CN115239793A - 一种hdmi线缆传输分拣智能控制方法及系统 - Google Patents

一种hdmi线缆传输分拣智能控制方法及系统 Download PDF

Info

Publication number
CN115239793A
CN115239793A CN202211147479.2A CN202211147479A CN115239793A CN 115239793 A CN115239793 A CN 115239793A CN 202211147479 A CN202211147479 A CN 202211147479A CN 115239793 A CN115239793 A CN 115239793A
Authority
CN
China
Prior art keywords
cable
value
weighted
sub
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211147479.2A
Other languages
English (en)
Other versions
CN115239793B (zh
Inventor
刘亚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinerge Ems Nantong Co ltd
Original Assignee
Kinerge Ems Nantong Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinerge Ems Nantong Co ltd filed Critical Kinerge Ems Nantong Co ltd
Priority to CN202211147479.2A priority Critical patent/CN115239793B/zh
Publication of CN115239793A publication Critical patent/CN115239793A/zh
Application granted granted Critical
Publication of CN115239793B publication Critical patent/CN115239793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4038Scaling the whole image or part thereof for image mosaicing, i.e. plane images composed of plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/762Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/32Indexing scheme for image data processing or generation, in general involving image mosaicing

Abstract

本发明涉及一种HDMI线缆传输分拣智能控制方法及系统,属于数据处理技术领域,该方法步骤包括:采集同一段线缆多张不同角度的线缆子图像;根据线缆子图像中线缆区域像素点在纵轴上分布的宽度区间建立高斯分布模型;对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权构建加权后线缆子图像;利用改进后阈值分割算法对加权后线缆子图像进行阈值分割并还原得到还原后线缆区域图像,使用聚类算法对由多张还原后线缆区域图像拼接而成的线缆周向全景图像中缺陷区域进行识别;本发明能快速识别定位线缆缺陷区域,根据同一根线缆上各缺陷之间的间隔距离,对同一根线缆进行合理分割提高了线缆的利用率。

Description

一种HDMI线缆传输分拣智能控制方法及系统
技术领域
本发明属于数据处理技术领域,具体涉及一种HDMI线缆传输分拣智能控制方法及系统。
背景技术
在视频图像领域内,数据传输率已步入Gbps的范畴,为了保证高质量音视频信号传输,出现了HDMI接口技术以及其标准。而随着高清数字家庭影院以及多媒体会场的普及,对长HDMI线缆的需求已经越来越大。HDMI线缆能高品质地传输未经压缩的高清视频和多声道音频数据,最高数据传输速度为5Gbps。
线缆表面的外护套是防备外界因素侵蚀线缆绝缘层的结构部分,主要作用是提高线缆的机械强度以及防化学腐蚀、防水、防燃烧等。然而,线缆在生产传输过程中,一般使用伺服电机驱动同一根线缆水平向前传输,在线缆传输的同时还会按照需求规格对线缆进行切割,一般是将线缆全部按照同一需求规格为进行切割分割成多段子线缆最后对其进行分拣。但是在线缆传输的过程中,会不可避免地造成折痕、划痕、小孔、鼓包、绝缘皮破损等表面缺陷。这些缺陷不仅有损产品性能、影响商业用途,而且严重的表观质量甚至会造成后期使用的安全隐患。目前在传输切割时全部按照同一需求规格对线缆进行切割,采用这样的切割方式,一旦子线缆上出现缺陷该段子线缆就会变成废弃线缆不能进行出售,需要将其废弃,从而造成了线缆的严重浪费。因此,在线缆生产传输过程中,如何快速识别定位缺陷区域,并根据同一根线缆缺陷之间的位置对线缆进行合理分割,保证子线缆内部没有缺陷提高同一根线缆的利用率是至关重要的。
发明内容
本发明提供一种HDMI线缆传输分拣智能控制方法及系统,在线缆传输能快速识别定位有缺陷的线缆区域,同时根据同一根线缆上各缺陷之间的间隔距离,对同一根线缆进行合理分割成不同需求规格的子线缆,最后对不同规格的子线缆进行分拣。
本发明的一种HDMI线缆传输分拣智能控制方法采用如下技术方案:该方法包括:
采集同一段线缆多张不同角度的线缆子图像,其中,多张不同角度的线缆子图像涵盖线缆周向全景图像;
根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,并将该宽度区间作为高斯分布中随机变量的取值区间建立高斯分布模型;
基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,并根据得到的全部加权后灰度值构建加权后线缆子图像和加权后灰度直方图;
获取无缺陷线缆子图像,利用由对加权后灰度直方图进行阈值分割时任一遍历阈值对应的像素点数量占像素点总和的比值确定的第一加权值、由无缺陷线缆子图像中非线缆区域面积占总面积的比值确定的第二加权值、由无缺陷线缆子图像中线缆区域面积占总面积的比值确定的第三加权值对标准阈值分割算法进行加权得到改进后阈值分割算法;
利用改进后阈值分割算法对加权后线缆子图像进行阈值分割,得到加权后线缆子图像中加权后线缆区域图像,对加权后线缆区域图像进行还原得到还原后线缆区域图像,同理得到每张线缆子图像的还原后线缆区域图像,将得到的每张线缆子图像的还原后线缆区域图像进行拼接得到完整的线缆周向全景图像;
使用聚类算法对完整的线缆周向全景图像中缺陷区域进行识别,并对识别出的缺陷区域进行标注,根据同一根线缆上各缺陷区域之间的间隔距离,将同一根线缆合理分割成不同需求规格的子线缆,最后对不同规格的子线缆进行分拣。
进一步地,所述根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,包括:
利用预设线缆的实际宽度和线缆上下摆动的实际最大振幅,计算出实际线缆区域的宽度区间;
利用相机参数和相机距线缆的距离,计算出实际线缆区域的宽度区间与线缆子图像中线缆区域的宽度区间的比值,并根据该比值确定线缆子图像中线缆区域的宽度区间;
以线缆子图像中左下角为原点建立直角坐标系,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间。
进一步地,所述并将该宽度区间作为高斯分布中随机变量的取值区间建立高斯分布模型,包括:
将线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间的最大值,作为高斯分布中随机变量的
Figure 394275DEST_PATH_IMAGE001
取值区间的最大值,将线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间的最小值,作为高斯分布中随机变量的
Figure 577257DEST_PATH_IMAGE001
取值区间的最小值,计算出高斯分布模型的期望值和标准差;
根据计算出的高斯分布模型的期望值和标准差建立高斯分布模型。
进一步地,所述基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,包括:
对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权值;
将线缆子图像上每一列每个像素点的灰度值与线缆子图像上每一列每个像素点的加权值对应相乘得到线缆子图像上每一列每个像素点的加权后灰度值。
进一步地,所述线缆子图像上每一列每个像素点的加权值的计算公式如下式所示:
Figure 31241DEST_PATH_IMAGE002
其中,
Figure 902245DEST_PATH_IMAGE003
表示线缆子图像上任一列第
Figure 259539DEST_PATH_IMAGE003
个像素点;
Figure 190586DEST_PATH_IMAGE004
表示线缆子图像在直角坐标系纵轴上的宽度;
Figure 131866DEST_PATH_IMAGE005
表示线缆子图像在直角坐标系纵轴上的中点值;
Figure 868878DEST_PATH_IMAGE006
表示线缆在线缆子图像中的宽度;
Figure 80679DEST_PATH_IMAGE007
表示运动规定的线缆在线缆子图像中上下摆动的最大振幅;
Figure 182627DEST_PATH_IMAGE008
表示高斯分布模型中期望值;
Figure 611203DEST_PATH_IMAGE009
表示高斯分布模型中标准差;当线缆子图像上任一列第
Figure 824010DEST_PATH_IMAGE003
个像素点在高斯分布模型中的位置属于
Figure 155896DEST_PATH_IMAGE010
区间内时,任一列第
Figure 428746DEST_PATH_IMAGE003
个像素点的加权值为
Figure 344618DEST_PATH_IMAGE011
;当线缆子图像上任一列第
Figure 626695DEST_PATH_IMAGE003
个像素点在高斯分布模型中的位置属于
Figure 547509DEST_PATH_IMAGE012
,任一列第
Figure 256839DEST_PATH_IMAGE003
个像素点的加权值为1;
Figure 597690DEST_PATH_IMAGE013
表示线缆子图像上任一列第
Figure 214616DEST_PATH_IMAGE003
个像素点的加权值;
线缆子图像上每一列每个像素点的加权后灰度值的计算公式如下式所示:
Figure 458778DEST_PATH_IMAGE014
其中,
Figure 339009DEST_PATH_IMAGE015
表示线缆子图像上任一列第
Figure 963895DEST_PATH_IMAGE003
个像素点的灰度值;
Figure 587774DEST_PATH_IMAGE013
表示线缆子图像上任一列第
Figure 760478DEST_PATH_IMAGE003
个像素点的加权值;
Figure 546031DEST_PATH_IMAGE016
表示线缆子图像上任一列第
Figure 658213DEST_PATH_IMAGE003
个像素点的加权后灰度值。
进一步地,所述第一加权值的计算公式如下式所示:
Figure 820204DEST_PATH_IMAGE017
其中,
Figure 835695DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 57729DEST_PATH_IMAGE019
表示灰度级t对应的像素点数量占像素点总数的比值;
Figure 391628DEST_PATH_IMAGE020
表示第一加权值;
第二加权值的计算公式如下式所示:
Figure 622889DEST_PATH_IMAGE021
其中,
Figure 492887DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 885822DEST_PATH_IMAGE022
表示灰度级小于t的全部像素点数量总和占像素点总数的比值;表示无缺陷线缆子图像总面积;
Figure 707017DEST_PATH_IMAGE023
表示无缺陷线缆子图像中线缆区域面积;
Figure 210810DEST_PATH_IMAGE024
表示无缺陷线缆子图像中非线缆区域面积占总面积的比值;
Figure 200894DEST_PATH_IMAGE025
表示第二加权值;
第三加权值的计算公式如下式所示:
Figure 764731DEST_PATH_IMAGE026
其中,
Figure 73221DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 708602DEST_PATH_IMAGE027
表示灰度级大于t的全部像素点数量总和占像素点总数的比值;
Figure 802460DEST_PATH_IMAGE028
表示无缺陷线缆子图像总面积;
Figure 287930DEST_PATH_IMAGE023
表示无缺陷线缆子图像中线缆区域面积;
Figure 834449DEST_PATH_IMAGE029
表示第三加权值。
进一步地,所述改进后阈值分割算法的计算公式如下式所示:
Figure 601417DEST_PATH_IMAGE030
其中,
Figure 34934DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 940573DEST_PATH_IMAGE031
表示灰度级小于t的全部像素点数量总和占像素点总数的比值;
Figure 223656DEST_PATH_IMAGE025
表示第二加权值;
Figure 669681DEST_PATH_IMAGE032
表示加权后线缆子图像中全部像素点的灰度值均值;
Figure 223284DEST_PATH_IMAGE033
表示灰度级小于t的全部像素点的灰度值均值;
Figure 503087DEST_PATH_IMAGE034
表示灰度级大于t的全部像素点数量总和占像素点总数的比值;
Figure 273466DEST_PATH_IMAGE029
表示第三加权值;
Figure 726444DEST_PATH_IMAGE035
表示灰度级大于t的全部像素点的灰度值均值;
Figure 134554DEST_PATH_IMAGE020
表示第一加权值;
Figure 381995DEST_PATH_IMAGE036
表示改进后阈值分割算法。
一种HDMI线缆传输分拣智能控制系统,包括:
图像采集模块,用于采集同一段线缆多张不同角度的线缆子图像,其中,多张不同角度的线缆子图像涵盖线缆周向全景图像;
高斯分布模型建立模块,用于根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,并将该宽度区间作为高斯分布中随机变量的取值区间建立高斯分布模型;
高斯分布加权模块,用于基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,并根据得到的全部加权后灰度值构建加权后线缆子图像和加权后灰度直方图;
改进后阈值分割算法获取模块,用于获取无缺陷线缆子图像,利用由对加权后灰度直方图进行阈值分割时任一遍历阈值对应的像素点数量占像素点总和的比值确定的第一加权值、由无缺陷线缆子图像中非线缆区域面积占总面积的比值确定的第二加权值、由无缺陷线缆子图像中线缆区域面积占总面积的比值确定的第三加权值对标准阈值分割算法进行加权得到改进后阈值分割算法;
线缆周向全景图像获取模块,用于利用改进后阈值分割算法对加权后线缆子图像进行阈值分割,得到加权后线缆子图像中加权后线缆区域图像,对加权后线缆区域图像进行还原得到还原后线缆区域图像,同理得到每张线缆子图像的还原后线缆区域图像,将得到的每张线缆子图像的还原后线缆区域图像进行拼接得到完整的线缆周向全景图像;
缺陷区域识别模块,用于使用聚类算法对完整的线缆周向全景图像中缺陷区域进行识别,并对识别出的缺陷区域进行标注;
线缆分割分拣模块,用于根据同一根线缆上各缺陷区域之间的间隔距离,将同一根线缆合理分割成不同需求规格的子线缆,最后对不同规格的子线缆进行分拣。
本发明的有益效果是:
本发明提供一种HDMI线缆传输分拣智能控制方法,在线缆传输过程中能快速识别定位有缺陷的线缆区域,同时根据同一根线缆上各缺陷之间的间隔距离,对同一根线缆进行合理分割成不同需求规格的子线缆,最后对不同规格的子线缆进行分拣。
目前HDMI线缆在传输过程中受光照变化等环境因素和本身缺陷的影响,无法精准分割线缆区域,从而无法准确识别出线缆区域中缺陷。而本发明为了准确识别出线缆区域中缺陷,对线缆子图像中每个像素点进行高斯分布加权构建加权后线缆子图像,并利用改进后阈值分割算法对加权后线缆子图像进行阈值分割,得到加权后线缆子图像中加权后线缆区域图像,对加权后线缆区域图像进行还原得到还原后线缆区域图像,同理得到每张线缆子图像的还原后线缆区域图像,将得到的每张线缆子图像的还原后线缆区域图像进行拼接得到完整的线缆周向全景图像。在得到完整的线缆周向全景图像后使用聚类算法对完整的线缆周向全景图像中缺陷区域进行识别,当完整的线缆周向全景图像中存在缺陷区域时,对识别出的缺陷区域进行标注,根据同一根线缆上各缺陷区域之间的间隔距离,将同一根线缆合理分割成不同规格的子线缆,最后对不同规格的子线缆进行分拣。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一种HDMI线缆传输分拣智能控制方法的实施例总体步骤的流程示意图;
图2为本发明的一种HDMI线缆传输分拣智能控制方法的实施例总体步骤S2的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一种HDMI线缆传输分拣智能控制方法的实施例,如图1所示,该方法包括:
S1、采集同一段线缆多张不同角度的线缆子图像,其中,多张不同角度的线缆子图像涵盖线缆周向全景图像。
本发明需要实时获取每一段线缆周向全景图像,并且采集的线缆表面图像应轮廓、纹理清晰,背景干扰少,线缆与背景应有较明显的对比度。线缆的金属外壳为黑色,因此在采集不同角度的线缆子图像时,采用3个相机周向均布环绕360°采集线缆表面图像,3个相机采集的是同一段线缆3张不同角度的线缆子图像,其中,3张不同角度的线缆子图像涵盖线缆周向全景图像。同时为了保证线缆与背景应有较明显的对比度,6组LED灯环绕线缆圆周等间距分布。线缆在传输过程中利用伺服电机驱动线缆水平匀速通过照明系统,相机曝光频率应与伺服电机驱动线缆运动速度保持一致,线缆最大实时传输速率高于相机采集速率。已知线缆是水平匀速传输的,同时相机曝光频率与线缆运动速度保持一致,故采集的每组线缆子图像中表示的相邻的不同段线缆,并且每段线缆长度一致。
在采集到多张不同角度的线缆子图像后,对采集到的线缆子图像做灰度化处理,由于图像中由于噪声的存在将在一定程度上影响提取图像特征的精度,进而阻碍后续的图像的处理和分析,使用自适应中值滤波对线缆子图像进行平滑去噪处理,抑制或消除这些噪声的影响,改善线缆子图像的质量。
线缆在传输中不可避免的受到光照变化等环境因素影响,所采集到的线缆子图像由于线缆颜色不均、光照不均、曲面光线反射特性等复杂环境因素造成光照不均匀的现象,可能会使背景变亮、线缆区域变暗,以及线缆运动的会产生摆动和线缆本身的缺陷,使得无法根据位置对线缆子图像中线缆区域进行定位提取。因此为了准确的提取线缆子图像中线缆区域,本发明基于像素点在线缆子图像中的位置对像素点进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,并根据得到的全部加权后灰度值构建加权后线缆子图像。
S2、根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,并将该宽度区间作为高斯分布中随机变量的取值区间建立高斯分布模型。
其中,根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,如图2所示,包括:
S21、利用预设线缆的实际宽度和线缆上下摆动的实际最大振幅,计算出实际线缆区域的宽度区间。
已知线缆的实际宽度为K,线缆运动规定上下摆动的实际最大振幅为Q,由此可知平面上实际线缆区域的宽度区间大小为
Figure 639670DEST_PATH_IMAGE037
S22、利用相机参数和相机距线缆的距离,计算出实际线缆区域的宽度区间与线缆子图像中线缆区域的宽度区间的比值,并根据该比值确定线缆子图像中线缆区域的宽度区间。
利用相机参数和相机距线缆的距离,计算出相机的拍摄图像长度尺寸与实际长度尺寸的比值、相机的拍摄图像宽度尺寸与实际宽度尺寸的比值,而相机的拍摄图像宽度尺寸与实际宽度尺寸的比值即是实际线缆区域的宽度区间与线缆子图像中线缆区域的宽度区间的比值。因此,在已知实际线缆区域的宽度区间与线缆子图像中线缆区域的宽度区间的比值和实际线缆区域的宽度区间
Figure 630760DEST_PATH_IMAGE037
后,就能计算出线缆子图像中线缆区域的宽度区间
Figure 147237DEST_PATH_IMAGE038
S23、以线缆子图像中左下角为原点建立直角坐标系,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间。
本发明中在步骤S1中采集线缆子图像时,利用的是相机正对线缆中心的方式采集,在线缆没有一点振幅的情况下,线缆子图像中线缆区域应该在图像的中间位置,但是线缆一旦出现振幅线缆子图像中线缆区域就会相对于中间位置偏移。
以线缆子图像中左下角为原点建立直角坐标系,将线缆子图像放在直角坐标系的第一象限内。线缆子图像中图像的横向长度为M,纵向宽度为N,取直角坐标系中线缆子图像在纵轴坐标中点值为
Figure 565580DEST_PATH_IMAGE005
,由此可知,线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间如下式所示:
Figure 310551DEST_PATH_IMAGE039
其中,
Figure 839752DEST_PATH_IMAGE040
Figure 488033DEST_PATH_IMAGE041
Figure 77278DEST_PATH_IMAGE004
表示线缆子图像在直角坐标系纵轴上的宽度;
Figure 43966DEST_PATH_IMAGE005
表示线缆子图像在直角坐标系纵轴上的中点值;
Figure 376858DEST_PATH_IMAGE006
表示线缆在线缆子图像中的宽度;
Figure 145225DEST_PATH_IMAGE007
表示运动规定的线缆在线缆子图像中上下摆动的最大振幅;
Figure 905371DEST_PATH_IMAGE038
表示线缆子图像中线缆区域的宽度区间;
Figure 437983DEST_PATH_IMAGE042
表示线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间。
其中,在建立高斯分布模型时,先将线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间的最大值,作为高斯分布中随机变量的
Figure 823834DEST_PATH_IMAGE001
取值区间的最大值,将线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间的最小值,作为高斯分布中随机变量的
Figure 695975DEST_PATH_IMAGE001
取值区间的最小值,计算出高斯分布模型的期望值和标准差。
在高斯分布中随机变量落在(
Figure 377754DEST_PATH_IMAGE043
) 以外的概率小于千分之三,在实际中常认为相应的事件不会发生,基本上可以把区间[
Figure 69767DEST_PATH_IMAGE043
]看作是高斯分布中随机变量实际可能的取值区间。由于在拍摄的线缆子图像中线缆区域像素点在直角坐标系纵轴上处于区间
Figure 196992DEST_PATH_IMAGE044
外的概率为0,因此将该宽度区间作为高斯分布中随机变量的
Figure 923639DEST_PATH_IMAGE001
取值区间建立高斯分布模型。
高斯分布模型中期望值的计算公式如下式所示:
Figure 41899DEST_PATH_IMAGE045
其中,
Figure 221208DEST_PATH_IMAGE004
表示线缆子图像在直角坐标系纵轴上的宽度;
Figure 683282DEST_PATH_IMAGE008
表示高斯分布模型中期望值;
高斯分布模型中标准差的计算公式如下式所示:
Figure 592332DEST_PATH_IMAGE046
其中,
Figure 865182DEST_PATH_IMAGE038
表示线缆子图像中线缆区域的宽度区间;
Figure 282519DEST_PATH_IMAGE009
表示高斯分布模型中标准差。
在求出高斯分布模型中期望值和高斯分布模型中标准差后,根据计算出的高斯分布模型的期望值和标准差建立高斯分布模型。
S3、基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,并根据得到的全部加权后灰度值构建加权后线缆子图像和加权后灰度直方图。
其中,基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,包括:对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权值;将线缆子图像上每一列每个像素点的灰度值与线缆子图像上每一列每个像素点的加权值对应相乘得到线缆子图像上每一列每个像素点的加权后灰度值。
线缆子图像上每一列每个像素点的加权值的计算公式如下式所示:
Figure 299016DEST_PATH_IMAGE047
其中,
Figure 983944DEST_PATH_IMAGE003
表示线缆子图像上任一列第
Figure 958854DEST_PATH_IMAGE003
个像素点;
Figure 597908DEST_PATH_IMAGE004
表示线缆子图像在直角坐标系纵轴上的宽度;
Figure 621358DEST_PATH_IMAGE005
表示线缆子图像在直角坐标系纵轴上的中点值;
Figure 426372DEST_PATH_IMAGE006
表示线缆在线缆子图像中的宽度;
Figure 306604DEST_PATH_IMAGE007
表示运动规定的线缆在线缆子图像中上下摆动的最大振幅;
Figure 10117DEST_PATH_IMAGE008
表示高斯分布模型中期望值;
Figure 119150DEST_PATH_IMAGE009
表示高斯分布模型中标准差;当线缆子图像上任一列第
Figure 529403DEST_PATH_IMAGE003
个像素点在高斯分布模型中的位置属于
Figure 95382DEST_PATH_IMAGE010
区间内时,任一列第
Figure 958296DEST_PATH_IMAGE003
个像素点的加权值为
Figure 898500DEST_PATH_IMAGE011
;当线缆子图像上任一列第
Figure 897680DEST_PATH_IMAGE003
个像素点在高斯分布模型中的位置属于
Figure 634561DEST_PATH_IMAGE012
,任一列第
Figure 312667DEST_PATH_IMAGE003
个像素点的加权值为1;
Figure 543928DEST_PATH_IMAGE013
表示线缆子图像上任一列第
Figure 413927DEST_PATH_IMAGE003
个像素点的加权值;
线缆子图像上每一列每个像素点的加权后灰度值的计算公式如下式所示:
Figure 541283DEST_PATH_IMAGE014
其中,
Figure 628056DEST_PATH_IMAGE015
表示线缆子图像上每一列第
Figure 335112DEST_PATH_IMAGE003
个像素点的灰度值,
Figure 325196DEST_PATH_IMAGE048
Figure 623453DEST_PATH_IMAGE013
表示线缆子图像上每一列第
Figure 197523DEST_PATH_IMAGE003
个像素点的加权值;
Figure 505008DEST_PATH_IMAGE016
表示线缆子图像上任一列第
Figure 349598DEST_PATH_IMAGE003
个像素点的加权后灰度值。
本发明中将拍摄的线缆子图像从左到右逐列进行高斯分布加权得到加权后线缆子图像,加权后线缆子图像中非线缆区域灰度值基本不变,线缆区域灰度值变大,至此增强了拍摄的线缆子图像中线缆区域与非线缆区域像素点灰度值的差异。
S4、获取无缺陷线缆子图像,利用由对加权后灰度直方图进行阈值分割时任一遍历阈值对应的像素点数量占像素点总和的比值确定的第一加权值、由无缺陷线缆子图像中非线缆区域面积占总面积的比值确定的第二加权值、由无缺陷线缆子图像中线缆区域面积占总面积的比值确定的第三加权值对标准阈值分割算法进行加权得到改进后阈值分割算法。
目前一般使用标准阈值分割算法Otsu算法计算任一拍摄图像的分割阈值,在计算该拍摄图像的分割阈值时,先获取该拍摄图像的灰度直方图,目前已知标准的Otsu 算法的计算公式如下式所示:
Figure 84336DEST_PATH_IMAGE049
其中,
Figure 880122DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 991298DEST_PATH_IMAGE031
表示灰度级小于t的全部像素点数量总和占像素点总数的比值;
Figure 690395DEST_PATH_IMAGE050
表示加权后线缆子图像中全部像素点的灰度值均值;
Figure 596034DEST_PATH_IMAGE033
表示灰度级小于t的全部像素点的灰度值均值;
Figure 879116DEST_PATH_IMAGE034
表示灰度级大于t的全部像素点数量总和占像素点总数的比值;
Figure 528404DEST_PATH_IMAGE051
表示灰度级大于t的全部像素点的灰度值均值。
本发明中首先获取无缺陷线缆子图像,无缺陷线缆子图像即是已知线缆区域没有任何缺陷的线缆子图像。无缺陷线缆子图像中图像的横向长度为M,纵向宽度为N,无缺陷线缆子图像中线缆的宽度为
Figure 82007DEST_PATH_IMAGE006
,由于本发明中拍摄的线缆子图像中线缆是贯穿整个线缆子图像的,所以无缺陷线缆子图像中线缆区域面积为
Figure 486443DEST_PATH_IMAGE023
本发明中由对加权后灰度直方图进行阈值分割时任一遍历阈值对应的像素点数量占像素点总和的比值确定的第一加权值,第一加权值的计算公式如下式所示:
Figure 7555DEST_PATH_IMAGE017
其中,
Figure 444221DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 632757DEST_PATH_IMAGE019
表示灰度级t对应的像素点数量占像素点总数的比值;
Figure 834193DEST_PATH_IMAGE020
表示第一加权值。
由无缺陷线缆子图像中非线缆区域面积占总面积的比值确定的第二加权值,第二加权值的计算公式如下式所示:
Figure 842601DEST_PATH_IMAGE021
其中,
Figure 82958DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 126000DEST_PATH_IMAGE022
表示灰度级小于t的全部像素点数量总和占像素点总数的比值;
Figure 295076DEST_PATH_IMAGE028
表示无缺陷线缆子图像总面积;
Figure 853096DEST_PATH_IMAGE023
表示无缺陷线缆子图像中线缆区域面积;
Figure 647877DEST_PATH_IMAGE024
表示无缺陷线缆子图像中非线缆区域面积占总面积的比值;
Figure 529114DEST_PATH_IMAGE025
表示第二加权值。
由无缺陷线缆子图像中线缆区域面积占总面积的比值确定的第三加权值,第三加权值的计算公式如下式所示:
Figure 383937DEST_PATH_IMAGE026
其中,
Figure 309213DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 642105DEST_PATH_IMAGE027
表示灰度级大于t的全部像素点数量总和占像素点总数的比值;
Figure 377849DEST_PATH_IMAGE028
表示无缺陷线缆子图像总面积;
Figure 669153DEST_PATH_IMAGE023
表示无缺陷线缆子图像中线缆区域面积;
Figure 624602DEST_PATH_IMAGE029
表示第三加权值。
由于线缆本身缺陷的影响,可能造成线缆区域缺失或变大,会使阈值造成偏差,因此对线缆子图像上的像素点进行高斯分布加权后得到加权后线缆子图像。在使用标准的Otsu 算法对加权后线缆子图像进行阈值分割时,阈值分割中两类区域像素点灰度值的差异变大,即在加权后灰度直方图上显示为两类波峰之间的波谷变宽,波谷处像素点的分布变少,故将加权后直方图中灰度值为阈值的像素点的分布概率作为权重因子,突出直方图的波谷,最终使阈值趋于波谷处,因此对标准的Otsu 算法进行改进。
利用第一加权值、第二加权值、第三加权值对标准阈值分割算法进行加权得到改进后阈值分割算法,改进后阈值分割算法的计算公式如下式所示:
Figure 89081DEST_PATH_IMAGE052
其中,
Figure 351435DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 875958DEST_PATH_IMAGE031
表示灰度级小于t的全部像素点数量总和占像素点总数的比值;
Figure 833549DEST_PATH_IMAGE025
表示第二加权值;
Figure 993397DEST_PATH_IMAGE032
表示加权后线缆子图像中全部像素点的灰度值均值;
Figure 720045DEST_PATH_IMAGE033
表示灰度级小于t的全部像素点的灰度值均值;
Figure 336840DEST_PATH_IMAGE034
表示灰度级大于t的全部像素点数量总和占像素点总数的比值;
Figure 984990DEST_PATH_IMAGE029
表示第三加权值;
Figure 479688DEST_PATH_IMAGE035
表示灰度级大于t的全部像素点的灰度值均值;
Figure 60842DEST_PATH_IMAGE020
表示第一加权值。
S5、利用改进后阈值分割算法对加权后线缆子图像进行阈值分割,得到加权后线缆子图像中加权后线缆区域图像,对加权后线缆区域图像进行还原得到还原后线缆区域图像,同理得到每张线缆子图像的还原后线缆区域图像,将得到的每张线缆子图像的还原后线缆区域图像进行拼接得到完整的线缆周向全景图像。
利用改进后阈值分割算法对加权后线缆子图像进行阈值分割时,将加权后线缆子图像对应的加权后灰度直方图中每个灰度级作为一个遍历阈值灰度级t。例如:若加权后灰度直方图中灰度级t为50个,那么每个灰度级t对应一个
Figure 786221DEST_PATH_IMAGE036
,当遍历完50个灰度级t时,50个灰度级t就对应50个
Figure 718405DEST_PATH_IMAGE036
,从50个
Figure 485635DEST_PATH_IMAGE036
中选择最大值作为最优阈值T,最优阈值T的计算公式如下式所示:
Figure 921296DEST_PATH_IMAGE053
其中,T表示最优阈值T。
在得到最优阈值T后,利用最优阈值T对加权后线缆子图像进行阈值分割,得到加权后线缆子图像中加权后线缆区域图像。之后对加权后线缆区域图像进行还原得到还原后线缆区域图像,同理得到每张线缆子图像的还原后线缆区域图像,将得到的每张线缆子图像的还原后线缆区域图像进行拼接得到完整的线缆周向全景图像。
S6、使用聚类算法对完整的线缆周向全景图像中缺陷区域进行识别,并对识别出的缺陷区域进行标注,根据同一根线缆上各缺陷区域之间的间隔距离,将同一根线缆合理分割成不同规格的子线缆,最后对不同规格的子线缆进行分拣。
本发明中通过S5步骤已经得到了完整的线缆周向全景图像。之后利用K-means聚类算法对完整的线缆周向全景图像中缺陷区域进行识别,而利用K-means聚类算法识别缺陷区域属于现有技术,在此只作简单说明。
利用K-means聚类算法识别并分割缺陷区域的流程如下所示:
1、 选择一个初始估计全局阈值D,本方案中D为线缆周向全景图像中全部像素点的灰度值均值。
2、将线缆周向全景图像分割成两类像素集合
Figure 614314DEST_PATH_IMAGE054
Figure 768215DEST_PATH_IMAGE055
Figure 604715DEST_PATH_IMAGE054
内为灰度值小于等于D,
Figure 816253DEST_PATH_IMAGE055
内为灰度值大于D。
3、计算
Figure 24381DEST_PATH_IMAGE054
Figure 399998DEST_PATH_IMAGE055
像素点集合的平均灰度值
Figure 509031DEST_PATH_IMAGE056
Figure 840655DEST_PATH_IMAGE057
4、计算一个新的阈值:
Figure 626209DEST_PATH_IMAGE058
5、重复步骤2、3、4,当聚类中心不在发生变化时为止。
至此将完整的线缆周向全景图像上的缺陷区域分割出来,同时还能得到线缆周向全景图像中缺陷区域的面积。
当利用K-means聚类算法没有识别出缺陷区域时,说明线缆周向全景图像中不存在缺陷区域。当利用K-means聚类算法识别出缺陷区域时,说明线缆周向全景图像中存在缺陷区域,这时对缺陷区域的位置进行喷涂标记,根据同一根线缆上各缺陷之间的间隔距离,合理切割该根线缆,将同一根线缆进行合理分割成不同规格的子线缆,最后对不同规格的子线缆进行分拣。
例如:一般情况下批量生产为成品的HDMI线缆的规格都是固定的规格,如:HDMI线缆的规格长度从小到大分别为Am、Bm、Cm。
若线缆的需求规格长度为Bm,当同一根线缆上不存在缺陷区域时,在线缆传输过程中将同一根线缆全部分割成Bm需求规格长度的线缆。
若线缆的需求规格长度为Bm,当同一根线缆上存在缺陷区域时,若相邻两缺陷之间的间隔距离大于Am小于Bm,那么这两个缺陷区域之间的线缆长度只能切割成Am规格长度,切割成Am规格长度后将该线缆分拣到Am规格的区域便于后续备用;当同一根线缆上相邻两缺陷之间的距离大于Bm小于Cm时,那么这两个缺陷区域之间的线缆长度即能切割为Bm长度,按需求规格切割即可;当同一根线缆上相邻两缺陷之间的距离小于Am,那么这两个缺陷区域间隔距离过短,将该两个缺陷区域包括两个缺陷区域之间的线缆切割掉后将该线缆分拣到废弃区域即可。
本发明提供的一种HDMI线缆传输分拣智能控制系统,该系统包括:
图像采集模块,用于采集同一段线缆多张不同角度的线缆子图像,其中,多张不同角度的线缆子图像涵盖线缆周向全景图像;
高斯分布模型建立模块,用于根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,并将该宽度区间作为高斯分布中随机变量的取值区间建立高斯分布模型;
高斯分布加权模块,用于基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,并根据得到的全部加权后灰度值构建加权后线缆子图像和加权后灰度直方图;
改进后阈值分割算法获取模块,用于获取无缺陷线缆子图像,利用由对加权后灰度直方图进行阈值分割时任一遍历阈值对应的像素点数量占像素点总和的比值确定的第一加权值、由无缺陷线缆子图像中非线缆区域面积占总面积的比值确定的第二加权值、由无缺陷线缆子图像中线缆区域面积占总面积的比值确定的第三加权值对标准阈值分割算法进行加权得到改进后阈值分割算法;
线缆周向全景图像获取模块,用于利用改进后阈值分割算法对加权后线缆子图像进行阈值分割,得到加权后线缆子图像中加权后线缆区域图像,对加权后线缆区域图像进行还原得到还原后线缆区域图像,同理得到每张线缆子图像的还原后线缆区域图像,将得到的每张线缆子图像的还原后线缆区域图像进行拼接得到完整的线缆周向全景图像;
缺陷区域识别模块,用于使用聚类算法对完整的线缆周向全景图像中缺陷区域进行识别,并对识别出的缺陷区域进行标注;
线缆分割分拣模块,用于根据同一根线缆上各缺陷区域之间的间隔距离,将同一根线缆合理分割成不同需求规格的子线缆,最后对不同规格的子线缆进行分拣。
本发明提供的一种HDMI线缆传输分拣智能控制系统具体实施方式与一种HDMI线缆传输分拣智能控制方法的具体实施方式基本相同,在此不再赘述。
综上所述,本发明提供一种HDMI线缆传输分拣智能控制方法及系统,在线缆传输能快速识别定位有缺陷的线缆区域,同时根据同一根线缆上各缺陷之间的间隔距离,对同一根线缆进行合理分割成不同需求规格的子线缆,最后对不同规格的子线缆进行分拣。

Claims (8)

1.一种HDMI线缆传输分拣智能控制方法,其特征在于,该方法包括:
采集同一段线缆多张不同角度的线缆子图像,其中,多张不同角度的线缆子图像涵盖线缆周向全景图像;
根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,并将该宽度区间作为高斯分布中随机变量的取值区间建立高斯分布模型;
基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,并根据得到的全部加权后灰度值构建加权后线缆子图像和加权后灰度直方图;
获取无缺陷线缆子图像,利用由对加权后灰度直方图进行阈值分割时任一遍历阈值对应的像素点数量占像素点总和的比值确定的第一加权值、由无缺陷线缆子图像中非线缆区域面积占总面积的比值确定的第二加权值、由无缺陷线缆子图像中线缆区域面积占总面积的比值确定的第三加权值对标准阈值分割算法进行加权得到改进后阈值分割算法;
利用改进后阈值分割算法对加权后线缆子图像进行阈值分割,得到加权后线缆子图像中加权后线缆区域图像,对加权后线缆区域图像进行还原得到还原后线缆区域图像,同理得到每张线缆子图像的还原后线缆区域图像,将得到的每张线缆子图像的还原后线缆区域图像进行拼接得到完整的线缆周向全景图像;
使用聚类算法对完整的线缆周向全景图像中缺陷区域进行识别,并对识别出的缺陷区域进行标注,根据同一根线缆上各缺陷区域之间的间隔距离,将同一根线缆合理分割成不同需求规格的子线缆,最后对不同规格的子线缆进行分拣。
2.根据权利要求1所述的一种HDMI线缆传输分拣智能控制方法,其特征在于,所述根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,包括:
利用预设线缆的实际宽度和线缆上下摆动的实际最大振幅,计算出实际线缆区域的宽度区间;
利用相机参数和相机距线缆的距离,计算出实际线缆区域的宽度区间与线缆子图像中线缆区域的宽度区间的比值,并根据该比值确定线缆子图像中线缆区域的宽度区间;
以线缆子图像中左下角为原点建立直角坐标系,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间。
3.根据权利要求1所述的一种HDMI线缆传输分拣智能控制方法,其特征在于,所述并将该宽度区间作为高斯分布中随机变量的取值区间建立高斯分布模型,包括:
将线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间的最大值,作为高斯分布中随机变量的
Figure 313215DEST_PATH_IMAGE001
取值区间的最大值,将线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间的最小值,作为高斯分布中随机变量的
Figure 88535DEST_PATH_IMAGE001
取值区间的最小值,计算出高斯分布模型的期望值和标准差;
根据计算出的高斯分布模型的期望值和标准差建立高斯分布模型。
4.根据权利要求1所述的一种HDMI线缆传输分拣智能控制方法,其特征在于,所述基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,包括:
对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权值;
将线缆子图像上每一列每个像素点的灰度值与线缆子图像上每一列每个像素点的加权值对应相乘得到线缆子图像上每一列每个像素点的加权后灰度值。
5.根据权利要求4所述的一种HDMI线缆传输分拣智能控制方法,其特征在于,所述线缆子图像上每一列每个像素点的加权值的计算公式如下式所示:
Figure 703187DEST_PATH_IMAGE002
其中,
Figure 796914DEST_PATH_IMAGE003
表示线缆子图像上任一列第
Figure 905946DEST_PATH_IMAGE003
个像素点;
Figure 50620DEST_PATH_IMAGE004
表示线缆子图像在直角坐标系纵轴上的宽度;
Figure 351020DEST_PATH_IMAGE005
表示线缆子图像在直角坐标系纵轴上的中点值;
Figure 213934DEST_PATH_IMAGE006
表示线缆在线缆子图像中的宽度;
Figure 126657DEST_PATH_IMAGE007
表示运动规定的线缆在线缆子图像中上下摆动的最大振幅;
Figure 391417DEST_PATH_IMAGE008
表示高斯分布模型中期望值;
Figure 597139DEST_PATH_IMAGE009
表示高斯分布模型中标准差;当线缆子图像上任一列第
Figure 681770DEST_PATH_IMAGE003
个像素点在高斯分布模型中的位置属于
Figure 398184DEST_PATH_IMAGE010
区间内时,任一列第
Figure 251871DEST_PATH_IMAGE003
个像素点的加权值为
Figure 628494DEST_PATH_IMAGE011
;当线缆子图像上任一列第
Figure 466000DEST_PATH_IMAGE003
个像素点在高斯分布模型中的位置属于
Figure 720526DEST_PATH_IMAGE012
,任一列第
Figure 412408DEST_PATH_IMAGE003
个像素点的加权值为1;
Figure 445086DEST_PATH_IMAGE013
表示线缆子图像上任一列第
Figure 1180DEST_PATH_IMAGE003
个像素点的加权值;
线缆子图像上每一列每个像素点的加权后灰度值的计算公式如下式所示:
Figure 557933DEST_PATH_IMAGE014
其中,
Figure DEST_PATH_IMAGE015
表示线缆子图像上任一列第
Figure 340206DEST_PATH_IMAGE003
个像素点的灰度值;
Figure 74944DEST_PATH_IMAGE013
表示线缆子图像上任一列第
Figure 870730DEST_PATH_IMAGE003
个像素点的加权值;
Figure 716327DEST_PATH_IMAGE016
表示线缆子图像上任一列第
Figure 415424DEST_PATH_IMAGE003
个像素点的加权后灰度值。
6.根据权利要求1所述的一种HDMI线缆传输分拣智能控制方法,其特征在于,所述第一加权值的计算公式如下式所示:
Figure 321063DEST_PATH_IMAGE017
其中,
Figure 604145DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure DEST_PATH_IMAGE019
表示灰度级t对应的像素点数量占像素点总数的比值;
Figure 676269DEST_PATH_IMAGE020
表示第一加权值;
第二加权值的计算公式如下式所示:
Figure 744719DEST_PATH_IMAGE021
其中,
Figure 70527DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 60480DEST_PATH_IMAGE022
表示灰度级小于t的全部像素点数量总和占像素点总数的比值;
Figure 264190DEST_PATH_IMAGE023
表示无缺陷线缆子图像总面积;
Figure 187147DEST_PATH_IMAGE024
表示无缺陷线缆子图像中线缆区域面积;
Figure 683856DEST_PATH_IMAGE025
表示无缺陷线缆子图像中非线缆区域面积占总面积的比值;
Figure 161105DEST_PATH_IMAGE026
表示第二加权值;
第三加权值的计算公式如下式所示:
Figure 637348DEST_PATH_IMAGE027
其中,
Figure 398499DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure 82422DEST_PATH_IMAGE028
表示灰度级大于t的全部像素点数量总和占像素点总数的比值;
Figure 63278DEST_PATH_IMAGE023
表示无缺陷线缆子图像总面积;
Figure 326900DEST_PATH_IMAGE024
表示无缺陷线缆子图像中线缆区域面积;
Figure 473717DEST_PATH_IMAGE029
表示第三加权值。
7.根据权利要求6所述的一种HDMI线缆传输分拣智能控制方法,其特征在于,所述改进后阈值分割算法的计算公式如下式所示:
Figure 797382DEST_PATH_IMAGE030
其中,
Figure 999955DEST_PATH_IMAGE018
表示遍历阈值为灰度级t;
Figure DEST_PATH_IMAGE031
表示灰度级小于t的全部像素点数量总和占像素点总数的比值;
Figure 254219DEST_PATH_IMAGE026
表示第二加权值;
Figure 745288DEST_PATH_IMAGE032
表示加权后线缆子图像中全部像素点的灰度值均值;
Figure 239855DEST_PATH_IMAGE033
表示灰度级小于t的全部像素点的灰度值均值;
Figure 693839DEST_PATH_IMAGE034
表示灰度级大于t的全部像素点数量总和占像素点总数的比值;
Figure 564843DEST_PATH_IMAGE029
表示第三加权值;
Figure DEST_PATH_IMAGE035
表示灰度级大于t的全部像素点的灰度值均值;
Figure 843508DEST_PATH_IMAGE020
表示第一加权值;
Figure 774555DEST_PATH_IMAGE036
表示改进后阈值分割算法。
8.一种HDMI线缆传输分拣智能控制系统,包括:
图像采集模块,用于采集同一段线缆多张不同角度的线缆子图像,其中,多张不同角度的线缆子图像涵盖线缆周向全景图像;
高斯分布模型建立模块,用于根据预设线缆的实际宽度和线缆上下摆动的实际最大振幅,获取线缆子图像中线缆区域像素点在直角坐标系纵轴上分布的宽度区间,并将该宽度区间作为高斯分布中随机变量的取值区间建立高斯分布模型;
高斯分布加权模块,用于基于线缆子图像上每一列每个像素点在高斯分布模型中的位置,对线缆子图像上每一列每个像素点的灰度值进行高斯分布加权,得到线缆子图像上每一列每个像素点的加权后灰度值,并根据得到的全部加权后灰度值构建加权后线缆子图像和加权后灰度直方图;
改进后阈值分割算法获取模块,用于获取无缺陷线缆子图像,利用由对加权后灰度直方图进行阈值分割时任一遍历阈值对应的像素点数量占像素点总和的比值确定的第一加权值、由无缺陷线缆子图像中非线缆区域面积占总面积的比值确定的第二加权值、由无缺陷线缆子图像中线缆区域面积占总面积的比值确定的第三加权值对标准阈值分割算法进行加权得到改进后阈值分割算法;
线缆周向全景图像获取模块,用于利用改进后阈值分割算法对加权后线缆子图像进行阈值分割,得到加权后线缆子图像中加权后线缆区域图像,对加权后线缆区域图像进行还原得到还原后线缆区域图像,同理得到每张线缆子图像的还原后线缆区域图像,将得到的每张线缆子图像的还原后线缆区域图像进行拼接得到完整的线缆周向全景图像;
缺陷区域识别模块,用于使用聚类算法对完整的线缆周向全景图像中缺陷区域进行识别,并对识别出的缺陷区域进行标注;
线缆分割分拣模块,用于根据同一根线缆上各缺陷区域之间的间隔距离,将同一根线缆合理分割成不同需求规格的子线缆,最后对不同规格的子线缆进行分拣。
CN202211147479.2A 2022-09-21 2022-09-21 一种hdmi线缆传输分拣智能控制方法及系统 Active CN115239793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211147479.2A CN115239793B (zh) 2022-09-21 2022-09-21 一种hdmi线缆传输分拣智能控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211147479.2A CN115239793B (zh) 2022-09-21 2022-09-21 一种hdmi线缆传输分拣智能控制方法及系统

Publications (2)

Publication Number Publication Date
CN115239793A true CN115239793A (zh) 2022-10-25
CN115239793B CN115239793B (zh) 2023-03-24

Family

ID=83681312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211147479.2A Active CN115239793B (zh) 2022-09-21 2022-09-21 一种hdmi线缆传输分拣智能控制方法及系统

Country Status (1)

Country Link
CN (1) CN115239793B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461148A (zh) * 2018-10-30 2019-03-12 兰州交通大学 基于二维Otsu的钢轨缺陷分割自适应快速算法
CN113935998A (zh) * 2021-12-16 2022-01-14 武汉帕克橡塑制品有限公司 一种基于机器视觉的橡塑件花斑检测方法
CN114240989A (zh) * 2021-11-30 2022-03-25 中国工商银行股份有限公司 图像分割方法、装置、电子设备及计算机存储介质
CN115082683A (zh) * 2022-08-22 2022-09-20 南通三信塑胶装备科技股份有限公司 一种基于图像处理的注塑缺陷检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461148A (zh) * 2018-10-30 2019-03-12 兰州交通大学 基于二维Otsu的钢轨缺陷分割自适应快速算法
CN114240989A (zh) * 2021-11-30 2022-03-25 中国工商银行股份有限公司 图像分割方法、装置、电子设备及计算机存储介质
CN113935998A (zh) * 2021-12-16 2022-01-14 武汉帕克橡塑制品有限公司 一种基于机器视觉的橡塑件花斑检测方法
CN115082683A (zh) * 2022-08-22 2022-09-20 南通三信塑胶装备科技股份有限公司 一种基于图像处理的注塑缺陷检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
乔湘洋等: "基于机器视觉的线缆表面缺陷检测系统设计与算法研究", 《机床与液压》 *

Also Published As

Publication number Publication date
CN115239793B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN111383209B (zh) 一种基于全卷积自编码器网络的无监督瑕疵检测方法
CN111402248A (zh) 一种基于机器视觉的输电线路导线缺陷检测方法
CN115345885A (zh) 一种金属健身器材外观质量检测方法
CN113205063A (zh) 一种输电导线缺陷的视觉识别及定位方法
CN111179232A (zh) 基于图像处理的钢筋尺寸检测系统及方法
CN111738056B (zh) 一种基于改进YOLO v3的重卡盲区目标检测方法
CN115018838B (zh) 用于被氧化钢管材料表面麻点瑕疵的识别方法
CN107742307A (zh) 基于改进帧差法的输电线路舞动特征提取及参数分析方法
CN116309600B (zh) 基于图像处理的环保纺织品质量检测方法
CN111667470B (zh) 一种基于数字图像的工业管道探伤内壁检测方法
CN111402247A (zh) 一种基于机器视觉的输电线路上悬垂线夹缺陷检测方法
CN116721107B (zh) 一种电缆生产质量智能监控系统
CN115631116B (zh) 基于双目视觉的飞行器电力巡检系统
CN114820625B (zh) 一种汽车顶块缺陷检测方法
CN115330790B (zh) 基于图像的电缆绞线质量检测方法及系统
CN115330767A (zh) 一种腐蚀箔生产异常识别方法
CN108734704B (zh) 基于灰度方差归一化的输电导线断股检测方法
CN116630813B (zh) 一种公路路面施工质量智能检测系统
CN115661173A (zh) 一种基于遥感图像的地块分割方法
CN114549407A (zh) 基于x射线图像的耐张线夹压接缺陷程度判断方法
CN115984255A (zh) 一种在线取能可移动智慧防振锤的缺陷识别方法
CN111192213A (zh) 图像去雾自适应参数的计算方法、图像去雾方法及系统
CN115239793B (zh) 一种hdmi线缆传输分拣智能控制方法及系统
CN116977931A (zh) 一种基于深度学习的高空抛物识别方法
CN116630321A (zh) 基于人工智能的桥梁健康智能监测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant