Psefu _1272 encoding aminoadipate semialdehyde dehydrogenase)
<400> 10
atggtgaata gcctgctgga acgcctgggc gtgagcgcaa gcgcgtatca aaatggcagc 60
catgcggttc ataccccgat tgatggcagc cagattggca gcctgaccct ggaaggtgcg 120
gatgcggttc gtgcaaaaat taccgcgggc catgatgcgt ttctggcgtg gcgtaaagtg 180
ccggcgccaa gacgtggtga attagtgcgt ttatttggtg aagtgctgcg cgaacataaa 240
gcggatctgg gcgaactggt gagcattgaa gcgggcaaaa ttacccagga aggcctgggc 300
gaagtgcagg aaatgattga tatttgcgat ttcgcggtgg gcctgagccg ccaattgtat 360
ggcttgacca ttgcgagcga acgcagcggc catcatatgc gcgaaacctg gcatccgctg 420
ggcgttgttg gtgtgattag cgcgtttaat tttccggtgg cggtgtgggc gtggaatacc 480
actttagcgt tagttgcggg caatgcggtt atttggaaac cgagcgaaaa aaccccgctg 540
accgcgctgg cgagtcaagc gttatttgat aaagcgctgg aacgctttgg cagcgatgcg 600
ccgcaaggtt tagcgcaatt ggttattggt gatcgcgaag cgggtgaagt gctggtggat 660
gatccgcgcg ttccgttaat tagcgcgacc ggcagcaccc gtatgggtcg tgaagtggcg 720
ccaagagttg cggcgcgttt tggtcgtagt attttggaat taggcggcaa taatgcgatg 780
attctggcgc cgagcgcgga tctggatctg gcggttcgtg gtattctgtt tagcgcggtg 840
ggcaccgcgg gccaacgttg tactacctta cgtcgcttaa ttgtgcatcg cagcattaaa 900
gatgaagtgg tggcgcgcgt gaaagcggcg tatgcgaaag ttcgtattgg cgatccgcgc 960
cagggtaatc tgattggccc attaattgat aaacaggcgt ttagcgcgat gcaggatgcg 1020
ctggcgaaag cgagagatga aggtggccaa gtttttggcg gcgaacgcca actggcggat 1080
acctttccaa atggctatta tgtgagcccg gcgattgtgg aaatgccggg ccaaaccgca 1140
gttgtgcgtc atgaaacctt tgcgccgatt ctgtatgtgc tggcgtatga tgattttgag 1200
gaagcgctgc gcctgaataa tgaagtgccg cagggcctga gcagctgcat ttttaccacc 1260
gatgtgcgcg aagcggaagc gtttcagggc gcggcgggta gtgattgtgg tattgcgaat 1320
gttaatattg gcaccagcgg cgcggaaatt ggcggcgcat ttggtggtga aaaagaaacc 1380
ggtggcggcc gcgaaagcgg cagcgatgcg tggaaagcgt atatgcgccg ccagaccaat 1440
accgtgaatt atagccgcga actgccgctg gcgcagggca ttgtttttga ttaa 1494
<210> 11
<211> 1620
<212> DNA
<213> (Gene ALDH7A1 encoding aminoadipate semialdehyde dehydrogenase)
<400> 11
atgtggcgcc ttcctcgcgc gctgtgtgtg cacgctgcaa agaccagcaa gctctctgga 60
ccttggagca ggcctgccgc cttcatgtcc actctcctca tcaatcagcc ccagtatgcg 120
tggctgaaag agctggggct ccgcgaggaa aacgagggcg tgtataatgg aagctgggga 180
ggccggggag aggttattac gacctattgc cctgctaaca acgagccaat agcaagagtc 240
cgacaggcca gtgtggcaga ctatgaagaa actgtaaaga aagcaagaga agcatggaaa 300
atctgggcag atattcctgc tccaaaacga ggagaaatag taagacagat tggcgatgcc 360
ttgcgggaga agatccaagt actaggaagc ttggtgtctt tggagatggg gaaaatctta 420
gtggaaggtg tgggtgaagt tcaggagtat gtggatatct gtgactatgc tgttggttta 480
tcaaggatga ttggaggacc tatcttgcct tctgaaagat ctggccatgc actgattgag 540
cagtggaatc ccgtaggcct ggttggaatc atcacggcat tcaatttccc tgtggcagtg 600
tatggttgga acaacgccat cgccatgatc tgtggaaatg tctgcctctg gaaaggagct 660
ccaaccactt ccctcattag tgtggctgtc acaaagataa tagccaaggt tctggaggac 720
aacaagctgc ctggtgcaat ttgttccttg acttgtggtg gagcagatat tggcacagca 780
atggccaaag atgaacgagt gaacctgctg tccttcactg ggagcactca ggtgggaaaa 840
caggtgggcc tgatggtgca ggagaggttt gggagaagtc tgttggaact tggaggaaac 900
aatgccatta ttgcctttga agatgcagac ctcagcttag ttgttccatc agctctcttc 960
gctgctgtgg gaacagctgg ccagaggtgt accactgcga ggcgactgtt tatacatgaa 1020
agcatccatg atgaggttgt aaacagactt aaaaaggcct atgcacagat ccgagttggg 1080
aacccatggg accctaatgt tctctatggg ccactccaca ccaagcaggc agtgagcatg 1140
tttcttggag cagtggaaga agcaaagaaa gaaggtggca cagtggtcta tgggggcaag 1200
gttatggatc gccctggaaa ttatgtagaa ccgacaattg tgacaggtct tggccacgat 1260
gcgtccattg cacacacaga gacttttgct ccgattctct atgtctttaa attcaagaat 1320
gaagaagagg tctttgcatg gaataatgaa gtaaaacagg gactttcaag tagcatcttt 1380
accaaagatc tgggcagaat ctttcgctgg cttggaccta aaggatcaga ctgtggcatt 1440
gtaaatgtca acattccaac aagtggggct gagattggag gtgcctttgg aggagaaaag 1500
cacactggtg gtggcaggga gtctggcagt gatgcctgga aacagtacat gagaaggtct 1560
acttgtacta tcaactacag taaagacctt cctctggccc aaggaatcaa gtttcagtaa 1620
<210> 12
<211> 1620
<212> DNA
<213> (codon-optimized Gene ALDH7A1 encoding aminoadipate semialdehyde dehydrogenase)
<400> 12
atgtggcgtc tgccgcgtgc tctgtgcgtt cacgctgcta aaacctctaa actgtctggt 60
ccgtggtctc gtccggctgc tttcatgtct accctgctga tcaaccagcc gcagtacgct 120
tggctgaaag aactgggtct gcgtgaagaa aacgaaggtg tttacaacgg ttcttggggt 180
ggtcgtggtg aagttatcac cacctactgc ccggctaaca acgaaccgat cgctcgtgtt 240
cgtcaggctt ctgttgctga ctacgaagaa accgttaaaa aagctcgtga agcttggaaa 300
atctgggctg acatcccggc tccgaaacgt ggtgaaatcg ttcgtcagat cggtgacgct 360
ctgcgtgaaa aaatccaggt tctgggttct ctggtttctc tggaaatggg taaaatcctg 420
gttgaaggtg ttggtgaagt tcaggaatac gttgacatct gcgactacgc tgttggtctg 480
tctcgtatga tcggtggtcc gatcctgccg tctgaacgtt ctggtcacgc tctgatcgaa 540
cagtggaacc cggttggtct ggttggtatc atcaccgctt tcaacttccc ggttgctgtt 600
tacggttgga acaacgctat cgctatgatc tgcggtaacg tttgcctgtg gaaaggtgct 660
ccgaccacct ctctgatctc tgttgctgtt accaaaatca tcgctaaagt tctggaagac 720
aacaaactgc cgggtgctat ctgctctctg acctgcggtg gtgctgacat cggtaccgct 780
atggctaaag acgaacgtgt taacctgctg tctttcaccg gttctaccca ggttggtaaa 840
caggttggtc tgatggttca ggaacgtttc ggtcgttctc tgctggaact gggtggtaac 900
aacgctatca tcgctttcga agacgctgac ctgtctctgg ttgttccgtc tgctctgttc 960
gctgctgttg gtaccgctgg tcagcgttgc accaccgctc gtcgtctgtt catccacgaa 1020
tctatccacg acgaagttgt taaccgtctg aaaaaagctt acgctcagat ccgtgttggt 1080
aacccgtggg acccgaacgt tctgtacggt ccgctgcaca ccaaacaggc tgtttctatg 1140
ttcctgggtg ctgttgaaga agctaaaaaa gaaggtggta ccgttgttta cggtggtaaa 1200
gttatggacc gtccgggtaa ctacgttgaa ccgaccatcg ttaccggtct gggtcacgac 1260
gcttctatcg ctcacaccga aaccttcgct ccgatcctgt acgttttcaa attcaaaaac 1320
gaagaagaag ttttcgcttg gaacaacgaa gttaaacagg gtctgtcttc ttctatcttc 1380
accaaagacc tgggtcgtat cttccgttgg ctgggtccga aaggttctga ctgcggtatc 1440
gttaacgtta acatcccgac ctctggtgct gaaatcggtg gtgctttcgg tggtgaaaaa 1500
cacaccggtg gtggtcgtga atctggttct gacgcttgga aacagtacat gcgtcgttct 1560
acctgcacca tcaactactc taaagacctg ccgctggctc agggtatcaa attccagtaa 1620
<210> 13
<211> 1491
<212> DNA
<213> (Gene PMI27 encoding aminoadipate semialdehyde dehydrogenase)
<400> 13
atggttgccg cattgcttga tcgtcttggt gtgaacccgg ccctgtacca gaacggcaaa 60
gtgccggtgc attcgccgat cgatggcagc cagatcgccg ccgtgaactg ggaaggcgcc 120
gctgaagtcg agcagcacat cagtcgtgca gatcatgcgt tcgaattgtg gcgcaaggtc 180
ccggccccgc gccgtggtga actggtccgc caactgggcg atatcctgcg tgaatacaag 240
gccgaccttg gcgagctggt gtcctgggaa gccggcaaga tcactcagga aggcctgggt 300
gaagttcagg aaatgatcga catctgcgat ttcgccgtcg gcctgtcccg ccagctgtac 360
ggtttgacca tcgcctccga gcgtccgggc caccacatgc gcgaaacctg gcacccgctg 420
ggcgtcgttg gcgtcatcag cgcattcaac ttcccggttg ccgtctgggc ctggaacacc 480
gcgctggcgc tggtctgcgg caacccggtg atctggaaac cgtcggagaa aacgccactg 540
accgcactgg cctgtcaggc actgttcgac cgtgtactga agaacttcag cgatgcacct 600
ccgcacctga gtcaggtgat tatcggcggt cgcgatgccg gcgaagccct ggtcgatgac 660
ccgcgtgtcg cgctgatcag cgccaccggc agcacccgca tgggccgtga agtggcgccg 720
aaaatcgctg cacgtttcgc tcgcagcatt ctggaactgg gcggtaacaa cgccatgatc 780
ctcggcccaa gcgccgacct ggacatggcc gtacgagcca tcctgttcag cgccgtcggc 840
actgccggtc agcgttgcac cacgttgcgt cgcctgattg cccatgaatc ggtgaaagaa 900
gaaatcgtca cccgcctgaa agccgcgtac tccaaagtgc gtatcggcaa ccctctggaa 960
ggcaatctga tcggtccgct gatcgacaaa cacagcttcg aaaacatgca ggatgcgctt 1020
gagcaggcct tgagcgaagg cggccgggtg ttcggcggca agcgccaact ggaagacaaa 1080
ttccctaacg cttattacgt ctcgccggcc atcgttgaaa tgccggagca gagcgatgtg 1140
gtttgccacg aaaccttcgc accgattctg tacgtggtcg gttacaagga cttcgacgaa 1200
gcgctgcgcc tgaacaacgc cgtgccacaa ggcctgtcgt cgtgcatctt caccactgac 1260
gtgcgtgaag ccgagcagtt catgtcggcg gtgggcagcg actgcggcat cgccaacgtc 1320
aacatcggcc cgagcggcgc ggaaatcggc ggggcgtttg gcggtgagaa agaaacgggc 1380
ggcggtcgtg agtccggttc cgatgcatgg cgcggctaca tgcgccgtca gaccaacacc 1440
gtgaactatt cgctggagtt gccgttggct cagggtatta ccttcgactg a 1491
<210> 14
<211> 1491
<212> DNA
<213> (codon-optimized Gene PMI27 encoding aminoadipate semialdehyde dehydrogenase)
<400> 14
atggttgctg ctctgctgga ccgtctgggt gttaacccgg ctctgtacca gaacggtaaa 60
gttccggttc actctccgat cgacggttct cagatcgctg ctgttaactg ggaaggtgct 120
gctgaagttg aacagcacat ctctcgtgct gaccacgctt tcgaactgtg gcgtaaagtt 180
ccggctccgc gtcgtggtga actggttcgt cagctgggtg acatcctgcg tgaatacaaa 240
gctgacctgg gtgaactggt ttcttgggaa gctggtaaaa tcacccagga aggtctgggt 300
gaagttcagg aaatgatcga catctgcgac ttcgctgttg gtctgtctcg tcagctgtac 360
ggtctgacca tcgcttctga acgtccgggt caccacatgc gtgaaacctg gcacccgctg 420
ggtgttgttg gtgttatctc tgctttcaac ttcccggttg ctgtttgggc ttggaacacc 480
gctctggctc tggtttgcgg taacccggtt atctggaaac cgtctgaaaa aaccccgctg 540
accgctctgg cttgccaggc tctgttcgac cgtgttctga aaaacttctc tgacgctccg 600
ccgcacctgt ctcaggttat catcggtggt cgtgacgctg gtgaagctct ggttgacgac 660
ccgcgtgttg ctctgatctc tgctaccggt tctacccgta tgggtcgtga agttgctccg 720
aaaatcgctg ctcgtttcgc tcgttctatc ctggaactgg gtggtaacaa cgctatgatc 780
ctgggtccgt ctgctgacct ggacatggct gttcgtgcta tcctgttctc tgctgttggt 840
accgctggtc agcgttgcac caccctgcgt cgtctgatcg ctcacgaatc tgttaaagaa 900
gaaatcgtta cccgtctgaa agctgcttac tctaaagttc gtatcggtaa cccgctggaa 960
ggtaacctga tcggtccgct gatcgacaaa cactctttcg aaaacatgca ggacgctctg 1020
gaacaggctc tgtctgaagg tggtcgtgtt ttcggtggta aacgtcagct ggaagacaaa 1080
ttcccgaacg cttactacgt ttctccggct atcgttgaaa tgccggaaca gtctgacgtt 1140
gtttgccacg aaaccttcgc tccgatcctg tacgttgttg gttacaaaga cttcgacgaa 1200
gctctgcgtc tgaacaacgc tgttccgcag ggtctgtctt cttgcatctt caccaccgac 1260
gttcgtgaag ctgaacagtt catgtctgct gttggttctg actgcggtat cgctaacgtt 1320
aacatcggtc cgtctggtgc tgaaatcggt ggtgctttcg gtggtgaaaa agaaaccggt 1380
ggtggtcgtg aatctggttc tgacgcttgg cgtggttaca tgcgtcgtca gaccaacacc 1440
gttaactact ctctggaact gccgctggct cagggtatca ccttcgacta a 1491
<210> 15
<211> 1503
<212> DNA
<213> (Gene encoding aminoadipate transaminase ARO 8)
<400> 15
atgactttac ctgaatcaaa agacttttct tacttgtttt cggatgaaac caatgctcgt 60
aaaccatccc cattgaaaac ctgcatccat cttttccaag atcctaacat tatctttttg 120
ggtggtggcc tgccattaaa agattatttc ccatgggata atctatctgt agattcaccc 180
aagcctcctt ttccccaggg tattggagct ccaattgacg agcagaattg cataaaatac 240
accgtcaaca aagattacgc tgataaaagt gccaatcctt ccaacgatat tcctttgtca 300
agagctttgc aatacgggtt cagtgctggt caacctgaac tattaaactt cattagagat 360
cataccaaga ttatccacga tttgaagtat aaggactggg acgttttagc cactgcaggt 420
aacacaaatg cctgggaatc tactttaaga gtcttttgta accgaggtga tgtcatctta 480
gttgaggcac attctttttc ctcttcattg gcttctgcag aggctcaagg tgtcattacc 540
ttccccgtgc caattgacgc tgatggtatc attcctgaaa aattagctaa agtcatggaa 600
aactggacac ctggtgctcc taaaccaaag ttgttataca ctattccaac gggccaaaat 660
ccaactggta cttccattgc agaccataga aaggaggcaa tttacaagat cgctcaaaag 720
tacgacttcc taattgtgga agatgaacct tattatttct tacaaatgaa tccctacatc 780
aaagacttga aggaaagaga gaaggcacaa agttctccaa agcaggacca tgacgaattt 840
ttgaagtcct tggcaaacac tttcctttcc ttggatacag aaggccgtgt tattagaatg 900
gattcctttt caaaagtttt ggccccaggg acaagattgg gttggattac tggttcatcc 960
aaaatcttga agccttactt gagtttgcat gaaatgacga ttcaagcccc agcaggtttt 1020
acacaagttt tggtcaacgc tacgctatcc aggtggggtc aaaagggtta cttggactgg 1080
ttgcttggcc tgcgtcatga atacactttg aaacgtgact gtgccatcga tgccctttac 1140
aagtatctac cacaatctga tgctttcgtg atcaatcctc caattgcagg tatgtttttc 1200
accgtgaaca ttgacgcatc tgtccaccct gagtttaaaa caaaatacaa ctcagaccct 1260
taccagctag aacagagtct ttaccacaaa gtggttgaac gtggtgtttt agtggttccc 1320
ggttcttggt tcaagagtga gggtgagacg gaacctcctc aacccgctga atctaaagaa 1380
gtcagtaatc caaacataat tttcttcaga ggtacctatg cagctgtctc tcctgagaaa 1440
ctgactgaag gtctgaagag attaggtgat actttatacg aagaatttgg tatttccaaa 1500
tag 1503
<210> 16
<211> 1503
<212> DNA
<213> (codon-optimized Gene encoding aminoadipate transaminase ARO 8)
<400> 16
atgaccctgc cggaaagcaa agattttagc tatctgttta gcgacgagac caatgcgcgc 60
aaaccgagcc cactgaaaac ctgcattcat ctgtttcagg atccgaatat tatcttcctg 120
ggcggcggcc tgccgctgaa agattatttt ccgtgggata atctgagcgt ggatagcccg 180
aaaccgccgt ttccgcaggg tattggtgcg ccaattgatg aacagaattg cattaaatac 240
accgtgaaca aggactacgc ggataaaagc gcgaatccga gcaatgatat tccgctgagc 300
cgcgcgctgc agtatggctt tagcgcaggt caaccagaat tgctgaattt tattcgcgat 360
cacaccaaga ttatccacga cctgaaatac aaggactggg acgtgctggc gaccgcgggc 420
aataccaatg cgtgggaaag caccctgcgc gtgttttgca atcgcggcga tgtgattctg 480
gtggaagcgc atagctttag cagcagcctg gcgagcgcgg aagcgcaagg tgttattacc 540
tttccggtgc cgattgatgc ggatggcatt attccggaaa aactggcgaa agtgatggaa 600
aattggaccc cgggcgcgcc gaaaccgaaa ttattatata ccattccgac cggccagaat 660
ccgaccggca ccagtattgc ggatcatcgc aaagaagcga tttataaaat tgcgcagaaa 720
tacgacttcc tgatcgtgga ggatgaaccg tattatttcc tgcagatgaa tccgtatatt 780
aaggacctga aagaacgcga gaaagcgcag agcagcccga aacaggatca tgatgaattt 840
ctgaaaagcc tggcgaatac ctttctgagc ctggataccg aaggccgcgt gattcgcatg 900
gatagcttta gcaaagtgct ggcgccgggc acccgtttgg gttggattac cggtagtagc 960
aaaattctga aaccgtatct gagcctgcat gaaatgacca ttcaggcgcc ggcgggcttt 1020
acccaagttc tggttaatgc gaccctgagc cgctggggcc aaaaaggcta tttggattgg 1080
ctgctgggcc tgcgccatga atataccctg aaacgcgatt gcgcgattga tgcgctgtat 1140
aaatatctgc cgcagagcga tgcgtttgtg attaatccgc cgattgcggg catgtttttt 1200
accgtgaata ttgatgcgag cgtgcatccg gaatttaaaa ccaaatataa cagcgacccg 1260
taccagctgg aacagagcct gtatcataaa gtggtggaac gcggcgtgct ggtggtgcca 1320
ggtagctggt ttaaaagcga aggcgaaacc gaaccgccgc agccggcgga aagcaaagaa 1380
gttagcaatc cgaatattat cttcttccgc ggcacctatg cggcggtgag cccagaaaaa 1440
ctgaccgaag gcctgaaacg cctgggcgat actttatatg aagaatttgg cattagcaag 1500
tga 1503
<210> 17
<211> 1194
<212> DNA
<213> (Gene lysN encoding aminoadipate transaminase)
<400> 17
gtgaaaccgc taagctggtc cgaggcgttc ggtaaaggcg cgggaaggat ccaggcctcc 60
accatccggg agcttctcaa gctcacccag cgccccggca tcctgagctt cgccgggggg 120
ctcccggccc ccgagctctt ccccaaggag gaggcggcgg aagccgcggc gcggatcctg 180
cgggagaagg gcgaggtcgc cctccagtac agccccaccg agggctacgc ccccctaagg 240
gccttcgtgg cggagtggat cggcgtgcgc cccgaggagg tcctcatcac caccgggagc 300
cagcaggcct tggacctcgt gggcaaggtc ttcctggacg agggaagccc cgtgctgctg 360
gaggccccaa gctacatggg ggccatccag gccttccgtc tccaaggccc ccgcttcctc 420
acggtgcccg ccggggagga gggcccggac ctggacgccc tggaagaggt cctcaagagg 480
gagcgccccc gcttcctcta cctcatcccc tctttccaga accccacggg gggcctcacg 540
ccccttcccg cccggaagcg gctcttgcag atggtgatgg agcggggcct cgtggtggtg 600
gaggacgacg cctaccggga gctctacttc ggggaggcgc gcctcccgag cctctttgag 660
ctcgcccggg aggcgggcta ccccggggtc atctacctgg gaagcttctc caaggttctc 720
tcccccgggc ttcgcgtggc cttcgccgtg gcccacccgg aggccctgca gaagctcgtc 780
caggccaagc agggggccga cctccacacc cccatgctca accagatgct ggtccacgag 840
ctcttaaagg agggcttctc cgagcgcttg gaacgggtcc gcagggtcta ccgggaaaag 900
gcccaggcca tgctccatgc cctggaccgg gaggtgccca aggaggtgcg ctacacaagg 960
cccaagggcg ggatgttcgt ctggatggag ctccccaagg gcctctccgc cgagggcctc 1020
ttccggaggg ccctcgagga gaacgtggcc ttcgtgccgg gaggtccttt cttcgccaac 1080
gggggcgggg agaacaccct gaggctctcc tacgccaccc tggaccggga ggggatcgcg 1140
gagggcgtgc ggcggctggg gcgggcgcta aaggggcttt tggccttggt ctag 1194
<210> 18
<211> 1194
<212> DNA
<213> (codon-optimized gene lysN encoding aminoadipate transaminase)
<400> 18
atgaagccac tgtcctggtc cgaagctttc ggtaagggag caggtcgtat ccaggcatcc 60
accatccgcg aactgctgaa gctgacccag cgcccaggca tcctgtcctt cgccggcggc 120
ctgccagcac cagagctgtt cccaaaggaa gaagcagctg aagcagcagc tcgcatcctg 180
cgcgagaagg gcgaagtggc tctgcagtac tccccaaccg agggctacgc acctctgcgc 240
gcattcgtgg cagaatggat cggcgtgcgc ccagaagagg tgctgatcac caccggctcc 300
cagcaggctc tggatctcgt gggcaaggtc ttcctggatg aaggctctcc agtgctgctg 360
gaagcaccat cctacatggg cgctatccag gcattccgcc tgcaaggccc acgcttcttg 420
accgtgccgg ctggcgagga aggcccagat ctggatgcac tggaagaagt gctgaagcgc 480
gaacgcccaa gattcctgta cctgatccca agcttccaga acccaaccgg cggcctgacc 540
ccactgccag ctcgcaagcg ccttctgcag atggttatgg agcgtggtct ggtcgtggtt 600
gaggatgatg cataccgcga gctgtacttc ggcgaagcac gtctgccctc cctgttcgag 660
ctggctcgcg aggcaggcta cccaggcgtg atctacctgg gctccttctc caaggtcctg 720
tccccaggcc tgcgtgtggc attcgcagtc gcccacccag aggcactgca gaagctggtt 780
caggcaaagc agggcgcgga tttgcacacc ccaatgctga accagatgct ggtgcacgaa 840
ctgctcaagg aaggcttctc cgaacgcctg gaacgcgttc gccgcgtgta ccgcgagaag 900
gcacaggcaa tgctccacgc actggatcgc gaagtgccta aggaagtgcg ctatacccgc 960
cctaaaggtg gaatgttcgt ttggatggaa ctgcctaaag gcctttctgc cgaaggcttg 1020
ttccgtcgtg ctcttgaaga aaacgttgct ttcgttcctg gcggtccatt cttcgctaac 1080
ggtggtggtg aaaataccct tagattgagc tacgcaaccc tggaccgtga gggtattgct 1140
gaaggtgttc gacgccttgg tcgcgcactg aaaggcttgt tagctttagt ttaa 1194
<210> 19
<211> 1050
<212> DNA
<213> (Gene AeLDH encoding ketoadipate reductase)
<400> 19
atgaagatct ccctcaccag cgcccgccag cttgcccgcg acatcctcgc cgcgcagcag 60
gtgcccgccg acatcgctga cgacgtggcc gagcacctgg tcgaatccga ccgctgcggc 120
tatatcagcc acggcctgtc gatcctgccc aactaccgca ccgccctcga cggccacagc 180
gtcaacccgc aaggccgcgc caaatgcgtg ctggaccagg gcacgctgat ggtgttcgac 240
ggcgacggcg gcttcggcca gcacgtgggc aagtccgtga tgcaagcagc gatcgagcgc 300
gtgcgccagc atggccactg catcgtcact ctgcgccgct cgcaccatct cggccgcatg 360
ggccactacg gcgagatggc ggccgccgcc ggctttgtgc tgctgagctt caccaacgtg 420
atcaaccgcg cgccggtggt ggcgccgttc ggcggccgcg tggcgcggct caccaccaac 480
ccgctgtgtt tcgccggccc gatgcccaac gggcggccgc ctctggtggt ggacatcgcc 540
accagcgcga ttgccatcaa caaggcccgt gtgctggccg agaaaggcga gccggcgccc 600
gaaggcagca tcatcggcgc cgacggcaac cccaccaccg acgcgtcaac catgttcggc 660
gaacaccccg gcgcgctgct gccctttggc ggccacaagg gctacgcact gggcgttgtg 720
gccgagctgc tggcgggcgt gctgtccggc ggcggtacca tccagccaga caatccgcgc 780
ggcggcgtgg ccaccaacaa cctgttcgcg gtgctgctca atcccgcgct ggacctgggc 840
ctggactggc agagcgccga ggtcgaggcg ttcgtgcgct acctgcacga cacaccgccg 900
gcgccgggcg tcgaccgcgt gcagtacccc ggcgagtacg aggccgccaa ccgggcgcag 960
gccagcgaca cgctaaacat caacccggcc atctggcgca atcttgagcg cctggcgcag 1020
tcgctcaacg tggccgtccc cacggcctga 1050
<210> 20
<211> 1050
<212> DNA
<213> (codon-optimized Gene AeLDH encoding ketoadipate reductase)
<400> 20
atgaaaatta gcctgaccag cgcgcgccag ctggcgcgcg atattttagc ggcgcaacaa 60
gttccagcgg atattgcgga tgatgtggcg gaacatctgg tggaaagcga tcgctgcggc 120
tatattagcc atggcctgag cattctgccg aattatcgca ccgcgctgga tggccatagc 180
gtgaatccac aaggccgcgc gaaatgcgtt ttggatcaag gcaccctgat ggtgtttgat 240
ggcgatggcg gctttggcca gcatgtgggt aaaagcgtta tgcaggcggc gattgaacgc 300
gtgcgccaac atggtcattg cattgtgacc ctgcgccgca gccatcatct gggccgtatg 360
ggtcattatg gcgaaatggc ggcggcggcg ggttttgtat tattaagctt taccaatgtg 420
atcaaccgcg cgccggtggt ggcaccattt ggtggtcgtg ttgcgcgttt gaccaccaat 480
ccgttatgtt ttgcgggtcc gatgccgaat ggccgcccac cattagttgt tgatattgcg 540
accagcgcga ttgcgattaa taaagcgcgc gtgctggcgg aaaaaggcga accggcgcca 600
gaaggtagta ttattggcgc ggatggtaat ccgaccaccg atgcgagcac catgtttggc 660
gaacatccgg gcgcgttact gccatttggt ggtcataaag gctatgcgct gggcgtggtt 720
gcggaattgt tagcgggtgt gttaagcggt ggtggcacca ttcaaccaga taatccgcgc 780
ggcggcgtgg cgactaataa tctgtttgcg gtgctgctga atccggcgct ggatctgggt 840
ttagattggc aaagcgcgga agtggaagcg tttgtgcgct atctgcatga taccccgccg 900
gcgccaggtg ttgatcgtgt tcaatatccg ggtgaatatg aagcggcgaa tcgcgcgcaa 960
gcgagcgata ccttaaatat taatccggcg atttggcgca atctggaacg cctggcgcaa 1020
agcttgaatg tggcggttcc aaccgcgtaa 1050
<210> 21
<211> 996
<212> DNA
<213> (Gene HgdH encoding ketoadipate reductase)
<400> 21
atgaaggttt tatgttatgg tgtaagagat gtagaactgc cgatttttga agcctgcaac 60
aaagaatttg gttacgacat caaatgtgtc cctgattatc tgaacacgaa agaaaccgcc 120
gaaatggctg ctggctttga tgcggttatc ctgcgcggca actgcttcgc caataaacag 180
aacctggaca tttacaaaaa actgggcgta aaatacatcc tgacccgtac cgccggcacg 240
gatcatatcg ataaggaata tgccaaggaa ctgggcttcc ccatggcttt cgttccccgt 300
tattccccca acgccattgc tgaactggct gtaacccagg ccatgatgct gctgcgtcat 360
accgcttaca ccacttcccg cactgccaag aagaacttca aggttgatgc cttcatgttc 420
tccaaagaag tccgcaactg caccgtgggt gttgttggtc tgggccggat cggccgtgtg 480
gctgcccaga tcttccatgg catgggcgct accgttatcg gggaagacgt tttcgaaatc 540
aaagggatcg aagattactg cacccaggtt tccctggatg aagtcctgga aaaatccgac 600
atcatcacca tccatgctcc gtacatcaaa gaaaacggcg ctgtggttac ccgcgatttc 660
ttgaagaaga tgaaagacgg cgccatcctg gtgaactgcg ctcgcggcca gctggttgac 720
accgaagctg tcatcgaagc tgtggaaagc ggtaaactgg gcggctacgg ctgcgacgtt 780
ctggatgggg aagccagcgt attcggcaag gatctggaag gccagaaact ggaaaatccg 840
ctgttcgaaa aactggttga cctgtatccc agagtcctga tcaccccgca tctgggctcc 900
tacaccgacg aagccgtaaa gaacatggtg gaagtttcct accagaacct gaaagatctg 960
gctgaaaccg gcgactgccc caacaagatc aaataa 996
<210> 22
<211> 996
<212> DNA
<213> (codon-optimized Gene HgdH encoding ketoadipate reductase)
<400> 22
atgaaagttc tgtgctacgg tgttcgtgac gttgaactgc cgatcttcga agcttgcaac 60
aaagaattcg gttacgacat caaatgcgtt ccggactacc tgaacaccaa agaaaccgct 120
gaaatggctg ctggtttcga cgctgttatc ctgcgtggta actgcttcgc taacaaacag 180
aacctggaca tctacaaaaa actgggtgtt aaatacatcc tgacccgtac cgctggtacc 240
gaccacatcg acaaagaata cgctaaagaa ctgggtttcc cgatggcttt cgttccgcgt 300
tactctccga acgctatcgc tgaactggct gttacccagg ctatgatgct gctgcgtcac 360
accgcttaca ccacctctcg taccgctaaa aaaaacttca aagttgacgc tttcatgttc 420
tctaaagaag ttcgtaactg caccgttggt gttgttggtc tgggtcgtat cggtcgtgtt 480
gctgctcaga tcttccacgg tatgggtgct accgttatcg gtgaagacgt tttcgaaatc 540
aaaggtatcg aagactactg cacccaggtt tctctggacg aagttctgga aaaatctgac 600
atcatcacca tccacgctcc gtacatcaaa gaaaacggtg ctgttgttac ccgtgacttc 660
ctgaaaaaaa tgaaagacgg tgctatcctg gttaactgcg ctcgtggtca gctggttgac 720
accgaagctg ttatcgaagc tgttgaatct ggtaaactgg gtggttacgg ttgcgacgtt 780
ctggacggtg aagcttctgt tttcggtaaa gacctggaag gtcagaaact ggaaaacccg 840
ctgttcgaaa aactggttga cctgtacccg cgtgttctga tcaccccgca cctgggttct 900
tacaccgacg aagctgttaa aaacatggtt gaagtttctt accagaacct gaaagacctg 960
gctgaaaccg gtgactgccc gaacaaaatc aaataa 996
<210> 23
<211> 40
<212> DNA
<213> (lysDH-Am-F)
<400> 23
actttaagaa ggagatatac catgaaaatt ggcgtgctgg 40
<210> 24
<211> 35
<212> DNA
<213> (lysDH-Am-R)
<400> 24
tatatctcct ttagctcaga ttttcgctaa tcacc 35
<210> 25
<211> 41
<212> DNA
<213> (Psefu_1272-F)
<400> 25
tctgagctaa aggagatata ccatggtgaa tagcctgctg g 41
<210> 26
<211> 33
<212> DNA
<213> (Psefu_1272-R)
<400> 26
tatatctcct ttaatcaaaa acaatgccct gcg 33
<210> 27
<211> 41
<212> DNA
<213> (ARO8-F)
<400> 27
tttttgatta aaggagatat accatgaccc tgccggaaag c 41
<210> 28
<211> 34
<212> DNA
<213> (ARO8-R)
<400> 28
tatatctcct tcacttgcta atgccaaatt cttc 34
<210> 29
<211> 43
<212> DNA
<213> (AeLDH-F)
<400> 29
tagcaagtga aggagatata ccatgaaaat tagcctgacc agc 43
<210> 30
<211> 39
<212> DNA
<213> (AeLDH-R)
<400> 30
tttaccagac tcgagggtac cttacgcggt tggaaccgc 39
<210> 31
<211> 1191
<212> DNA
<213> (Gene encoding aspartate aminotransferase aspC)
<400> 31
atgtttgaga acattaccgc cgctcctgcc gacccgattc tgggcctggc cgatctgttt 60
cgtgccgatg aacgtcccgg caaaattaac ctcgggattg gtgtctataa agatgagacg 120
ggcaaaaccc cggtactgac cagcgtgaaa aaggctgaac agtatctgct cgaaaatgaa 180
accaccaaaa attacctcgg cattgacggc atccctgaat ttggtcgctg cactcaggaa 240
ctgctgtttg gtaaaggtag cgccctgatc aatgacaaac gtgctcgcac ggcacagact 300
ccggggggca ctggcgcact acgcgtggct gccgatttcc tggcaaaaaa taccagcgtt 360
aagcgtgtgt gggtgagcaa cccaagctgg ccgaaccata agagcgtctt taactctgca 420
ggtctggaag ttcgtgaata cgcttattat gatgcggaaa atcacactct tgacttcgat 480
gcactgatta acagcctgaa tgaagctcag gctggcgacg tagtgctgtt ccatggctgc 540
tgccataacc caaccggtat cgaccctacg ctggaacaat ggcaaacact ggcacaactc 600
tccgttgaga aaggctggtt accgctgttt gacttcgctt accagggttt tgcccgtggt 660
ctggaagaag atgctgaagg actgcgcgct ttcgcggcta tgcataaaga gctgattgtt 720
gccagttcct actctaaaaa ctttggcctg tacaacgagc gtgttggcgc ttgtactctg 780
gttgctgccg acagtgaaac cgttgatcgc gcattcagcc aaatgaaagc ggcgattcgc 840
gctaactact ctaacccacc agcacacggc gcttctgttg ttgccaccat cctgagcaac 900
gatgcgttac gtgcgatttg ggaacaagag ctgactgata tgcgccagcg tattcagcgt 960
atgcgtcagt tgttcgtcaa tacgctgcag gaaaaaggcg caaaccgcga cttcagcttt 1020
atcatcaaac agaacggcat gttctccttc agtggcctga caaaagaaca agtgctgcgt 1080
ctgcgcgaag agtttggcgt atatgcggtt gcttctggtc gcgtaaatgt ggccgggatg 1140
acaccagata acatggctcc gctgtgcgaa gcgattgtgg cagtgctgta a 1191
<210> 32
<211> 1350
<212> DNA
<213> (Gene lysC encoding aspartokinase)
<400> 32
atgtctgaaa ttgttgtctc caaatttggc ggtaccagcg tagctgattt tgacgccatg 60
aaccgcagcg ctgatattgt gctttctgat gccaacgtgc gtttagttgt cctctcggct 120
tctgctggta tcactaatct gctggtcgct ttagctgaag gactggaacc tggcgagcga 180
ttcgaaaaac tcgacgctat ccgcaacatc cagtttgcca ttctggaacg tctgcgttac 240
ccgaacgtta tccgtgaaga gattgaacgt ctgctggaga acattactgt tctggcagaa 300
gcggcggcgc tggcaacgtc tccggcgctg acagatgagc tggtcagcca cggcgagctg 360
atgtcgaccc tgctgtttgt tgagatcctg cgcgaacgcg atgttcaggc acagtggttt 420
gatgtacgta aagtgatgcg taccaacgac cgatttggtc gtgcagagcc agatatagcc 480
gcgctggcgg aactggccgc gctgcagctg ctcccacgtc tcaatgaagg cttagtgatc 540
acccagggat ttatcggtag cgaaaataaa ggtcgtacaa cgacgcttgg ccgtggaggc 600
agcgattata cggcagcctt gctggcggag gctttacacg catctcgtgt tgatatctgg 660
accgacgtcc cgggcatcta caccaccgat ccacgcgtag tttccgcagc aaaacgcatt 720
gatgaaatcg cgtttgccga agcggcagag atggcaactt ttggtgcaaa agtactgcat 780
ccggcaacgt tgctacccgc agtacgcagc gatatcccgg tctttgtcgg ctccagcaaa 840
gacccacgcg caggtggtac gctggtgtgc aataaaactg aaaatccgcc gctgttccgc 900
gctctggcgc ttcgtcgcaa tcagactctg ctcactttgc acagcctgaa tatgctgcat 960
tctcgcggtt tcctcgcgga agttttcggc atcctcgcgc ggcataatat ttcggtagac 1020
ttaatcacca cgtcagaagt gagcgtggca ttaacccttg ataccaccgg ttcaacctcc 1080
actggcgata cgttgctgac gcaatctctg ctgatggagc tttccgcact gtgtcgggtg 1140
gaggtggaag aaggtctggc gctggtcgcg ttgattggca atgacctgtc aaaagcctgc 1200
ggcgttggca aagaggtatt cggcgtactg gaaccgttca acattcgcat gatttgttat 1260
ggcgcatcca gccataacct gtgcttcctg gtgcccggcg aagatgccga gcaggtggtg 1320
caaaaactgc atagtaattt gtttgagtaa 1350
<210> 33
<211> 879
<212> DNA
<213> (Gene dapA encoding dihydrodipicolinate synthase)
<400> 33
atgttcacgg gaagtattgt cgcgattgtt actccgatgg atgaaaaagg taatgtctgt 60
cgggctagct tgaaaaaact gattgattat catgtcgcca gcggtacttc ggcgatcgtt 120
tctgttggca ccactggcga gtccgctacc ttaaatcatg acgaacatgc tgatgtggtg 180
atgatgacgc tggatctggc tgatgggcgc attccggtaa ttgccgggac cggcgctaac 240
gctactgcgg aagccattag cctgacgcag cgcttcaatg acagtggtat cgtcggctgc 300
ctgacggtaa ccccttacta caatcgtccg tcgcaagaag gtttgtatca gcatttcaaa 360
gccatcgctg agcatactga cctgccgcaa attctgtata atgtgccgtc ccgtactggc 420
tgcgatctgc tcccggaaac ggtgggccgt ctggcgaaag taaaaaatat tatcggaatc 480
aaagaggcaa cagggaactt aacgcgtgta aaccagatca aagagctggt ttcagatgat 540
tttgttctgc tgagcggcga tgatgcgagc gcgctggact tcatgcaatt gggcggtcat 600
ggggttattt ccgttacggc taacgtcgca gcgcgtgata tggcccagat gtgcaaactg 660
gcagcagaag ggcattttgc cgaggcacgc gttattaatc agcgtctgat gccattacac 720
aacaaactat ttgtcgaacc caatccaatc ccggtgaaat gggcatgtaa ggaactgggt 780
cttgtggcga ccgatacgct gcgcctgcca atgacaccaa tcaccgacag tggtcgtgag 840
acggtcagag cggcgcttaa gcatgccggt ttgctgtaa 879
<210> 34
<211> 1263
<212> DNA
<213> (Gene lysA encoding diaminopimelate decarboxylase)
<400> 34
atgccacatt cactgttcag caccgatacc gatctcaccg ccgaaaatct gctgcgtttg 60
cccgctgaat ttggctgccc ggtgtgggtc tacgatgcgc aaattattcg tcggcagatt 120
gcagcgctga aacagtttga tgtggtgcgc tttgcacaga aagcctgttc caatattcat 180
attttgcgct taatgcgtga gcagggcgtg aaagtggatt ccgtctcgtt aggcgaaata 240
gagcgtgcgt tggcggcggg ttacaatccg caaacgcacc ccgatgatat tgtttttacg 300
gcagatgtta tcgatcaggc gacgcttgaa cgcgtcagtg aattgcaaat tccggtgaat 360
gcgggttctg ttgatatgct cgaccaactg ggccaggttt cgccagggca tcgggtatgg 420
ctgcgcgtta atccggggtt tggtcacgga catagccaaa aaaccaatac cggtggcgaa 480
aacagcaagc acggtatctg gtacaccgat ctgcccgccg cactggacgt gatacaacgt 540
catcatctgc agctggtcgg cattcacatg cacattggtt ctggcgttga ttatgcccat 600
ctggaacagg tgtgtggtgc tatggtgcgt caggtcatcg aattcggtca ggatttacag 660
gctatttctg cgggcggtgg gctttctgtt ccttatcaac agggtgaaga ggcggttgat 720
accgaacatt attatggtct gtggaatgcc gcgcgtgagc aaatcgcccg ccatttgggc 780
caccctgtga aactggaaat tgaaccgggt cgcttcctgg tagcgcagtc tggcgtatta 840
attactcagg tgcggagcgt caaacaaatg gggagccgcc actttgtgct ggttgatgcc 900
gggttcaacg atctgatgcg cccggcaatg tacggtagtt accaccatat cagtgccctg 960
gcagctgatg gtcgttctct ggaacacgcg ccaacggtgg aaaccgtcgt cgccggaccg 1020
ttatgtgaat cgggcgatgt ctttacccag caggaagggg gaaatgttga aacccgcgcc 1080
ttgccggaag tgaaggcagg tgattatctg gtactgcatg atacaggggc atatggcgca 1140
tcaatgtcat ccaactacaa tagccgtccg ctgttaccag aagttctgtt tgataatggt 1200
caggcgcggt tgattcgccg tcgccagacc atcgaagaat tactggcgct ggaattgctt 1260
taa 1263
<210> 35
<211> 2148
<212> DNA
<213> (Gene cadA encoding lysine decarboxylase)
<400> 35
atgaacgtta ttgcaatatt gaatcacatg ggggtttatt ttaaagaaga acccatccgt 60
gaacttcatc gcgcgcttga acgtctgaac ttccagattg tttacccgaa cgaccgtgac 120
gacttattaa aactgatcga aaacaatgcg cgtctgtgcg gcgttatttt tgactgggat 180
aaatataatc tcgagctgtg cgaagaaatt agcaaaatga acgagaacct gccgttgtac 240
gcgttcgcta atacgtattc cactctcgat gtaagcctga atgacctgcg tttacagatt 300
agcttctttg aatatgcgct gggtgctgct gaagatattg ctaataagat caagcagacc 360
actgacgaat atatcaacac tattctgcct ccgctgacta aagcactgtt taaatatgtt 420
cgtgaaggta aatatacttt ctgtactcct ggtcacatgg gcggtactgc attccagaaa 480
agcccggtag gtagcctgtt ctatgatttc tttggtccga ataccatgaa atctgatatt 540
tccatttcag tatctgaact gggttctctg ctggatcaca gtggtccaca caaagaagca 600
gaacagtata tcgctcgcgt ctttaacgca gaccgcagct acatggtgac caacggtact 660
tccactgcga acaaaattgt tggtatgtac tctgctccag caggcagcac cattctgatt 720
gaccgtaact gccacaaatc gctgacccac ctgatgatga tgagcgatgt tacgccaatc 780
tatttccgcc cgacccgtaa cgcttacggt attcttggtg gtatcccaca gagtgaattc 840
cagcacgcta ccattgctaa gcgcgtgaaa gaaacaccaa acgcaacctg gccggtacat 900
gctgtaatta ccaactctac ctatgatggt ctgctgtaca acaccgactt catcaagaaa 960
acactggatg tgaaatccat ccactttgac tccgcgtggg tgccttacac caacttctca 1020
ccgatttacg aaggtaaatg cggtatgagc ggtggccgtg tagaagggaa agtgatttac 1080
gaaacccagt ccactcacaa actgctggcg gcgttctctc aggcttccat gatccacgtt 1140
aaaggtgacg taaacgaaga aacctttaac gaagcctaca tgatgcacac caccacttct 1200
ccgcactacg gtatcgtggc gtccactgaa accgctgcgg cgatgatgaa aggcaatgca 1260
ggtaagcgtc tgatcaacgg ttctattgaa cgtgcgatca aattccgtaa agagatcaaa 1320
cgtctgagaa cggaatctga tggctggttc tttgatgtat ggcagccgga tcatatcgat 1380
acgactgaat gctggccgct gcgttctgac agcacctggc acggcttcaa aaacatcgat 1440
aacgagcaca tgtatcttga cccgatcaaa gtcaccctgc tgactccggg gatggaaaaa 1500
gacggcacca tgagcgactt tggtattccg gccagcatcg tggcgaaata cctcgacgaa 1560
catggcatcg ttgttgagaa aaccggtccg tataacctgc tgttcctgtt cagcatcggt 1620
atcgataaga ccaaagcact gagcctgctg cgtgctctga ctgactttaa acgtgcgttc 1680
gacctgaacc tgcgtgtgaa aaacatgctg ccgtctctgt atcgtgaaga tcctgaattc 1740
tatgaaaaca tgcgtattca ggaactggct cagaatatcc acaaactgat tgttcaccac 1800
aatctgccgg atctgatgta tcgcgcattt gaagtgctgc cgacgatggt aatgactccg 1860
tatgctgcat tccagaaaga gctgcacggt atgaccgaag aagtttacct cgacgaaatg 1920
gtaggtcgta ttaacgccaa tatgatcctt ccgtacccgc cgggagttcc tctggtaatg 1980
ccgggtgaaa tgatcaccga agaaagccgt ccggttctgg agttcctgca gatgctgtgt 2040
gaaatcggcg ctcactatcc gggctttgaa accgatattc acggtgcata ccgtcaggct 2100
gatggccgct ataccgttaa ggtattgaaa gaagaaagca aaaaataa 2148
<210> 36
<211> 2142
<212> DNA
<213> (Gene coding for lysine decarboxylase ldcC)
<400> 36
atgaacatca ttgccattat gggaccgcat ggcgtctttt ataaagatga gcccatcaaa 60
gaactggagt cggcgctggt ggcgcaaggc tttcagatta tctggccaca aaacagcgtt 120
gatttgctga aatttatcga gcataaccct cgaatttgcg gcgtgatttt tgactgggat 180
gagtacagtc tcgatttatg tagcgatatc aatcagctta atgaatatct cccgctttat 240
gccttcatca acacccactc gacgatggat gtcagcgtgc aggatatgcg gatggcgctc 300
tggttttttg aatatgcgct ggggcaggcg gaagatatcg ccattcgtat gcgtcagtac 360
accgacgaat atcttgataa cattacaccg ccgttcacga aagccttgtt tacctacgtc 420
aaagagcgga agtacacctt ttgtacgccg gggcatatgg gcggcaccgc atatcaaaaa 480
agcccggttg gctgtctgtt ttatgatttt ttcggcggga atactcttaa ggctgatgtc 540
tctatttcgg tcaccgagct tggttcgttg ctcgaccaca ccgggccaca cctggaagcg 600
gaagagtaca tcgcgcggac ttttggcgcg gaacagagtt atatcgttac caacggaaca 660
tcgacgtcga acaaaattgt gggtatgtac gccgcgccat ccggcagtac gctgttgatc 720
gaccgcaatt gtcataaatc gctggcgcat ctgttgatga tgaacgatgt agtgccagtc 780
tggctgaaac cgacgcgtaa tgcgttgggg attcttggtg ggatcccgcg ccgtgaattt 840
actcgcgaca gcatcgaaga gaaagtcgct gctaccacgc aagcacaatg gccggttcat 900
gcggtgatca ccaactccac ctatgatggc ttgctctaca acaccgactg gatcaaacag 960
acgctggatg tcccgtcgat tcacttcgat tctgcctggg tgccgtacac ccattttcat 1020
ccgatctacc agggtaaaag tggtatgagc ggcgagcgtg ttgcgggaaa agtgatcttc 1080
gaaacgcaat cgacccacaa aatgctggcg gcgttatcgc aggcttcgct gatccacatt 1140
aaaggcgagt atgacgaaga ggcctttaac gaagccttta tgatgcatac caccacctcg 1200
cccagttatc ccattgttgc ttcggttgag acggcggcgg cgatgctgcg tggtaatccg 1260
ggcaaacggc tgattaaccg ttcagtagaa cgagctctgc attttcgcaa agaggtccag 1320
cggctgcggg aagagtctga cggttggttt ttcgatatct ggcaaccgcc gcaggtggat 1380
gaagccgaat gctggcccgt tgcgcctggc gaacagtggc acggctttaa cgatgcggat 1440
gccgatcata tgtttctcga tccggttaaa gtcactattt tgacaccggg gatggacgag 1500
cagggcaata tgagcgagga ggggatcccg gcggcgctgg tagcaaaatt cctcgacgaa 1560
cgtgggatcg tagtagagaa aaccggccct tataacctgc tgtttctctt tagtattggc 1620
atcgataaaa ccaaagcaat gggattattg cgtgggttga cggaattcaa acgctcttac 1680
gatctcaacc tgcggatcaa aaatatgcta cccgatctct atgcagaaga tcccgatttc 1740
taccgcaata tgcgtattca ggatctggca caagggatcc ataagctgat tcgtaaacac 1800
gatcttcccg gtttgatgtt gcgggcattc gatactttgc cggagatgat catgacgcca 1860
catcaggcat ggcaacgaca aattaaaggc gaagtagaaa ccattgcgct ggaacaactg 1920
gtcggtagag tatcggcaaa tatgatcctg ccttatccac cgggcgtacc gctgttgatg 1980
cctggagaaa tgctgaccaa agagagccgc acagtactcg attttctact gatgctttgt 2040
tccgtcgggc aacattaccc cggttttgaa acggatattc acggcgcgaa acaggacgaa 2100
gacggcgttt accgcgtacg agtcctaaaa atggcgggat aa 2142
<210> 37
<211> 990
<212> DNA
<213> (Gene ldh encoding lactate dehydrogenase)
<400> 37
atgaaactcg ccgtttatag cacaaaacag tacgacaaga agtacctgca acaggtgaac 60
gagtcctttg gctttgagct ggaatttttt gactttctgc tgacggaaaa aaccgctaaa 120
actgccaatg gctgcgaagc ggtatgtatt ttcgtaaacg atgacggcag ccgcccggtg 180
ctggaagagc tgaaaaagca cggcgttaaa tatatcgccc tgcgctgtgc cggtttcaat 240
aacgtcgacc ttgacgcggc aaaagaactg gggctgaaag tagtccgtgt tccagcctat 300
gatccagagg ccgttgctga acacgccatc ggtatgatga tgacgctgaa ccgccgtatt 360
caccgcgcgt atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt 420
actatgtatg gcaaaacggc aggcgttatc ggtaccggta aaatcggtgt ggcgatgctg 480
cgcattctga aaggttttgg tatgcgtctg ctggcgttcg atccgtatcc aagtgcagcg 540
gcgctggaac tcggtgtgga gtatgtcgat ctgccaaccc tgttctctga atcagacgtt 600
atctctctgc actgcccgct gacaccggaa aactatcatc tgttgaacga agccgccttc 660
gaacagatga aaaatggcgt gatgatcgtc aataccagtc gcggtgcatt gattgattct 720
caggcagcaa ttgaagcgct gaaaaatcag aaaattggtt cgttgggtat ggacgtgtat 780
gagaacgaac gcgatctatt ctttgaagat aaatccaacg acgtgatcca ggatgacgta 840
ttccgtcgcc tgtctgcctg ccacaacgtg ctgtttaccg ggcaccaggc attcctgaca 900
gcagaagctc tgaccagtat ttctcagact acgctgcaaa acttaagcaa tctggaaaaa 960
ggcgaaacct gcccgaacga actggtttaa 990
<210> 38
<211> 2130
<212> DNA
<213> (Gene pta encoding Phosphoacetyltransferase)
<400> 38
atgctgatcc ctaccggaac cagcgtcggt ctgaccagcg tcagccttgg cgtgatccgt 60
gcaatggaac gcaaaggcgt tcgtctgagc gttttcaaac ctatcgctca gccgcgtacc 120
ggtggcgatg cgcccgatca gactacgact atcgtgcgtg cgaactcttc caccacgacg 180
gccgctgaac cgctgaaaat gagctacgtt gaaggtctgc tttccagcaa tcagaaagat 240
gtgctgatgg aagagatcgt cgcaaactac cacgctaaca ccaaagacgc tgaagtcgtt 300
ctggttgaag gtctggtccc gacacgtaag caccagtttg cccagtctct gaactacgaa 360
atcgctaaaa cgctgaatgc ggaaatcgtc ttcgttatgt ctcagggcac tgacaccccg 420
gaacagctga aagagcgtat cgaactgacc cgcaacagct tcggcggtgc caaaaacacc 480
aacatcaccg gcgttatcgt taacaaactg aacgcaccgg ttgatgaaca gggtcgtact 540
cgcccggatc tgtccgagat tttcgacgac tcttccaaag ctaaagtaaa caatgttgat 600
ccggcgaagc tgcaagaatc cagcccgctg ccggttctcg gcgctgtgcc gtggagcttt 660
gacctgatcg cgactcgtgc gatcgatatg gctcgccacc tgaatgcgac catcatcaac 720
gaaggcgaca tcaatactcg ccgcgttaaa tccgtcactt tctgcgcacg cagcattccg 780
cacatgctgg agcacttccg tgccggttct ctgctggtga cttccgcaga ccgtcctgac 840
gtgctggtgg ccgcttgcct ggcagccatg aacggcgtag aaatcggtgc cctgctgctg 900
actggcggtt acgaaatgga cgcgcgcatt tctaaactgt gcgaacgtgc tttcgctacc 960
ggcctgccgg tatttatggt gaacaccaac acctggcaga cctctctgag cctgcagagc 1020
ttcaacctgg aagttccggt tgacgatcac gaacgtatcg agaaagttca ggaatacgtt 1080
gctaactaca tcaacgctga ctggatcgaa tctctgactg ccacttctga gcgcagccgt 1140
cgtctgtctc cgcctgcgtt ccgttatcag ctgactgaac ttgcgcgcaa agcgggcaaa 1200
cgtatcgtac tgccggaagg tgacgaaccg cgtaccgtta aagcagccgc tatctgtgct 1260
gaacgtggta tcgcaacttg cgtactgctg ggtaatccgg cagagatcaa ccgtgttgca 1320
gcgtctcagg gtgtagaact gggtgcaggg attgaaatcg ttgatccaga agtggttcgc 1380
gaaagctatg ttggtcgtct ggtcgaactg cgtaagaaca aaggcatgac cgaaaccgtt 1440
gcccgcgaac agctggaaga caacgtggtg ctcggtacgc tgatgctgga acaggatgaa 1500
gttgatggtc tggtttccgg tgctgttcac actaccgcaa acaccatccg tccgccgctg 1560
cagctgatca aaactgcacc gggcagctcc ctggtatctt ccgtgttctt catgctgctg 1620
ccggaacagg tttacgttta cggtgactgt gcgatcaacc cggatccgac cgctgaacag 1680
ctggcagaaa tcgcgattca gtccgctgat tccgctgcgg ccttcggtat cgaaccgcgc 1740
gttgctatgc tctcctactc caccggtact tctggtgcag gtagcgacgt agaaaaagtt 1800
cgcgaagcaa ctcgtctggc gcaggaaaaa cgtcctgacc tgatgatcga cggtccgctg 1860
cagtacgacg ctgcggtaat ggctgacgtt gcgaaatcca aagcgccgaa ctctccggtt 1920
gcaggtcgcg ctaccgtgtt catcttcccg gatctgaaca ccggtaacac cacctacaaa 1980
gcggtacagc gttctgccga cctgatctcc atcgggccga tgctgcaggg tatgcgcaag 2040
ccggttaacg acctgtcccg tggcgcactg gttgacgata tcgtctacac catcgcgctg 2100
actgcgattc agtctgcaca gcagcagtaa 2130
<210> 39
<211> 1203
<212> DNA
<213> (Gene encoding acetate kinase, ackA)
<400> 39
atgtcgagta agttagtact ggttctgaac tgcggtagtt cttcactgaa atttgccatc 60
atcgatgcag taaatggtga agagtacctt tctggtttag ccgaatgttt ccacctgccc 120
gaagcacgta tcaaatggaa aatggacggc aataaacagg aagcggcttt aggtgcaggc 180
gccgctcaca gcgaagcgct caactttatc gttaatacta ttctggcaca aaaaccagaa 240
ctgtctgcgc agctgactgc tatcggtcac cgtatcgtac acggcggcga aaagtatacc 300
agctccgtag tgatcgatga gtctgttatt cagggtatca aagatgcagc ttcttttgca 360
ccgctgcaca acccggctca cctgatcggt atcgaagaag ctctgaaatc tttcccacag 420
ctgaaagaca aaaacgttgc tgtatttgac accgcgttcc accagactat gccggaagag 480
tcttacctct acgccctgcc ttacaacctg tacaaagagc acggcatccg tcgttacggc 540
gcgcacggca ccagccactt ctatgtaacc caggaagcgg caaaaatgct gaacaaaccg 600
gtagaagaac tgaacatcat cacctgccac ctgggcaacg gtggttccgt ttctgctatc 660
cgcaacggta aatgcgttga cacctctatg ggcctgaccc cgctggaagg tctggtcatg 720
ggtacccgtt ctggtgatat cgatccggcg atcatcttcc acctgcacga caccctgggc 780
atgagcgttg acgcaatcaa caaactgctg accaaagagt ctggcctgct gggtctgacc 840
gaagtgacca gcgactgccg ctatgttgaa gacaactacg cgacgaaaga agacgcgaag 900
cgcgcaatgg acgtttactg ccaccgcctg gcgaaataca tcggtgccta cactgcgctg 960
atggatggtc gtctggacgc tgttgtattc actggtggta tcggtgaaaa tgccgcaatg 1020
gttcgtgaac tgtctctggg caaactgggc gtgctgggct ttgaagttga tcatgaacgc 1080
aacctggctg cacgtttcgg caaatctggt ttcatcaaca aagaaggtac ccgtcctgcg 1140
gtggttatcc caaccaacga agaactggtt atcgcgcaag acgcgagccg cctgactgcc 1200
tga 1203
<210> 40
<211> 1719
<212> DNA
<213> (Gene poxB encoding pyruvate dehydrogenase)
<400> 40
atgaaacaaa cggttgcagc ttatatcgcc aaaacactcg aatcggcagg ggtgaaacgc 60
atctggggag tcacaggcga ctctctgaac ggtcttagtg acagtcttaa tcgcatgggc 120
accatcgagt ggatgtccac ccgccacgaa gaagtggcgg cctttgccgc tggcgctgaa 180
gcacaactta gcggagaact ggcggtctgc gccggatcgt gcggccccgg caacctgcac 240
ttaatcaacg gcctgttcga ttgccaccgc aatcacgttc cggtactggc gattgccgct 300
catattccct ccagcgaaat tggcagcggc tatttccagg aaacccaccc acaagagcta 360
ttccgcgaat gtagtcacta ttgcgagctg gtttccagcc cggagcagat cccacaagta 420
ctggcgattg ccatgcgcaa agcggtgctt aaccgtggcg tttcggttgt cgtgttacca 480
ggcgacgtgg cgttaaaacc tgcgccagaa ggggcaacca tgcactggta tcatgcgcca 540
caaccagtcg tgacgccgga agaagaagag ttacgcaaac tggcgcaact gctgcgttat 600
tccagcaata tcgccctgat gtgtggcagc ggctgcgcgg gggcgcataa agagttagtt 660
gagtttgccg ggaaaattaa agcgcctatt gttcatgccc tgcgcggtaa agaacatgtc 720
gaatacgata atccgtatga tgttggaatg accgggttaa tcggcttctc gtcaggtttc 780
cataccatga tgaacgccga cacgttagtg ctactcggca cgcaatttcc ctaccgcgcc 840
ttctacccga ccgatgccaa aatcattcag attgatatca acccagccag catcggcgct 900
cacagcaagg tggatatggc actggtcggc gatatcaagt cgactctgcg tgcattgctt 960
ccattggtgg aagaaaaagc cgatcgcaag tttctggata aagcgctgga agattaccgc 1020
gacgcccgca aagggctgga cgatttagct aaaccgagcg agaaagccat tcacccgcaa 1080
tatctggcgc agcaaattag tcattttgcc gccgatgacg ctattttcac ctgtgacgtt 1140
ggtacgccaa cggtgtgggc ggcacgttat ctaaaaatga acggcaagcg tcgcctgtta 1200
ggttcgttta accacggttc gatggctaac gccatgccgc aggcgctggg tgcgcaggcg 1260
acagagccag aacgtcaggt ggtcgccatg tgcggcgatg gcggttttag catgttgatg 1320
ggcgatttcc tctcagtagt gcagatgaaa ctgccagtga aaattgtcgt ctttaacaac 1380
agcgtgctgg gctttgtggc gatggagatg aaagctggtg gctatttgac tgacggcacc 1440
gaactacacg acacaaactt tgcccgcatt gccgaagcgt gcggcattac gggtatccgt 1500
gtagaaaaag cgtctgaagt tgatgaagcc ctgcaacgcg ccttctccat cgacggtccg 1560
gtgttggtgg atgtggtggt cgccaaagaa gagttagcca ttccaccgca gatcaaactc 1620
gaacaggcca aaggtttcag cctgtatatg ctgcgcgcaa tcatcagcgg acgcggtgat 1680
gaagtgatcg aactggcgaa aacaaactgg ctaaggtaa 1719

Claims (10)

1. A genetically engineered bacterium producing hydroxyadipic acid, which is a recombinant host bacterium comprising a gene encoding lysine dehydrogenase, a gene encoding aminoadipate semialdehyde dehydrogenase, a gene encoding aminoadipate transaminase, and a gene encoding ketoadipate reductase.
2. The genetically engineered bacterium of claim 1, wherein the gene encoding lysine dehydrogenase is selected from the group consisting of a lysine dehydrogenase-encoding gene lysDH-Am from Bacillus 12AMOR1 or a codon-optimized lysine dehydrogenase-encoding gene lysDH-Am from Bacillus 12AMOR1, a lysine dehydrogenase-encoding gene lysDH-Bt from Bacillus thermophilus 1A1 or a codon-optimized lysine dehydrogenase-encoding gene lysDH-Bt from Bacillus thermophilus 1A1, a lysine dehydrogenase-encoding gene lysDH-Ab from acidic bacterium ADurb.Bin051 or a codon-optimized lysine dehydrogenase-encoding gene lysDH-Ab from acidic bacterium ADurb.051Bin141, a lysine dehydrogenase-encoding gene lysDH-Bb from Bacteroides ADurb.Bin 141 or a codon-optimized lysine dehydrogenase-encoding gene lysDH-Bb from thermophilic bacterium ADurb.Bin 141, preferably the codon-optimized lysine dehydrogenase-encoding gene lysDH-Bt 1.
3. The genetically engineered bacterium of claim 1, wherein the gene encoding aminoadipate semialdehyde dehydrogenase is selected from the group consisting of a gene Psefu _1272 encoding aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X or a gene Psefu _1272 encoding aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X and codon-optimized, a gene ALDH7A1 encoding aminoadipate semialdehyde dehydrogenase derived from human or a gene ALDH7A1 encoding aminoadipate semialdehyde dehydrogenase derived from human and codon-optimized, PMI27 encoding aminoadipate semialdehyde dehydrogenase derived from pseudomonas GM41 (2012), or a gene PMI27 encoding aminoadipate semialdehyde dehydrogenase derived from pseudomonas GM41 (2012) and codon-optimized, preferably a gene Psefu _1272 encoding aminoadipate semialdehyde dehydrogenase derived from pseudomonas 12-X and codon-optimized.
4. The genetically engineered bacterium of claim 1, wherein the gene encoding an aminoadipate aminotransferase is selected from the group consisting of an aminoadipate aminotransferase-encoding gene ARO8 from saccharomyces cerevisiae S288c or a codon-optimized aminoadipate aminotransferase-encoding gene ARO8 from saccharomyces cerevisiae S288c, an aminoadipate aminotransferase-encoding gene lysN from thermus thermophilus HB27 or a codon-optimized aminoadipate aminotransferase-encoding gene lysN from thermus thermophilus HB27, preferably from saccharomyces cerevisiae S288c and a codon-optimized aminoadipate aminotransferase-encoding gene ARO8.
5. The genetically engineered bacterium of claim 1, wherein the gene encoding ketoadipate reductase is selected from the group consisting of a gene AeLDH encoding ketoadipate reductase derived from chlorella vulgaris H16 that is enriched or a gene AeLDH encoding ketoadipate reductase derived from chlorella vulgaris H16 that is enriched and codon-optimized, a gene HgdH encoding ketoadipate reductase derived from zymococcus amino acids that is fermented, or a gene HgdH encoding ketoadipate reductase derived from zymococcus amino acids that is codon-optimized, preferably a gene AeLDH encoding ketoadipate reductase derived from chlorella vulgaris H16 that is enriched and codon-optimized.
6. The genetically engineered bacterium of claims 1-5, wherein the genetically engineered bacterium is a genetically engineered bacterium that is modified by a chassis microorganism to produce hydroxyadipic acid; preferably, the chassis microbial engineering comprises the intensification of precursor synthetic pathways and the knock-out or attenuation of genes associated with competing metabolic pathways.
7. The genetically engineered bacterium of claim 6,
the strengthening of the precursor synthesis pathway comprises over-expressing key genes of the precursor synthesis pathway in genetically engineered bacteria; preferably, the key genes of the precursor synthesis pathway include a gene aspC encoding aspartate aminotransferase, a gene lysC encoding aspartate kinase, a gene dapA encoding dihydrodipicolinate synthase, and a gene lysA encoding diaminopimelate decarboxylase;
and/or, the competing metabolic pathway-related genes include lysine degradation pathway-related genes, lactate pathway-related genes, and acetate pathway-related genes; preferably, the lysine degradation pathway-related genes include genes encoding lysine decarboxylase cadA and ldcC; and/or, the lactate pathway-associated gene comprises a gene ldh encoding lactate dehydrogenase; and/or, the acetate pathway-associated genes include a gene pta encoding phosphoacetyltransferase, a gene ackA encoding acetate kinase, and a gene poxB encoding pyruvate dehydrogenase.
8. The genetically engineered bacterium of any one of claims 1 to 7, wherein the host bacterium comprises Escherichia coli, corynebacterium glutamicum, yeast, and engineered bacteria, fungi; preferably, the host bacterium is escherichia coli; further preferably, the host bacterium is Escherichia coli JM109 (DE 3).
9. The application of the genetically engineered bacterium of any one of 1 to 8 in producing hydroxy adipic acid; preferably, the application comprises the steps of inoculating the genetic engineering bacteria for producing the hydroxyadipic acid into a fermentation culture medium, carrying out fermentation culture, and then separating and purifying the obtained fermentation culture solution to prepare the hydroxyadipic acid; further preferably, the fermentation culture conditions are: the fermentation culture time is 72h, when the thallus grows to OD600When the concentration is 0.6-0.8, adding IPTG, and after adding the IPTG, changing the fermentation temperature from 37 ℃ to 30 ℃ and controlling the IPTG induction concentration to be 0.8-1.2mM; particularly preferably, lysine is added in vitro, and the amount of lysine added is 2 to 10g/L, more particularly preferably 5 to 10g/L.
10. The use according to claim 9, wherein the isolation and purification of the obtained fermentation broth comprises:
step S1, carrying out first centrifugal separation on a fermentation culture solution to obtain first supernatant;
step S2, diluting the supernatant fluid I by 20 times with ultrapure water, and uniformly mixing to obtain a solution A; diluting the solution A by 10 times by using methanol containing 0.1% formic acid, uniformly mixing, and performing centrifugal separation for the second time to obtain supernatant of the second time;
and S3, filtering the second supernatant by using a 0.22-micron organic phase filter membrane to obtain the hydroxy adipic acid.
CN202110475909.2A 2021-04-29 2021-04-29 Genetically engineered bacterium for producing hydroxy adipic acid Active CN115261293B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110475909.2A CN115261293B (en) 2021-04-29 2021-04-29 Genetically engineered bacterium for producing hydroxy adipic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110475909.2A CN115261293B (en) 2021-04-29 2021-04-29 Genetically engineered bacterium for producing hydroxy adipic acid

Publications (2)

Publication Number Publication Date
CN115261293A true CN115261293A (en) 2022-11-01
CN115261293B CN115261293B (en) 2024-02-02

Family

ID=83745809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110475909.2A Active CN115261293B (en) 2021-04-29 2021-04-29 Genetically engineered bacterium for producing hydroxy adipic acid

Country Status (1)

Country Link
CN (1) CN115261293B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889092A (en) * 2007-10-04 2010-11-17 生物结构实验室公司 Biofuel production
WO2014028026A1 (en) * 2012-08-17 2014-02-20 Celexion, Llc Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
CN104245947A (en) * 2012-02-29 2014-12-24 杜克大学 Novel oxidoreductases for enantioselective reactions
CN105745327A (en) * 2013-09-17 2016-07-06 兹莫克姆有限公司 Method for mass producing human blood coagulation factor vii derivative
CN109136295A (en) * 2018-08-17 2019-01-04 北京化工大学 A kind of method of biosynthesis glutaric acid
CA2880726C (en) * 2012-09-14 2020-01-21 Bioamber Inc. Alternative pathways to adipates and adipic acid by combined fermentation and catalytic methods
CN110713990A (en) * 2019-10-21 2020-01-21 北京化工大学 Mutant protein of enoate reductase and application thereof
EP3467113A4 (en) * 2016-05-31 2020-02-12 Toray Industries, Inc. Method for producing a-hydromuconic acid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889092A (en) * 2007-10-04 2010-11-17 生物结构实验室公司 Biofuel production
CN104245947A (en) * 2012-02-29 2014-12-24 杜克大学 Novel oxidoreductases for enantioselective reactions
WO2014028026A1 (en) * 2012-08-17 2014-02-20 Celexion, Llc Biological synthesis of difunctional hexanes and pentanes from carbohydrate feedstocks
CA2880726C (en) * 2012-09-14 2020-01-21 Bioamber Inc. Alternative pathways to adipates and adipic acid by combined fermentation and catalytic methods
CN105745327A (en) * 2013-09-17 2016-07-06 兹莫克姆有限公司 Method for mass producing human blood coagulation factor vii derivative
EP3467113A4 (en) * 2016-05-31 2020-02-12 Toray Industries, Inc. Method for producing a-hydromuconic acid
CN109136295A (en) * 2018-08-17 2019-01-04 北京化工大学 A kind of method of biosynthesis glutaric acid
CN110713990A (en) * 2019-10-21 2020-01-21 北京化工大学 Mutant protein of enoate reductase and application thereof

Also Published As

Publication number Publication date
CN115261293B (en) 2024-02-02

Similar Documents

Publication Publication Date Title
CN102317437B (en) Green process and compositions for producing poly(5hv) and 5 carbon chemicals
CA2571528C (en) Biochemical synthesis of 1,4-butanediamine
CN107771214B (en) Modified microorganisms for optimized 2,4-dihydroxybutyric acid production with increased 2,4-dihydroxybutyric acid excrements
KR102000755B1 (en) A recombinant microorganism introduced exotic genes and a method for producing useful product from carbon dioxide and formic acid using the recombinant microorganism
CN114480317B (en) Engineered microorganisms expressing acetoacetyl-coa reductase variants and methods of increasing PHA production
Lütte et al. Autotrophic production of stable-isotope-labeled arginine in Ralstonia eutropha strain H16
KR20220139351A (en) Modified Microorganisms and Methods for Improved Production of Ectoins
US20140178961A1 (en) Constructs and strains for fixing carbon dioxide and methods for preparing the same
CN114317306B (en) Genetically engineered strain for synthesizing resveratrol and construction method and application thereof
CN101463358B (en) Nitrile hydratase gene cluster and use thereof
CN112501095A (en) Construction method and application of recombinant escherichia coli for synthesizing 3-fucosyllactose
CN114540261B (en) Gene engineering bacteria for producing amino adipic acid
KR20200134333A (en) Biosynthetic pathway engineered for histamine production by fermentation
JP6951702B2 (en) How to make Trehangerin
US10480003B2 (en) Constructs and systems and methods for engineering a CO2 fixing photorespiratory by-pass pathway
CN115261293B (en) Genetically engineered bacterium for producing hydroxy adipic acid
Perlova et al. Novel expression hosts for complex secondary metabolite megasynthetases: Production of myxochromide in the thermopilic isolate Corallococcus macrosporus GT-2
WO2018233703A1 (en) Gene cassette for fine control of composition ratio of 4-hydroxybutanoic acid in copolymer and application thereof
KR102120996B1 (en) Transformed methanotrophs for producing 3-Hydroxypropionic acid and uses thereof
CN112195129A (en) Violacein biosynthesis gene cluster and application thereof
CN114276970B (en) Genetically engineered bacterium for producing 1, 3-propylene glycol
CN117402846B (en) L-alanine dehydrogenase mutant and preparation method and application thereof
KR20020064788A (en) Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes
CN111117979B (en) Transaminase mutant, enzyme preparation, recombinant vector, recombinant cell and preparation method and application thereof
CN114958703B (en) Recombinant bacterium for synthesizing succinic acid by utilizing grease, construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant