CN115254148A - 一种高温水汽处理的Pt-Pd/CeZrO2-S双金属催化剂催化氧化芳烃的方法 - Google Patents

一种高温水汽处理的Pt-Pd/CeZrO2-S双金属催化剂催化氧化芳烃的方法 Download PDF

Info

Publication number
CN115254148A
CN115254148A CN202210736718.1A CN202210736718A CN115254148A CN 115254148 A CN115254148 A CN 115254148A CN 202210736718 A CN202210736718 A CN 202210736718A CN 115254148 A CN115254148 A CN 115254148A
Authority
CN
China
Prior art keywords
catalyst
water vapor
catalytic oxidation
temperature water
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210736718.1A
Other languages
English (en)
Inventor
万绍隆
张邦杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202210736718.1A priority Critical patent/CN115254148A/zh
Publication of CN115254148A publication Critical patent/CN115254148A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高温水汽处理的Pt‑Pd/CexZr(1‑x)O2‑S双金属催化剂催化氧化芳烃的方法:包括以下步骤:制备Pt‑Pd/CexZr(1‑x)O2‑S双金属催化剂:将硝酸铈和硝酸锆混合溶液在碱性沉淀剂的作用下制得铈锆氢氧化物,然后在空气中焙烧得到铈锆固溶体,记为CexZr(1‑x)O2;将含Pt和Pd的前驱体和铈锆固溶体混合后煅烧,煅烧后的催化剂记为Pt‑Pd/CexZr(1‑x)O2;最后将所得混合物进行高温水汽处理,记为Pt‑Pd/CexZr(1‑x)O2‑S;催化氧化芳烃反应的步骤为:将制得的Pt‑Pd/CexZr(1‑x)O2‑S催化剂放入固定床装置中进行芳烃氧化反应,反应原料为芳烃和空气组成的混合气体,反应压力为常压,反应温度为100~400℃。催化反应结果表明:本发明所提供的Pt‑Pd/CexZr(1‑x)O2‑S催化剂在芳烃的催化氧化中T90可低至147℃。此外,所制备的催化剂还具有优异的耐久性能和耐高温性能。

Description

一种高温水汽处理的Pt-Pd/CeZrO2-S双金属催化剂催化氧化 芳烃的方法
技术领域
本发明涉及催化氧化芳烃的方法,具体涉及一种高温水汽处理的 Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法。
背景技术
芳烃通常是指分子中含有苯环的一类有机化合物;同时也是在自然环境中普遍且能持久存在的有毒污染物之一,对生态环境和人体健康都有着较大的伤害。目前,芳烃的降解技术众多,有热焚烧法、等离子体法、生物法和催化氧化法等方法;其中,催化氧化法因具有效率高和无二次污染等优点而成为最受关注同时也是最有前景的芳烃降解技术之一(Yang C,Miao G,Pi Y,et al.Abatement of various types of VOCs by adsorption/catalytic oxidation:a review[J].Chemical Engineering Journal,2019,370:1128-1153;Lee J E,Ok Y S,Tsang D C W,et al. Recent advances in volatile organiccompounds abatement by catalysis and catalytic hybrid processes:A criticalreview[J].Science of The Total Environment,2020,719: 137405.)。
芳烃的催化氧化方法通常是在热焚烧的基础上通过引入催化剂来降低氧化反应所需的活化能。芳烃的催化氧化的核心催化剂主要分为贵金属和非贵金属催化剂两大类;其中,非贵金属催化剂受限于金属本身性质,普遍需要在较高的温度才能完全降解芳烃;而贵金属催化剂则普遍具有低温氧化芳烃的能力,Santos 等认为贵金属催化剂催化氧化芳烃的性能排序为:Pt>Pd>>Rh≈Ir>>Au;因此, Pt基催化剂被认为是催化氧化芳烃最理想的催化剂(Santos V P,Carabineiro S a C, Tavares P B,et al.Oxidation of CO,ethanol and toluene over TiO2 supported noble metal catalysts[J].AppliedCatalysis B:Environmental,2010,99(1):198-205.)。然而,在贵金属催化剂的实际应用过程中,催化剂长时间的工作易导致催化剂失活,从而需要热处理再生;此外,催化剂在使用过程中很多情况下还需要进行升温处理;因此,催化剂的耐久性和耐高温性能具有重要意义;但目前常见的贵金属纳米颗粒催化剂普遍存在恒温稳定性和耐高温性能较差等问题。(Zhang Y,Liu Y, Xie S,et al.Supported ceria-modified silver catalysts withhigh activity and stability for toluene removal[J].Environment International,2019,128:335-42.)因此,开发一种具有高耐久性和高耐热性的芳烃催化氧化催化剂并将其应用于各种芳烃污染物的降解是非常必要的。
发明内容
针对上述现有技术存在的不足之处,本发明目的在于提供一种高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法。
为了达成上述目的,本发明的解决方案是:
一种高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:具体包括以下步骤:
(1)往铈盐和锆盐混合溶液中加入碱后将所得铈锆氢氧化物在空气中焙烧制得铈锆固溶体,将所得铈锆固溶体记为CexZr(1-x)O2,其中x=0~1;
(2)将步骤(1)中制得的铈锆固溶体与含Pt的前驱体和含Pd的前驱体混合后煅烧,将所得催化剂记为Pt-Pd/CexZr(1-x)O2
(3)将步骤(2)中制得的催化剂Pt-Pd/CexZr(1-x)O2进行高温水汽处理,将处理后的催化剂记为Pt-Pd/CexZr(1-x)O2-S;
(4)将步骤(3)中制得的Pt-Pd/CexZr(1-x)O2-S催化剂造粒后放入固定床反应装置中进行芳烃氧化反应,反应原料为由芳烃和空气组成的混合气体,反应压力为常压,反应温度为100~400℃。
优选地,步骤(1)中所述的铈盐为硝酸铈、三氯化铈或硫酸铈中的一种;所述的锆盐为硝酸锆、四氯化锆或硫酸锆中的一种。
优选地,步骤(1)中所述的碱为氨水、氢氧化钠或碳酸钠中的一种。
优选地,步骤(1)中所述的焙烧条件为:焙烧气氛为空气,焙烧温度为300 ~600℃,焙烧时间为2~8h。
优选地,步骤(2)中所述的煅烧条件为:煅烧气氛为空气,煅烧温度为400~ 900℃,煅烧时间为2~12h。
优选地,步骤(2)中所述的含Pt的前驱体选自硝酸铂、氯铂酸或四氨合硝酸铂中的一种;所述的含Pd的前驱体选自硝酸钯、氯钯酸或硫酸四氨合钯中的一种。
优选地,步骤(3)中所述的高温水汽处理的条件为:温度为300~800℃,水汽处理的时间为1~12h。
优选地,步骤(4)中所述的催化剂造粒目数为40~60目。
优选地,步骤(4)中所述的芳烃为甲苯或二甲苯中的一种;所述混合气体中芳烃的浓度为0~10000ppm。
本发明的设计原理如下:
本发明所提供的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的机理为:首先通过往铈盐和锆盐混合溶液中加入碱使用共沉淀法制备出具有高热稳定性和丰富氧空位的铈锆固溶体作为载体,然后通过共浸渍的方法在载体上负载含Pt和Pd的前驱体,再通过高温焙烧使金属与载体形成较强的金属- 载体强相互作用。最后,在对所得催化剂进行高温水汽处理的过程中,水汽在铈锆固溶体表面解离为羟基和质子氢,羟基会占据在Pt原子附近的氧空位,而质子氢则会与Pt原子附近的晶格氧结合,这样最终会在Pt原子的附近形成两个活性羟基,这些活性羟基具有优异的低温氧化性能。此外,通常情况下Pt单金属催化剂的耐久性和耐高温性能均较差,而Pd引入后,通过Pt-Pd的协同作用使得最终所制备的催化剂具有优异的耐久性能和耐高温性能。
本发明的有益效果:
(1)本发明所提供的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法成功实现了在较低温度下和较少催化剂用量的条件下完全催化氧化芳烃。
(2)本发明所提供的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂具有优异的耐久性能、耐高温性能和抗水性能,可循环使用多次,这在实际应用中能有效地降低芳烃降解的成本。
(3)本发明所提供的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法还具有操作容易及催化剂制备过程简易的优点,这非常有利于工业化推广。
附图说明
图1为芳烃催化氧化反应的装置示意图;
图2为双金属催化剂Pt-Pd/CexZr(1-x)O2-S的XRD谱图;
图3为双金属催化剂Pt-Pd/CexZr(1-x)O2-S的活性测试图;
图4为双金属催化剂Pt-Pd/CexZr(1-x)O2-S的循环测试图;
图5为双金属催化剂Pt-Pd/CexZr(1-x)O2-S反应24h耐久性测试图;
图6为双金属催化剂Pt-Pd/CexZr(1-x)O2-S的耐高温测试图;
图7为双金属催化剂Pt-Pd/CexZr(1-x)O2-S的抗水性能测试图。
具体实施方式
下面进一步结合附图和实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,示例中具体的质量、水汽时间和温度、工艺参数等也仅是合适范围中的一个示例,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。实施例中未注明具体技术或条件者,均为按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市场购买的常规产品。
图1为本发明实例部分所用的为高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法所设计的反应装置的示意图:其中包括氮气瓶、干燥空气瓶、截止阀1、质量流量计1、截止阀2、质量流量计2、截止阀3、质量流量计3、低温恒温槽、鼓泡器、混合罐、反应炉和气相色谱仪(GC);各部分之间的连接方式如图1所示。在芳烃催化氧化反应的装置中:反应原料芳烃放入到位于低温恒温槽中的鼓泡器中;干燥空气分为两路:其中一路通过截止阀3 和质量流量计3进入鼓泡器将芳烃的饱和蒸汽压带出与另一路通过截止阀2和质量流量计2的空气混合稀释;催化剂放置在石英管中(内径为6mm),然后将石英管放入反应炉中即可进行催化反应。最后通过气相色谱检测尾气中残留的芳烃含量,从而计算出芳烃的转化率。
实施例1
高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的步骤如下:
(1)往500ml由硝酸铈(7.35g)和硝酸锆(7.27g)组成的混合溶液中滴加0.1M的氢氧化钠溶液至沉淀完全,将所得铈锆氢氧化物沉淀在空气中400℃焙烧6h得到铈锆固溶体,将所得铈锆固溶体记为CexZr(1-x)O2
(2)将1g步骤(1)中制得的铈锆固溶体、10mg硝酸铂和5mg硝酸钯混合后在空气中500℃煅烧6h,将煅烧后的催化剂记为Pt-Pd/CexZr(1-x)O2
(3)将步骤(2)中制得的催化剂进行高温水汽处理,高温水汽处理的温度为500℃,水汽处理的时间为6h,水汽的含量30vol%,将所得的催化剂记为 Pt-Pd/CexZr(1-x)O2-S-1。催化剂Pt-Pd/CexZr(1-x)O2和催化剂Pt-Pd/CexZr(1-x)O2-S-1 的XRD谱图如图2所示;从图2中可以看出:Pt-Pd/CexZr(1-x)O2-S催化剂的XRD 衍射谱图中,除了CexZr(1-x)O2载体的衍射峰之外,并没有观察到归属于Pt和Pd 的相关衍射峰,说明Pt和Pd分散良好,没有形成大的纳米颗粒;
(4)催化氧化芳烃反应:如图1所示为本发明进行催化氧化芳烃所使用的反应装置的示意图:将甲苯放入到位于低温恒温槽中的鼓泡器中,调节低温恒温槽的温度为10℃,控制原料气的流速为60mL/min,其中甲苯的浓度为1000ppm。将催化剂Pt-Pd/CexZr(1-x)O2-S-1造粒至40~60目,然后称取0.2g进行催化反应,先升温至目标温度(目标温度为高于完全转化所需温度10~20℃)稳定1.5h,待甲苯浓度稳定后每次降温10℃测试催化剂的活性,通过气相色谱检测尾气中残留的甲苯含量,从而计算出甲苯的转化率。催化剂的活性测试结果如图3所示:经过高温水汽处理的Pt-Pd/CexZr(1-x)O2-S催化剂催化氧化甲苯的所需的T90为147℃。此外,还对催化剂Pt-Pd/CexZr(1-x)O2-S-1的稳定性进行了测试,结果如图4所示;从图4中可以看出经过三个循环后催化剂Pt-Pd/CexZr(1-x)O2-S-1仍未见失活现象。
实施例2
高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的步骤参考实施例1,不同之处在于步骤(4)中催化剂的用量为0.08g,催化反应的温度稳定在170℃。反应结果如图5所示:经过高温水汽处理的Pt-Pd/CexZr(1-x)O2-S催化剂反应24h后未见失活现象,表现出优异的耐久性能。
实施例3
高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的步骤参考实施例1,不同之处在于步骤(4)中催化剂的用量为0.08g,催化反应温度为先在170℃反应6h,再升温至300℃反应6h,然后降温至170℃反应6h。按上述步骤依次升温至400和500℃。反应结果如图6所示:催化剂分别经过300和 400℃高温反应后再降温至170℃,活性依然保持稳定,表明该催化剂表现出优异的耐高温性能,但在经历500℃反应后出现了失活现象。
实施例4
高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的步骤参考实施例1,不同之处在于步骤(4)中催化剂的用量为0.08g,催化反应条件调整如下:反应温度为先在170℃反应6h,再往原料气中通入5vol%的水汽反应6h,最后断开水汽再反应6h。反应结果如图7所示,通入5vol%的水汽后,催化剂的活性未见明显下降,表明本发明所提供的催化剂具有优异的抗水性能。
实施例5
高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的步骤参考实施例1,不同之处在于将步骤(4)中的甲苯换为二甲苯;催化剂的用量为0.1g,经过高温水汽处理的Pt-Pd/CexZr(1-x)O2-S催化剂催化氧化二甲苯的所需的T90为 153℃。
对比例1
将0.5g实施例1中步骤(2)所制备的催化剂Pt-Pd/CexZr(1-x)O2造粒至40~60 目,然后称取0.2g进行催化氧化芳烃反应。催化氧化芳烃反应的步骤参考实施例1中步骤(4)。催化剂的活性测试结果如图3所示:催化剂Pt-Pd/CexZr(1-x)O2催化氧化芳烃的所需的T90为297℃。

Claims (9)

1.一种高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:具体包括以下步骤:
(1)往铈盐和锆盐混合溶液中加入碱后将所得铈锆氢氧化物在空气中焙烧制得铈锆固溶体,将所得铈锆固溶体记为CexZr(1-x)O2,其中x=0~1;
(2)将步骤(1)中制得的铈锆固溶体与含Pt的前驱体和含Pd的前驱体混合后煅烧,将所得催化剂记为Pt-Pd/CexZr(1-x)O2
(3)将步骤(2)中制得的催化剂Pt-Pd/CexZr(1-x)O2进行高温水汽处理,将处理后的催化剂记为Pt-Pd/CexZr(1-x)O2-S。
(4)将步骤(3)中制得的Pt-Pd/CexZr(1-x)O2-S催化剂造粒后放入固定床反应装置中进行芳烃氧化反应,反应原料为由芳烃和空气组成的混合气体,反应压力为常压,反应温度为100~400℃。
2.根据权利要求1所述的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:步骤(1)中所述的铈盐为硝酸铈、三氯化铈或硫酸铈中的一种;所述的锆盐为硝酸锆、四氯化锆或硫酸锆中的一种。
3.根据权利要求1所述的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:步骤(1)中所述的碱为氨水、氢氧化钠或碳酸钠中的一种。
4.根据权利要求1所述的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:步骤(1)中所述的焙烧条件为:焙烧气氛为空气,焙烧温度为300~600℃,焙烧时间为2~8h。
5.根据权利要求1所述的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:步骤(2)中所述的煅烧条件为:煅烧气氛为空气,煅烧温度为400~900℃,煅烧时间为2~12h。
6.根据权利要求1所述的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:步骤(2)中所述的含Pt的前驱体选自硝酸铂、氯铂酸或四氨合硝酸铂中的一种;所述的含Pd的前驱体选自硝酸钯、氯钯酸或硫酸四氨合钯中的一种。
7.根据权利要求1所述的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:步骤(3)中所述的高温水汽处理的条件为:温度为300~800℃,水汽处理的时间为1~12h。
8.根据权利要求1所述的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:步骤(4)中所述的催化剂造粒目数为40~60目。
9.根据权利要求1所述的高温水汽处理的Pt-Pd/CexZr(1-x)O2-S双金属催化剂催化氧化芳烃的方法,其特征在于:步骤(4)中所述的芳烃为甲苯或二甲苯中的一种;所述混合气体中芳烃的浓度为0~10000ppm。
CN202210736718.1A 2022-06-27 2022-06-27 一种高温水汽处理的Pt-Pd/CeZrO2-S双金属催化剂催化氧化芳烃的方法 Pending CN115254148A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210736718.1A CN115254148A (zh) 2022-06-27 2022-06-27 一种高温水汽处理的Pt-Pd/CeZrO2-S双金属催化剂催化氧化芳烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210736718.1A CN115254148A (zh) 2022-06-27 2022-06-27 一种高温水汽处理的Pt-Pd/CeZrO2-S双金属催化剂催化氧化芳烃的方法

Publications (1)

Publication Number Publication Date
CN115254148A true CN115254148A (zh) 2022-11-01

Family

ID=83762976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210736718.1A Pending CN115254148A (zh) 2022-06-27 2022-06-27 一种高温水汽处理的Pt-Pd/CeZrO2-S双金属催化剂催化氧化芳烃的方法

Country Status (1)

Country Link
CN (1) CN115254148A (zh)

Similar Documents

Publication Publication Date Title
Quiroz et al. Total oxidation of formaldehyde over MnO x-CeO2 catalysts: The effect of acid treatment
Wang et al. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures
Deng et al. Strontium-doped lanthanum cobaltite and manganite: highly active catalysts for toluene complete oxidation
Centi et al. Novel catalysts and catalytic technologies for N2O removal from industrial emissions containing O2, H2O and SO2
CN108671917B (zh) 一种低温高效催化VOCs废气降解的催化剂及其制备方法
CN106964348B (zh) 一种甲醛污染物室温催化氧化催化剂及其制备方法和应用
Yang et al. Study on anti-sulfur dioxide poisoning of palladium-based catalyst for toluene catalytic combustion
WO2019230854A1 (ja) 触媒、二酸化炭素還元方法、及び二酸化炭素還元装置
Lu et al. The performance of CNT as catalyst support on CO oxidation at low temperature
Wu et al. Catalytic oxidation of toluene over Au–Co supported on SBA-15
CN110064401B (zh) 用于氯乙烯低温催化燃烧中的铈镍共修饰四氧化三钴催化剂的制备及产品和应用
CN1289388A (zh) 催化剂/吸附剂的再生
Zhang et al. Insights into the reaction mechanism of toluene oxidation by isotope dynamic experiment and the kinetics over MCeZr/TiO2 (M= Cu, Mn, Ni, Co and Fe) catalysts
CN113797935B (zh) 一种用于低温高效处理VOCs的催化剂及其制备方法
CN111774052A (zh) 高熔点稀有金属元素修饰氧化铈纳米棒及其制备与应用
Hao et al. Constructing and synthesizing optimal Cu-BTC and its application in low-temperature denitration
Zhou et al. Construction of Pt decorated CeO2 nanocomposite for efficient VOCs catalytic oxidation and atmospheric total organic carbon dictation
CN111135834A (zh) LaNixCo1-xO3型La系钙钛矿光热协同降解甲苯
Guo et al. Activating Pt clusters for efficient removal of HCHO by modulating Vn+ within VxOy support
Qi et al. Catalytic oxidation of toluene over B‐site doped La‐based perovskite LaNi x B1− x O3 (B= Co, Cu) catalysts
Li et al. Removal of volatile organic compounds at low temperature by a self-assembled Pt/γ-Al2O3 catalyst
Zhu et al. High efficiency CuOx/TiO2-ZrO2 for chlorobenzenes catalytic oxidation via adjusting surface acidic sites
CN115254148A (zh) 一种高温水汽处理的Pt-Pd/CeZrO2-S双金属催化剂催化氧化芳烃的方法
WO2023080022A1 (ja) アンモニアの製造ユニット、製造方法および触媒材料
Feng et al. Investigation on the mechanism of Nb and Si co-doping on low SO3 generation from V-based catalyst during NH3-SCR process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication