CN115235527B - Sensor external parameter calibration method, device and electronic equipment - Google Patents

Sensor external parameter calibration method, device and electronic equipment Download PDF

Info

Publication number
CN115235527B
CN115235527B CN202210861100.8A CN202210861100A CN115235527B CN 115235527 B CN115235527 B CN 115235527B CN 202210861100 A CN202210861100 A CN 202210861100A CN 115235527 B CN115235527 B CN 115235527B
Authority
CN
China
Prior art keywords
target
sensor
sensors
speed
external parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210861100.8A
Other languages
Chinese (zh)
Other versions
CN115235527A (en
Inventor
陈晨光
张硕
钱永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muyi (Huzhou) Technology Development Co.,Ltd.
Original Assignee
Shanghai Mooe Robot Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Mooe Robot Technology Co ltd filed Critical Shanghai Mooe Robot Technology Co ltd
Priority to CN202210861100.8A priority Critical patent/CN115235527B/en
Publication of CN115235527A publication Critical patent/CN115235527A/en
Application granted granted Critical
Publication of CN115235527B publication Critical patent/CN115235527B/en
Priority to PCT/CN2023/099581 priority patent/WO2024016892A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种传感器外参标定方法、装置以及电子设备。所述方法包括:控制目标设备执行外参标定运动操作;确定执行外参标定运动操作时目标设备上不同目标传感器对应的目标传感器速度变化量;其中不同目标传感器通过刚性连接搭载于目标设备;依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定。本申请技术方案借助不同传感器之间的速度变化情况进行外参标定,解决了因为部分传感器位置测量不容易所造成的外参标定难度大,以及可能因为位置测量不准确造成的外参标定误差大的问题。

Figure 202210861100

The invention discloses a sensor external parameter calibration method, device and electronic equipment. The method includes: controlling the target device to perform an extrinsic calibration movement operation; determining the velocity variation of the target sensor corresponding to different target sensors on the target device when performing the extrinsic calibration movement operation; wherein the different target sensors are mounted on the target device through a rigid connection; according to Different target sensors correspond to the target sensor speed variation, and the external parameters of different target sensors are calibrated. The technical solution of this application uses the speed change between different sensors to perform external parameter calibration, which solves the difficulty of external parameter calibration caused by the difficulty of measuring the position of some sensors, and the large error of external parameter calibration that may be caused by inaccurate position measurement. The problem.

Figure 202210861100

Description

传感器外参标定方法、装置以及电子设备Sensor external parameter calibration method, device and electronic equipment

技术领域technical field

本发明涉及传感器标定技术领域,尤其涉及一种传感器外参标定方法、装置以及电子设备。The invention relates to the technical field of sensor calibration, in particular to a sensor external parameter calibration method, device and electronic equipment.

背景技术Background technique

传感器之间外参标定是移动机器人与自动驾驶领域的重要需求。通常移动机器人与自动驾驶车辆上会搭载多种传感器,例如相机、激光雷达以及惯性测量传感器等。相关技术中,通常可以利用机器人移动后,机器人上搭载的各个传感器之间的位置变化来进行外参标定,但是类似惯性测量传感器,其相对位置变化量的测量比较困难,进行传感器之间的外参标定难度较大,且很有可能因位置测量不准确导致出现较大的外参标定误差。Calibration of external parameters between sensors is an important requirement in the field of mobile robots and autonomous driving. Mobile robots and self-driving vehicles are usually equipped with a variety of sensors, such as cameras, lidar and inertial measurement sensors. In related technologies, the external parameters can usually be calibrated by using the position changes between the various sensors on the robot after the robot moves. However, similar to inertial measurement sensors, it is difficult to measure the relative position changes. It is difficult to calibrate the parameters, and it is very likely that a large external parameter calibration error will occur due to inaccurate position measurement.

发明内容Contents of the invention

本发明提供了一种传感器外参标定方法、装置以及电子设备,以解决因传感器位置测量难度大所造成的外参标定难度大以及可能因位置测量不准确造成的外参标定误差大的问题。The invention provides a sensor external parameter calibration method, device and electronic equipment to solve the problems of difficult external parameter calibration caused by difficult sensor position measurement and large external parameter calibration errors that may be caused by inaccurate position measurement.

根据本发明的一方面,提供了一种传感器外参标定方法,所述方法包括:According to one aspect of the present invention, a method for calibrating external parameters of a sensor is provided, the method comprising:

控制目标设备执行外参标定运动操作;Control the target device to perform external parameter calibration motion operation;

确定执行外参标定运动操作时所述目标设备上不同目标传感器对应的目标传感器速度变化量;其中不同目标传感器通过刚性连接搭载于所述目标设备;Determine the target sensor speed variation corresponding to the different target sensors on the target device when performing the external parameter calibration movement operation; wherein the different target sensors are mounted on the target device through a rigid connection;

依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定。According to the target sensor speed variation corresponding to different target sensors, the external parameters of different target sensors are calibrated.

根据本发明的另一方面,提供了一种传感器外参标定装置,所述装置包括:According to another aspect of the present invention, a sensor external parameter calibration device is provided, the device comprising:

控制模块,用于控制目标设备执行外参标定运动操作;A control module, configured to control the target device to perform external parameter calibration motion operations;

速度变化量确定模块,用于确定执行外参标定运动操作时所述目标设备上不同目标传感器对应的目标传感器速度变化量;其中不同目标传感器通过刚性连接搭载于所述目标设备;The speed change determination module is used to determine the speed change of the target sensor corresponding to the different target sensors on the target device when the external parameter calibration operation is performed; wherein the different target sensors are mounted on the target device through a rigid connection;

标定模块,用于依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定。The calibration module is used to calibrate the external parameters of different target sensors according to the target sensor speed variation corresponding to the different target sensors.

根据本发明的另一方面,提供了一种电子设备,所述电子设备包括:According to another aspect of the present invention, an electronic device is provided, and the electronic device includes:

至少一个处理器;以及at least one processor; and

与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,

所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本发明任一实施例所述的传感器外参标定方法。The memory stores a computer program that can be executed by the at least one processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the method described in any embodiment of the present invention. Calibration method of sensor extrinsic parameters.

本发明实施例的技术方案,通过控制目标设备执行外参标定运动操作,确定目标设备上通过刚性连接的不同目标传感器对应的目标传感器速度变化量;依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定,本申请技术方案借助不同传感器之间的速度变化情况进行外参标定,解决了因为传感器位置测量不容易所造成的外参标定难度大,以及可能因为位置测量不准确造成的外参标定误差大的问题,降低了传感器之间的外参标定难度,提高了传感器之间的外参数标定普适性。According to the technical solution of the embodiment of the present invention, by controlling the target device to perform the external parameter calibration movement operation, the target sensor speed change corresponding to the different target sensors rigidly connected on the target device is determined; according to the target sensor speed change corresponding to different target sensors, To calibrate the external parameters of different target sensors, the technical solution of this application uses the speed changes between different sensors to calibrate the external parameters, which solves the difficulty of external parameter calibration caused by the difficulty of sensor position measurement, and the possibility that the position measurement is not accurate. The problem of large external parameter calibration error caused by accuracy reduces the difficulty of external parameter calibration between sensors and improves the universality of external parameter calibration between sensors.

应当理解,本部分所描述的内容并非旨在标识本发明的实施例的关键或重要特征,也不用于限制本发明的范围。本发明的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify key or important features of the embodiments of the present invention, nor is it intended to limit the scope of the present invention. Other features of the present invention will be easily understood from the following description.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained based on these drawings without creative effort.

图1是根据本发明实施例一提供的一种传感器外参标定方法的流程图;Fig. 1 is a flow chart of a sensor external parameter calibration method provided according to Embodiment 1 of the present invention;

图2是根据本发明实施例二提供的一种传感器外参标定方法的流程图;Fig. 2 is a flow chart of a sensor external parameter calibration method provided according to Embodiment 2 of the present invention;

图3是根据本发明实施例三提供的一种传感器外参标定装置的结构示意图;Fig. 3 is a schematic structural diagram of a sensor external parameter calibration device provided according to Embodiment 3 of the present invention;

图4是实现本发明实施例的传感器外参标定方法的电子设备的结构示意图。Fig. 4 is a schematic structural diagram of an electronic device implementing a sensor external parameter calibration method according to an embodiment of the present invention.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are only It is an embodiment of a part of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.

需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“目标”、“预设”和“待优化”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "objective", "preset" and "to be optimized" in the specification and claims of the present invention and the above drawings are used to distinguish similar objects, not necessarily to describe a specific order or sequentially. It is to be understood that the data so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", as well as any variations thereof, are intended to cover a non-exclusive inclusion, for example, a process, method, system, product or device comprising a sequence of steps or elements is not necessarily limited to the expressly listed instead, may include other steps or elements not explicitly listed or inherent to the process, method, product or apparatus.

实施例一Embodiment one

图1为根据本发明实施例一提供的一种传感器外参标定方法的流程图,本实施例可适用于对传感器之间的外参进行标定的情况,该方法可以由传感器外参标定装置来执行,该传感器外参标定装置可以采用硬件和/或软件的形式实现,该传感器外参标定装置可配置于任何具有传感器外参标定方法的电子设备中。如图1所示,本实施例的传感器外参标定方法,可包括:Fig. 1 is a flow chart of a method for calibrating external parameters of sensors according to Embodiment 1 of the present invention. This embodiment is applicable to the case of calibrating external parameters between sensors, and the method can be performed by a calibration device for external parameters of sensors. Execution, the sensor external parameter calibration device can be implemented in the form of hardware and/or software, and the sensor external parameter calibration device can be configured in any electronic device with a sensor external parameter calibration method. As shown in Figure 1, the sensor external parameter calibration method of this embodiment may include:

S110、控制目标设备执行外参标定运动操作。S110. Control the target device to perform an extrinsic parameter calibration motion operation.

本发明适用于传感器外参标定的场景。例如,目标设备上一般会搭载多种传感器,各个传感器的输出数据一般都在传感器自身的坐标系下输出数据,需要将传感器的数据统一到相同的坐标系下,因此需要对传感器外参进行标定。The present invention is applicable to the scene of sensor external parameter calibration. For example, the target device is generally equipped with a variety of sensors, and the output data of each sensor is generally output in the coordinate system of the sensor itself. It is necessary to unify the sensor data into the same coordinate system, so the external parameters of the sensor need to be calibrated .

其中,目标设备可以是需要对自身搭载的多个传感器进行外参标定的移动设备,例如移动机器人或者自动驾驶车辆。外参为不同传感器之间的相对位置关系或者相对角度关系。外参标定可以是指对目标设备上搭载的目标传感器之间的外参进行标定的过程,外参标定运动操作可以实现对目标设备中搭载的传感器进行外参标定所采用的运动操作。Wherein, the target device may be a mobile device that needs to calibrate external parameters of multiple sensors carried by itself, such as a mobile robot or an autonomous vehicle. The external reference is the relative positional relationship or relative angle relationship between different sensors. The external parameter calibration may refer to the process of calibrating the external parameters between the target sensors mounted on the target device, and the external parameter calibration motion operation may realize the motion operation adopted for external parameter calibration of the sensors mounted on the target device.

在一个可行的实施例中,所述控制目标设备执行外参标定运动操作,可以包括以下过程:In a feasible embodiment, the controlling the target device to perform an extrinsic calibration movement operation may include the following process:

控制目标设备沿预设形状的外参标定运动路线进行加减速移动,且使目标设备的速度调整频次大于预设频次阈值。The target device is controlled to move with acceleration and deceleration along the external parameter calibration movement route of the preset shape, and the speed adjustment frequency of the target device is greater than the preset frequency threshold.

其中,所述速度调整包括速度大小和/或速度方向;所述加减速移动包括固定加速、固定减速、变加速以及变减速。Wherein, the speed adjustment includes speed magnitude and/or speed direction; the acceleration/deceleration movement includes fixed acceleration, fixed deceleration, variable acceleration and variable deceleration.

其中,预设形状可以是任何可以让目标设备运动的路线轨迹形状,可以包括但不限于直线轨迹和/或曲线轨迹等,例如可以是“8”字形路线,“S”字形路线,“Z”字形路线等,这样保证外参标定结果能更加适配实际运行场景进行使用,获得更准确的外参标定值。可选地,预设形状的外参标定运动路线可以包括但不限于直行、急转弯、直角转弯、掉头、左转、右转等。Wherein, the preset shape can be any route track shape that can make the target device move, and can include but not limited to straight track and/or curved track, etc., for example, it can be an "8"-shaped route, an "S"-shaped route, a "Z" Glyph route, etc., so as to ensure that the external parameter calibration results can be more suitable for use in actual operation scenarios, and obtain more accurate external parameter calibration values. Optionally, the extrinsically calibrated motion route of a preset shape may include, but not limited to, going straight, making a sharp turn, making a right-angle turn, making a U-turn, turning left, turning right, and the like.

预设频次阈值可以是对目标设备速度进行调整的最少调整次数,可根据实际情况具体设定,只有保证目标设备进行多次速度调整改变,针对同一个传感器才能得到更多的速度变化量数据,以尽可能保证数据量的充足和真实,这样才可以避免因为个别数据导致出现标定偏差。The preset frequency threshold can be the minimum number of times to adjust the speed of the target device, which can be set according to the actual situation. Only when the target device is adjusted and changed multiple times can more speed change data be obtained for the same sensor. To ensure that the amount of data is sufficient and true as much as possible, so as to avoid calibration deviation caused by individual data.

本技术方案,通过控制目标设备在预设形状的外参标定运动路线上,进行多次加减速移动,以使目标设备的速度进行了多次改变,方便记录目标设备按照各速度运行时各传感器的速度变化量数值,保证了速度变化量的数据尽可能的多,避免了因为数据量少导致标定的外参不具有代表性。In this technical solution, by controlling the target device to perform multiple acceleration and deceleration movements on the external parameter calibration movement route of the preset shape, the speed of the target device has been changed multiple times, and it is convenient to record each sensor when the target device is running at each speed. The numerical value of the speed change ensures that the data of the speed change is as much as possible, and avoids the unrepresentative external parameters of the calibration due to the small amount of data.

在一个可行的实施例中,控制目标设备沿预设形状的外参标定运动路线进行加减速移动,可包括以下过程:In a feasible embodiment, controlling the target device to perform acceleration and deceleration movement along the external parameter calibration movement route of the preset shape may include the following process:

对所述目标设备的载重量进行调整,控制经载重量调整的目标设备沿预设形状的外参标定运动路线进行加减速移动。The load capacity of the target device is adjusted, and the target device adjusted by the load capacity is controlled to move with acceleration and deceleration along a movement route calibrated by external parameters of a preset shape.

其中,载重量可以是目标设备所承受的重量,通过调整目标设备所承载的物品的重量,可以让目标设备在外参标定运动过程中模拟目标设备承载不同重量物品时的运动状态,以便目标设备能够采集不同载重情况时的传感器输出数值进行标定,保证外参标定的准确性。可选地,如果考虑到设置不同载重会出现无效数据,可以直接设置为空载和满载。Among them, the load capacity can be the weight borne by the target device. By adjusting the weight of the objects carried by the target device, the target device can simulate the motion state of the target device when it carries objects of different weights during the external parameter calibration process, so that the target device can Collect sensor output values under different load conditions for calibration to ensure the accuracy of external parameter calibration. Optionally, if it is considered that invalid data will appear when setting different loads, it can be directly set to no-load and full-load.

具体的,调整目标设备的载重量,并控制目标设备在具备不同载重量时按照预设形状的外参标定运动路线进行加减速移动,且使目标设备的速度调整频次大于预设频次阈值。例如,当目标设备处于空载状态时,控制目标设备按照8字形的运动路线进行加减速移动,再使目标设备处于满载状态,控制目标设备按照8字形的运动路线进行加减速移动;分别记录处于不同载重量时的目标设备的速度变化量,以进行外参标定。Specifically, the load capacity of the target device is adjusted, and the target device is controlled to perform acceleration and deceleration movement according to the external parameter calibration movement route of the preset shape when the load capacity is different, and the speed adjustment frequency of the target device is greater than the preset frequency threshold. For example, when the target device is in the unloaded state, the target device is controlled to accelerate and decelerate according to the figure-of-eight motion route, and then the target device is in a fully loaded state, and the target device is controlled to accelerate and decelerate according to the figure-eight motion route; The speed variation of the target equipment at different loads is used for external parameter calibration.

本技术方案,通过控制不同载重量的目标设备按照预设形状的外参标定运动路线进行加减速移动,可以记录不同状态下目标设备的速度变化量,避免了数据的单一性,实现了数据的多样性,使外参标定更加准确。This technical solution, by controlling the target equipment with different loads to accelerate and decelerate according to the external parameter calibration movement route of the preset shape, can record the speed change of the target equipment in different states, avoiding the singleness of data, and realizing data synchronization. Diversity makes external reference calibration more accurate.

S120、确定执行外参标定运动操作时所述目标设备上不同目标传感器对应的目标传感器速度变化量;其中不同目标传感器通过刚性连接搭载于所述目标设备。S120. Determine the velocity variation of the target sensor corresponding to the different target sensors on the target device when the extrinsic parameter calibration operation is performed; wherein the different target sensors are mounted on the target device through a rigid connection.

其中,目标传感器是一种检测装置,能够将检测到的信号按一定规律变换成为电信号或其他所需形式输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。例如激光传感器、惯性传感器、位移传感器、速度传感器和加速度传感器等。Among them, the target sensor is a detection device that can convert the detected signal into an electrical signal or other required form output according to a certain rule, so as to meet the requirements of information transmission, processing, storage, display, recording and control. Such as laser sensors, inertial sensors, displacement sensors, speed sensors and acceleration sensors, etc.

刚性连接可以是指两个连接件之间,当一个连接部件产生位移或受力时,与之相连的其他部件不相对于第一个连接部件产生位移或相对变形,也就是两个连接件为一个整体。例如两个连接的传感器,在目标设备加减速时,彼此之间不会产生相对位移或者两者之间的连接位置不会发生形变。Rigid connection can mean that between two connecting parts, when one connecting part is displaced or stressed, the other parts connected to it will not be displaced or relatively deformed relative to the first connecting part, that is, the two connecting parts are A whole. For example, when the target device accelerates and decelerates two connected sensors, there will be no relative displacement between them or no deformation of the connection position between the two.

具体的,目标设备在执行外参标定运动操作时,确定目标设备上不同目标传感器在预设形状的外参标定运动路线上的多个速度,根据目标传感器的多个速度确定对应的目标传感器的多个速度变化量。例如,机器人按照8字形路线进行加减速移动时,确定在运行过程中机器人中的各个目标传感器的多个速度值,依据机器人中目标传感器的多个速度值确定对应的目标传感器的多个速度变化量,这样可以更加精准的确定机器人上的各个目标传感器的多个速度变化量,避免因为速度变化量数据太少而导致误差比较大,有利于对外参的标定,降低外参标定误差。Specifically, when the target device performs the external parameter calibration movement operation, it determines the multiple speeds of different target sensors on the target device on the preset external parameter calibration motion route, and determines the corresponding target sensor according to the multiple speeds of the target sensor. Multiple speed deltas. For example, when the robot moves with acceleration and deceleration along a figure-eight route, determine the multiple speed values of each target sensor in the robot during operation, and determine the multiple speed changes of the corresponding target sensor according to the multiple speed values of the target sensor in the robot In this way, multiple speed changes of each target sensor on the robot can be determined more accurately, and large errors caused by too little speed change data can be avoided, which is conducive to the calibration of external parameters and reduces the calibration error of external parameters.

S130、依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定。S130. Perform external parameter calibration on different target sensors according to the target sensor speed variation corresponding to the different target sensors.

具体的,目标设备在进行外参标定运动操作时,确定不同目标传感器对应的目标传感器的多个速度变化量,依据目标传感器的多个速度变化量对目标传感器之间的外参进行标定。示例的,目标设备执行外参标定运动操作时,确定同一时间间隔内目标设备上第一传感器对应的第一速度变化量与第二传感器对应的第二速度变化量,依据同一时间间隔的第一速度变化量与第二速度变化量,对第一传感器与第二传感器之间的外参进行标定。Specifically, when the target device is performing an extrinsic parameter calibration movement operation, it determines multiple velocity variations of target sensors corresponding to different target sensors, and calibrates the extrinsic parameters between the target sensors according to the multiple velocity variations of the target sensors. For example, when the target device performs an extrinsic calibration motion operation, it determines the first speed change corresponding to the first sensor on the target device and the second speed change corresponding to the second sensor in the same time interval, according to the first speed change corresponding to the same time interval The speed variation and the second speed variation are used to calibrate the external parameters between the first sensor and the second sensor.

本发明实施例的技术方案,通过控制目标设备执行外参标定运动操作,确定目标设备上通过刚性连接的不同目标传感器对应的目标传感器速度变化量;依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定,本申请技术方案借助不同传感器之间的速度变化情况进行外参标定,解决了因为传感器位置数据测量难度大所造成的外参标定难度大,以及可能因为位置测量不准确造成的外参标定误差大的问题,降低了传感器之间的外参标定难度。According to the technical solution of the embodiment of the present invention, by controlling the target device to perform the external parameter calibration movement operation, the target sensor speed change corresponding to the different target sensors rigidly connected on the target device is determined; according to the target sensor speed change corresponding to different target sensors, For external parameter calibration of different target sensors, the technical solution of this application uses the speed change between different sensors to perform external parameter calibration, which solves the difficulty of external parameter calibration caused by the difficulty of sensor position data measurement, and the possible The problem of large external parameter calibration error caused by inaccuracy reduces the difficulty of external parameter calibration between sensors.

实施例二Embodiment two

图2为根据本发明实施例二提供的一种传感器外参标定方法的流程图,本实施例在上述实施例的基础上对目标传感器速度变化量进行详细描述,进而对不同目标传感器进行外参标定。如图2所示,本实施例的传感器外参标定方法,可包括:Fig. 2 is a flow chart of a sensor external parameter calibration method according to Embodiment 2 of the present invention. This embodiment describes in detail the speed change of the target sensor on the basis of the above embodiment, and then performs external reference calibration for different target sensors. calibration. As shown in Figure 2, the sensor external parameter calibration method of this embodiment may include:

S210、针对各个目标传感器,确定在各个采集时刻所述目标设备执行外参标定运动操作时,所采集的目标传感器对应的目标传感器数据。S210. For each target sensor, determine the target sensor data corresponding to the target sensor collected when the target device performs an extrinsic calibration movement operation at each collection moment.

其中,目标设备上搭载不同的目标传感器,在目标设备执行外参标定运动操作的过程中,目标传感器可以数据采集,即可得到每个目标传感器在不同采集时刻所采集的其各自对应的目标传感器数据。其中,目标传感器数据可以包括但不限于传感器的位置数据、速度大小和方向的数据、加速度数据以及传感器的数据采集时刻等。Among them, the target device is equipped with different target sensors. During the process of the target device performing the external parameter calibration movement operation, the target sensor can collect data, and the corresponding target sensors collected by each target sensor at different collection times can be obtained. data. Wherein, the target sensor data may include but not limited to sensor position data, velocity magnitude and direction data, acceleration data, and sensor data collection time.

S220、依据目标传感器在各个采集时刻的目标传感器数据,确定目标传感器在目标时间间隔的目标传感器速度变化量;其中,每个目标时间间隔通过从各个采集时刻中选取的任意两个相邻采集时刻之间的时间间隔进行确定,不同目标时间间隔在时间上不重叠。S220, according to the target sensor data of the target sensor at each collection time, determine the target sensor speed change amount of the target sensor in the target time interval; wherein, each target time interval passes through any two adjacent collection times selected from each collection time The time interval between different targets is determined, and the time intervals of different targets do not overlap in time.

其中,对于每个目标时间间隔,各个目标传感器均需要获得一个目标传感器速度变化量,即同一目标时间间隔每个目标传感器均计算得到一个目标传感器速度变化量,这样在确定不同传感器之间速度变化量差异时可以使用同一时间间隔的速度变化量来表征。其中,目标时间间隔可以取阈值时间内的时间间隔,这样可以获取目标设备在运动过程中多个速度变化量,从而增加了数据量,有利于减小外参误差。可以理解的是,阈值时间可以根据实际情况进行设定,可以是0.5秒、1秒或者2秒等。Among them, for each target time interval, each target sensor needs to obtain a target sensor speed change, that is, each target sensor in the same target time interval calculates a target sensor speed change, so that when determining the speed change between different sensors It can be characterized by the speed change in the same time interval. Wherein, the target time interval can be a time interval within a threshold value, so that multiple speed variations of the target device during motion can be obtained, thereby increasing the amount of data and helping to reduce external parameter errors. It can be understood that the threshold time can be set according to actual conditions, and can be 0.5 seconds, 1 second, or 2 seconds, etc.

可选的,不同采集时刻采集的目标传感器数据在目标设备执行外参标定运动操作过程中沿直线移动时采集得到。Optionally, the target sensor data collected at different collection times are collected when the target device moves along a straight line during the extrinsic parameter calibration movement operation.

具体的,无论目标设备沿何种预设形状的外参标定运动路线进行加减速移动,均尽可能采集目标设备沿直线路段移动时的目标传感器数据,因为取时间间隔获取目标传感器速度变化量时,采集目标设备沿直线移动时的目标传感器数据,能够保证目标时间间隔获取的目标传感器速度变化量的准确性。例如对于位置传感器,若获取到弯曲处的位置数据,则计算目标时间间隔的位置变化数据时会变小,那么通过位置变化数据获取到的速度变化量也会变小,极大的影响了数据的准确性,所以要记录目标设备沿直线移动时的目标传感器数据。Specifically, no matter what kind of pre-set external parameter calibration motion route the target device moves along, the target sensor data when the target device moves along the straight line should be collected as much as possible, because when the time interval is used to obtain the velocity variation of the target sensor , collecting the target sensor data when the target device moves along a straight line can ensure the accuracy of the target sensor velocity variation acquired at the target time interval. For example, for a position sensor, if the position data of the bend is obtained, the position change data of the target time interval will be calculated smaller, and the speed change obtained through the position change data will also be smaller, which greatly affects the data. Therefore, it is necessary to record the target sensor data when the target device moves along a straight line.

在一个可行的实施例中,依据目标传感器在各个采集时刻的目标传感器数据,确定目标传感器在目标时间间隔的目标传感器速度变化量,可包括以下步骤A1-A2:In a feasible embodiment, according to the target sensor data of the target sensor at each collection moment, determining the target sensor speed change amount of the target sensor at the target time interval may include the following steps A1-A2:

步骤A1、若目标传感器适用进行速度测量,则从目标传感器在各个采集时刻的目标传感器数据中确定目标传感器在各个采集时刻的加速度。Step A1, if the target sensor is suitable for speed measurement, determine the acceleration of the target sensor at each collection time from the target sensor data at each collection time.

步骤A2、依据目标传感器在各个采集时刻的加速度和目标时间间隔时长,计算目标传感器在不同目标时间间隔的目标传感器速度变化量。Step A2, according to the acceleration of the target sensor at each collection moment and the duration of the target time interval, calculate the velocity variation of the target sensor at different target time intervals.

具体的,适用于进行速度测量的目标传感器,可以在目标设备进行外参标定运动操作过程中,采集目标传感器各个采集时刻的目标传感器数据,依据目标传感器的数据确定目标传感器各个采集时刻的加速度,此外,还需要确定目标传感器的不同目标时间间隔,再结合目标传感器的各个采集时刻的加速度,通过计算获得不同目标时间间隔的目标传感器速度变化量。Specifically, the target sensor suitable for speed measurement can collect the target sensor data at each acquisition time of the target sensor during the external parameter calibration movement operation of the target device, and determine the acceleration of the target sensor at each acquisition time according to the data of the target sensor. In addition, it is also necessary to determine the different target time intervals of the target sensor, and then combine the acceleration of each acquisition time of the target sensor to obtain the velocity change of the target sensor at different target time intervals through calculation.

示例的,在机器人运动过程中的惯性传感器适用于进行速度测量,获取t1时刻的惯性传感器的加速度,令加速度

Figure GDA0004156233200000091
为:As an example, the inertial sensor in the motion of the robot is suitable for speed measurement, and the acceleration of the inertial sensor at time t 1 is obtained, so that the acceleration
Figure GDA0004156233200000091
for:

Figure GDA0004156233200000092
Figure GDA0004156233200000092

同理,获得t2时刻惯性传感器的加速度

Figure GDA0004156233200000093
则在t2时刻惯性传感器的速度变化量
Figure GDA0004156233200000094
相对于t1时刻为:Similarly, the acceleration of the inertial sensor at time t2 is obtained
Figure GDA0004156233200000093
Then the velocity variation of the inertial sensor at time t 2
Figure GDA0004156233200000094
Relative to time t 1 is:

Figure GDA0004156233200000095
Figure GDA0004156233200000095

按照上述方法可获得不同目标时间间隔的目标传感器速度变化量

Figure GDA0004156233200000096
使得目标传感器速度变化量更加准确。其中,i为大于零的正整数。According to the above method, the target sensor speed variation at different target time intervals can be obtained
Figure GDA0004156233200000096
This makes the speed change of the target sensor more accurate. Wherein, i is a positive integer greater than zero.

本技术方案,确定适用于进行速度测量的目标传感器的各个采集时刻的加速度后,通过精确地计算获得不同目标时间间隔的目标传感器速度变化量,实现了目标传感器速度变化量的准确性和获取的简易性。In this technical solution, after determining the acceleration at each acquisition time of the target sensor suitable for speed measurement, the speed change of the target sensor at different target time intervals is obtained through accurate calculation, thereby realizing the accuracy and accuracy of the speed change of the target sensor. simplicity.

在一个可行的实施例中,依据目标传感器在各个采集时刻的目标传感器数据,确定目标传感器在目标时间间隔的目标传感器速度变化量,可包括以下步骤B1-B2:In a feasible embodiment, according to the target sensor data of the target sensor at each collection moment, determining the target sensor speed variation of the target sensor at the target time interval may include the following steps B1-B2:

步骤B1、若目标传感器适用进行位置测量,则从目标传感器在各个采集时刻的目标传感器数据中确定目标传感器在各个采集时刻的传感器位置。Step B1. If the target sensor is suitable for position measurement, determine the sensor position of the target sensor at each collection time from the target sensor data at each collection time.

步骤B2、依据目标传感器在各个采集时刻的传感器位置和目标时间间隔时长,计算目标传感器在不同目标时间间隔的目标传感器速度变化量。Step B2, according to the sensor position of the target sensor at each collection moment and the length of the target time interval, calculate the target sensor velocity variation of the target sensor at different target time intervals.

具体的,适用于进行位置测量的目标传感器,可以在目标设备进行外参标定运动操作过程中,采集目标传感器各个采集时刻的目标传感器数据,依据目标传感器的数据确定目标传感器各个采集时刻的传感器位置,此外,还需要确定目标传感器的不同目标时间间隔,再结合目标传感器的各个采集时刻的传感器位置,通过计算获得不同目标时间间隔的目标传感器速度变化量。Specifically, the target sensor suitable for position measurement can collect the target sensor data at each acquisition time of the target sensor during the external parameter calibration movement operation process of the target device, and determine the sensor position of the target sensor at each acquisition time according to the data of the target sensor , in addition, it is also necessary to determine the different target time intervals of the target sensor, combined with the sensor position at each acquisition time of the target sensor, the velocity variation of the target sensor at different target time intervals is obtained by calculation.

示例的,在机器人运动过程中,对于机器人上的激光传感器,适用于进行位置测量,则使用激光里程计技术获取激光传感器t0时刻的位置

Figure GDA0004156233200000101
为:For example, during the movement of the robot, for the laser sensor on the robot, which is suitable for position measurement, the laser odometer technology is used to obtain the position of the laser sensor at time t 0
Figure GDA0004156233200000101
for:

Figure GDA0004156233200000102
Figure GDA0004156233200000102

同理,获取t2时刻激光传感器的位置

Figure GDA0004156233200000103
假定车辆在目标时间间隔内为匀速运动,t0<t1<t2,且t0、t1、t2时刻在阈值时间段内,则t1时刻激光传感器的速度
Figure GDA0004156233200000104
为:Similarly, get the position of the laser sensor at time t 2
Figure GDA0004156233200000103
Assuming that the vehicle is moving at a constant speed within the target time interval, t 0 <t 1 <t 2 , and t 0 , t 1 , and t 2 are within the threshold time period, then the speed of the laser sensor at t 1
Figure GDA0004156233200000104
for:

Figure GDA0004156233200000105
Figure GDA0004156233200000105

同理,获取t2时刻激光传感器的速度

Figure GDA0004156233200000106
则t2时刻激光传感器速度变化量
Figure GDA0004156233200000107
相对于t1时刻为:Similarly, get the speed of the laser sensor at time t 2
Figure GDA0004156233200000106
Then the laser sensor speed change at time t2
Figure GDA0004156233200000107
Relative to time t 1 is:

Figure GDA0004156233200000108
Figure GDA0004156233200000108

按照上述方法可获得不同目标时间间隔的目标传感器速度变化量

Figure GDA0004156233200000109
使得目标传感器速度变化量更加准确。其中,i为大于零的正整数。According to the above method, the target sensor speed variation at different target time intervals can be obtained
Figure GDA0004156233200000109
This makes the speed change of the target sensor more accurate. Wherein, i is a positive integer greater than zero.

本技术方案,确定适用于进行位置测量的目标传感器的各个采集时刻的位置,虽然位置数据的获取更加容易,但是有些目标传感器比如惯性测量传感器无法轻松获取位置数据,从而与进行位置测量的目标传感器进行外参标定非常困难,所以需要通过简单准确地计算获取不同目标时间间隔的进行位置测量的目标传感器的速度变化量,实现了目标传感器速度变化量的准确性和获取的简易性。例如,获取激光传感器各个采集时刻的位置,通过确定不同时间间隔以及对应时间间隔起始时间与终止时间各自的位置信息,确定各个目标时间间隔的速度变化量,简单准确的完成了速度变化量的获取,也更容易进行外参标定。This technical solution determines the position at each acquisition time of the target sensor suitable for position measurement. Although the acquisition of position data is easier, some target sensors such as inertial measurement sensors cannot easily obtain position data, so as to be different from the target sensor for position measurement. It is very difficult to calibrate the external parameters, so it is necessary to simply and accurately calculate the velocity variation of the target sensor for position measurement at different target time intervals, so as to achieve the accuracy and ease of acquisition of the velocity variation of the target sensor. For example, the position of each acquisition time of the laser sensor is obtained, and the speed change of each target time interval is determined by determining the position information of different time intervals and the corresponding time interval start time and end time, and the speed change amount is simply and accurately completed. It is also easier to calibrate external parameters.

在一个可行的实施例中,依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定,可包括以下步骤C1-C2:In a feasible embodiment, the external parameter calibration of different target sensors according to the target sensor speed variation corresponding to different target sensors may include the following steps C1-C2:

步骤C1、采用待优化外参标定参数变量与相同目标时间间隔内两个目标传感器对应的目标传感器速度变化量,构建目标传感器间的速度残差;所述速度残差用于描述不同目标传感器通过外参转换到相同坐标系下,速度变化量之间的差值;Step C1, use the external parameter calibration parameter variable to be optimized and the target sensor speed change corresponding to the two target sensors within the same target time interval to construct the speed residual between the target sensors; the speed residual is used to describe the different target sensors. The difference between the speed changes when the external parameters are converted to the same coordinate system;

步骤C2、对不同目标时间间隔的目标传感器间的速度残差进行优化,确定待优化外参标定参数的优化值。Step C2. Optimizing the speed residuals between the target sensors at different target time intervals, and determining the optimal value of the external parameter calibration parameter to be optimized.

其中,待优化外参标定参数变量可以是在进行外参标定操作之前,通过机械加工参数或直接测量的方式,获得的存在一定误差的原始外参参数。Wherein, the external parameter calibration parameter variables to be optimized may be the original external parameter parameters with certain errors obtained through machining parameters or direct measurement before the external parameter calibration operation.

具体的,采用待优化外参标定参数变量与相同目标时间间隔内两个目标传感器对应的目标传感器速度变化量,构建目标传感器间的速度残差。例如,在机器人运动过程中,以两个传感器分别为惯性传感器和激光传感器作为行进中各个目标时间间隔相同的目标传感器,则通过待优化外参标定参数变量U结合同一时间间隔内惯性传感器的速度变化量

Figure GDA0004156233200000111
和激光传感器的速度变化量
Figure GDA0004156233200000112
可以得出通过两个传感器之间的速度变化量差异表征的速度残差的公式,如下:Specifically, the velocity residual between the target sensors is constructed by using the calibration parameter variables of the external parameters to be optimized and the target sensor velocity changes corresponding to the two target sensors within the same target time interval. For example, during the movement of the robot, if the two sensors are the inertial sensor and the laser sensor as the target sensor with the same time interval of each target during the travel, then the parameter variable U of the external parameter calibration to be optimized is combined with the speed of the inertial sensor in the same time interval Variation
Figure GDA0004156233200000111
and the amount of speed change of the laser sensor
Figure GDA0004156233200000112
The formula for the velocity residual represented by the difference in velocity variation between the two sensors can be derived as follows:

Figure GDA0004156233200000113
Figure GDA0004156233200000113

其中,i为大于零的正整数,ti表示目标时间间隔的终止时间,目标时间间隔的起始时间ti-1。本技术方案,通过待优化外参标定参数变量与相同目标时间间隔内两个目标传感器对应的目标传感器速度变化量,得出目标传感器间的速度残差,当目标传感器之间的速度残差越小,说明当前的外参参数更加贴合实际,可以缩小标定时的误差,所以需要对速度残差进行优化,来确定待优化外参标定参数的优化值,使外参更加准确。Wherein, i is a positive integer greater than zero, t i represents the end time of the target time interval, and the start time t i-1 of the target time interval. In this technical solution, the speed residual between the target sensors is obtained through the calibration parameter variables of the external parameters to be optimized and the target sensor speed changes corresponding to the two target sensors within the same target time interval. Small, indicating that the current extrinsic parameters are more realistic and can reduce the error during calibration. Therefore, it is necessary to optimize the speed residual to determine the optimized value of the extrinsic calibration parameters to be optimized to make the extrinsic parameters more accurate.

在一个可行的实施例中,对不同目标时间间隔的目标传感器间的速度残差函数进行优化,可包括以下步骤D1-D2:In a feasible embodiment, optimizing the velocity residual function between target sensors at different target time intervals may include the following steps D1-D2:

步骤D1、将不同目标时间间隔对应的目标传感器间的速度残差与所述目标传感器间的速度残差转置之间相乘结果的求和作为目标函数。Step D1, taking the sum of multiplication results between the speed residuals between target sensors corresponding to different target time intervals and the transposed speed residuals between the target sensors as the target function.

步骤D2、对所述目标函数进行求解,确定使目标函数取最小值时所述待优化外参标定参数变量的取值。Step D2 , solving the objective function, and determining the value of the external parameter calibration parameter variable to be optimized when the objective function takes the minimum value.

具体的,当确定了速度残差后,为了可以得到准确的外参,需要对其进行优化,那需要将不同目标时间间隔对应的目标传感器间的速度残差与目标传感器间的速度残差转置之间相乘结果的求和作为目标函数,对目标函数进行求解,将目标函数求解所得的最小值作为待优化外参标定参数变量的优化值。例如,在机器人运动过程中,惯性传感器和激光传感器之间的速度残差已经获得,则目标函数为:Specifically, after the velocity residual is determined, in order to obtain accurate external parameters, it needs to be optimized, which needs to convert the velocity residual between target sensors corresponding to different target time intervals to the velocity residual between target sensors The sum of the multiplication results between the settings is used as the objective function, and the objective function is solved, and the minimum value obtained by solving the objective function is used as the optimized value of the external parameter calibration parameter variable to be optimized. For example, during the motion of the robot, the velocity residual between the inertial sensor and the laser sensor has been obtained, then the objective function is:

Figure GDA0004156233200000121
Figure GDA0004156233200000121

通过对目标函数进行求解,获得其最小值,则得到待优化外参标定参数变量的优化值。此外,标定结束后可以将待优化外参标定参数变量的优化值作为传感器标定的外参,但是随着时间的推移,由于各种实际原因,外参值误差会变大,所以需要在一段时间之后,对外参进行再一次的标定,以确保目标设备运行的准确性;当然,也可以使用动态标定方法,将新增的速度变化量进行加入,以得到待优化外参标定参数变量的优化值。By solving the objective function and obtaining its minimum value, the optimized value of the calibration parameter variable of the external parameter to be optimized is obtained. In addition, after the calibration is over, the optimized value of the external parameter calibration parameter variable to be optimized can be used as the external parameter of the sensor calibration, but as time goes by, due to various practical reasons, the error of the external parameter value will become larger, so it needs to be adjusted for a period of time. After that, the external parameters are calibrated again to ensure the accuracy of the operation of the target equipment; of course, the dynamic calibration method can also be used to add the newly added speed variation to obtain the optimized value of the external parameter calibration parameter variable to be optimized .

本技术方案,在获得目标传感器之间的速度残差后,利用目标函数对其进行优化,经过准确的计算后获得了精度较高的外参,降低了目标传感器之间的误差,确保了目标设备运行的准确性。In this technical solution, after obtaining the speed residual between the target sensors, it is optimized by using the objective function, and after accurate calculation, a high-precision external parameter is obtained, which reduces the error between the target sensors and ensures that the target Accuracy of equipment operation.

本发明实施例的技术方案,通过控制目标设备执行外参标定运动操作,确定目标设备上通过刚性连接的不同目标传感器对应的目标传感器速度变化量;依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定,本申请技术方案借助不同传感器之间的速度变化情况进行外参标定,解决了因为传感器位置测量难度大所造成的外参标定难度大,以及可能因为位置测量不准确造成的外参标定误差大的问题,降低了传感器之间的外参标定难度,同时提高了传感器之间外参标定的精度。According to the technical solution of the embodiment of the present invention, by controlling the target device to perform the external parameter calibration movement operation, the target sensor speed change corresponding to the different target sensors rigidly connected on the target device is determined; according to the target sensor speed change corresponding to different target sensors, To calibrate the external parameters of different target sensors, the technical solution of this application uses the speed changes between different sensors to calibrate the external parameters, which solves the difficulty of external parameter calibration caused by the difficulty of measuring the sensor position, and the possibility that the position measurement is not accurate. The problem of large external parameter calibration error caused by accuracy reduces the difficulty of external parameter calibration between sensors, and at the same time improves the accuracy of external parameter calibration between sensors.

实施例三Embodiment three

图3为根据本发明实施例三提供的一种传感器外参标定装置的结构示意图。如图3所示,该装置包括:Fig. 3 is a schematic structural diagram of a sensor external parameter calibration device provided according to Embodiment 3 of the present invention. As shown in Figure 3, the device includes:

控制模块310,用于控制目标设备执行外参标定运动操作。The control module 310 is configured to control the target device to perform an extrinsic calibration movement operation.

速度变化量确定模块320,用于确定执行外参标定运动操作时所述目标设备上不同目标传感器对应的目标传感器速度变化量;其中不同目标传感器通过刚性连接搭载于所述目标设备。The velocity variation determining module 320 is configured to determine the velocity variation of the target sensor corresponding to different target sensors on the target device when the extrinsic calibration operation is performed; wherein the different target sensors are mounted on the target device through a rigid connection.

标定模块330,用于依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定。The calibration module 330 is configured to calibrate the external parameters of different target sensors according to the target sensor speed variation corresponding to the different target sensors.

可选的,控制模块,具体用于:Optionally, the control module is specifically used for:

控制目标设备沿预设形状的外参标定运动路线进行加减速移动,且使目标设备的速度调整频次大于预设频次阈值;Control the target device to accelerate and decelerate along the preset shape of the external parameter calibration movement route, and make the speed adjustment frequency of the target device greater than the preset frequency threshold;

其中,所述速度调整包括速度大小和/或速度方向;所述加减速移动包括固定加速、固定减速、变加速以及变减速。Wherein, the speed adjustment includes speed magnitude and/or speed direction; the acceleration/deceleration movement includes fixed acceleration, fixed deceleration, variable acceleration and variable deceleration.

可选的,控制模块包含操作单元,具体用于:Optionally, the control module contains an operating unit, specifically for:

对所述目标设备的载重量进行调整,控制经载重量调整的目标设备沿预设形状的外参标定运动路线进行加减速移动。The load capacity of the target device is adjusted, and the target device adjusted by the load capacity is controlled to move with acceleration and deceleration along a movement route calibrated by external parameters of a preset shape.

可选的,速度变化量确定模块,具体用于:Optionally, the velocity variation determination module is specifically used for:

针对各个目标传感器,确定在各个采集时刻所述目标设备执行外参标定运动操作时,所采集的目标传感器对应的目标传感器数据;For each target sensor, determine the target sensor data corresponding to the target sensor collected when the target device performs the external parameter calibration movement operation at each collection moment;

依据目标传感器在各个采集时刻的目标传感器数据,确定目标传感器在目标时间间隔的目标传感器速度变化量;According to the target sensor data of the target sensor at each collection moment, determine the target sensor speed variation of the target sensor in the target time interval;

其中,每个目标时间间隔通过从各个采集时刻中选取的任意两个相邻采集时刻之间的时间间隔进行确定,不同目标时间间隔在时间上不重叠。Wherein, each target time interval is determined by the time interval between any two adjacent collection moments selected from each collection moment, and different target time intervals do not overlap in time.

可选的,速度变化量确定模块包含第一速度变化量确定单元,具体用于:Optionally, the speed change determination module includes a first speed change determination unit, specifically for:

若目标传感器适用进行速度测量,则从目标传感器在各个采集时刻的目标传感器数据中确定目标传感器在各个采集时刻的加速度;If the target sensor is suitable for speed measurement, then determine the acceleration of the target sensor at each collection time from the target sensor data at each collection time;

依据目标传感器在各个采集时刻的加速度和目标时间间隔时长,计算目标传感器在不同目标时间间隔的目标传感器速度变化量。According to the acceleration of the target sensor at each acquisition moment and the length of the target time interval, the velocity variation of the target sensor at different target time intervals is calculated.

可选的,速度变化量确定模块包含第二速度变化量确定单元,具体用于::Optionally, the speed variation determination module includes a second speed variation determination unit, specifically for:

若目标传感器适用进行位置测量,则从目标传感器在各个采集时刻的目标传感器数据中确定目标传感器在各个采集时刻的传感器位置;If the target sensor is suitable for position measurement, then determine the sensor position of the target sensor at each collection time from the target sensor data at each collection time;

依据目标传感器在各个采集时刻的传感器位置和目标时间间隔时长,计算目标传感器在不同目标时间间隔的目标传感器速度变化量;Calculate the target sensor velocity variation of the target sensor at different target time intervals according to the sensor position of the target sensor at each acquisition moment and the target time interval length;

可选的,不同采集时刻采集的目标传感器数据在目标设备执行外参标定运动操作过程中沿直线移动时采集得到。Optionally, the target sensor data collected at different collection times are collected when the target device moves along a straight line during the extrinsic parameter calibration movement operation.

可选的,标定模块,具体用于:Optionally, the calibration module is specifically used for:

采用待优化外参标定参数变量与相同目标时间间隔内两个目标传感器对应的目标传感器速度变化量,构建目标传感器间的速度残差;所述速度残差用于描述不同目标传感器通过外参转换到相同坐标系下,速度变化量之间的差值;Use the external parameter calibration parameter variable to be optimized and the target sensor speed change corresponding to the two target sensors in the same target time interval to construct the speed residual between the target sensors; To the same coordinate system, the difference between the speed changes;

对不同目标时间间隔的目标传感器间的速度残差进行优化,确定待优化外参标定参数的优化值。The speed residual between target sensors at different target time intervals is optimized, and the optimal value of the external parameter calibration parameters to be optimized is determined.

可选的,标定模块包含优化单元,具体用于:Optionally, the calibration module includes an optimization unit, which is specifically used for:

将不同目标时间间隔对应的目标传感器间的速度残差与所述目标传感器间的速度残差转置之间相乘结果的求和作为目标函数;The sum of the multiplication results between the speed residuals between the target sensors corresponding to different target time intervals and the transpose of the speed residuals between the target sensors is used as the target function;

对所述目标函数进行求解,确定使目标函数取最小值时所述待优化外参标定参数变量的取值。Solve the objective function, and determine the value of the external parameter calibration parameter variable to be optimized when the objective function takes the minimum value.

本发明实施例中所提供的传感器外参标定装置可执行上述本发明任意实施例中所提供的传感器外参标定方法,具备执行该传感器外参标定方法相应的功能和有益效果,详细过程参见前述实施例中传感器外参标定方法的相关操作。The sensor external parameter calibration device provided in the embodiment of the present invention can execute the above-mentioned sensor external parameter calibration method provided in any embodiment of the present invention, and has the corresponding functions and beneficial effects of performing the sensor external parameter calibration method. For the detailed process, refer to the foregoing Related operations of the sensor external parameter calibration method in the embodiment.

实施例四Embodiment Four

图4示出了可以用来实现本发明实施例的传感器外参标定方法的电子设备的结构示意图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备(如头盔、眼镜、手表等)和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本发明的实现。Fig. 4 shows a schematic structural diagram of an electronic device that can be used to implement the sensor external parameter calibration method according to the embodiment of the present invention. Electronic device is intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other suitable computers. Electronic devices may also represent various forms of mobile devices, such as personal digital processing, cellular phones, smart phones, wearable devices (eg, helmets, glasses, watches, etc.), and other similar computing devices. The components shown herein, their connections and relationships, and their functions, are by way of example only, and are not intended to limit implementations of the inventions described and/or claimed herein.

如图4所示,电子设备10包括至少一个处理器11,以及与至少一个处理器11通信连接的存储器,如只读存储器(ROM)12、随机访问存储器(RAM)13等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器11可以根据存储在只读存储器(ROM)12中的计算机程序或者从存储单元18加载到随机访问存储器(RAM)13中的计算机程序,来执行各种适当的动作和处理。在RAM 13中,还可存储电子设备10操作所需的各种程序和数据。处理器11、ROM 12以及RAM 13通过总线14彼此相连。输入/输出(I/O)接口15也连接至总线14。As shown in FIG. 4, the electronic device 10 includes at least one processor 11, and a memory connected in communication with the at least one processor 11, such as a read-only memory (ROM) 12, a random access memory (RAM) 13, etc., wherein the memory stores There is a computer program executable by at least one processor, and the processor 11 can operate according to a computer program stored in a read-only memory (ROM) 12 or loaded from a storage unit 18 into a random access memory (RAM) 13. Various appropriate actions and processes are performed. In the RAM 13, various programs and data necessary for the operation of the electronic device 10 can also be stored. The processor 11, ROM 12, and RAM 13 are connected to each other via a bus 14. An input/output (I/O) interface 15 is also connected to the bus 14 .

电子设备10中的多个部件连接至I/O接口15,包括:输入单元16,例如键盘、鼠标等;输出单元17,例如各种类型的显示器、扬声器等;存储单元18,例如磁盘、光盘等;以及通信单元19,例如网卡、调制解调器、无线通信收发机等。通信单元19允许电子设备10通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。Multiple components in the electronic device 10 are connected to the I/O interface 15, including: an input unit 16, such as a keyboard, a mouse, etc.; an output unit 17, such as various types of displays, speakers, etc.; a storage unit 18, such as a magnetic disk, an optical disk etc.; and a communication unit 19, such as a network card, a modem, a wireless communication transceiver, and the like. The communication unit 19 allows the electronic device 10 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.

处理器11可以是各种具有处理和计算能力的通用和/或专用处理组件。处理器11的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的处理器、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。处理器11执行上文所描述的各个方法和处理,例如传感器外参标定方法。Processor 11 may be various general and/or special purpose processing components having processing and computing capabilities. Some examples of processor 11 include, but are not limited to, central processing units (CPUs), graphics processing units (GPUs), various dedicated artificial intelligence (AI) computing chips, various processors that run machine learning model algorithms, digital signal processing processor (DSP), and any suitable processor, controller, microcontroller, etc. The processor 11 executes various methods and processes described above, such as a sensor external parameter calibration method.

在一些实施例中,传感器外参标定方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元18。在一些实施例中,计算机程序的部分或者全部可以经由ROM 12和/或通信单元19而被载入和/或安装到电子设备10上。当计算机程序加载到RAM 13并由处理器11执行时,可以执行上文描述的传感器外参标定方法的一个或多个步骤。备选地,在其他实施例中,处理器11可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行传感器外参标定方法。In some embodiments, the sensor external parameter calibration method can be implemented as a computer program, which is tangibly embodied in a computer-readable storage medium, such as the storage unit 18 . In some embodiments, part or all of the computer program can be loaded and/or installed on the electronic device 10 via the ROM 12 and/or the communication unit 19. When the computer program is loaded into the RAM 13 and executed by the processor 11, one or more steps of the sensor external parameter calibration method described above can be performed. Alternatively, in other embodiments, the processor 11 may be configured in any other appropriate way (for example, by means of firmware) to execute the sensor external parameter calibration method.

本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips Implemented in a system of systems (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor Can be special-purpose or general-purpose programmable processor, can receive data and instruction from storage system, at least one input device, and at least one output device, and transmit data and instruction to this storage system, this at least one input device, and this at least one output device an output device.

用于实施本发明的方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Computer programs for implementing the methods of the present invention may be written in any combination of one or more programming languages. These computer programs can be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing apparatus, so that the computer program causes the functions/operations specified in the flowcharts and/or block diagrams to be implemented when executed by the processor. A computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.

在本发明的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of the present invention, a computer readable storage medium may be a tangible medium that may contain or store a computer program for use by or in conjunction with an instruction execution system, apparatus or device. A computer readable storage medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing. Alternatively, a computer readable storage medium may be a machine readable signal medium. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.

为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。In order to provide interaction with the user, the systems and techniques described herein can be implemented on an electronic device having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display)) for displaying information to the user. monitor); and a keyboard and pointing device (eg, a mouse or a trackball) through which the user can provide input to the electronic device. Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.

可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)、区块链网络和互联网。The systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system. The components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: local area networks (LANs), wide area networks (WANs), blockchain networks, and the Internet.

计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与VPS服务中,存在的管理难度大,业务扩展性弱的缺陷。A computing system can include clients and servers. Clients and servers are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other. The server can be a cloud server, also known as a cloud computing server or a cloud host. It is a host product in the cloud computing service system to solve the problems of difficult management and weak business expansion in traditional physical hosts and VPS services. defect.

应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发明中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明的技术方案所期望的结果,本文在此不进行限制。It should be understood that steps may be reordered, added or deleted using the various forms of flow shown above. For example, each step described in the present invention may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution of the present invention can be achieved, there is no limitation herein.

上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above specific implementation methods do not constitute a limitation to the protection scope of the present invention. It should be apparent to those skilled in the art that various modifications, combinations, sub-combinations and substitutions may be made depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (8)

1.一种传感器外参标定方法,其特征在于,所述方法包括:1. A sensor external reference calibration method is characterized in that, the method comprises: 控制目标设备执行外参标定运动操作;Control the target device to perform external parameter calibration motion operation; 确定执行外参标定运动操作时所述目标设备上不同目标传感器对应的目标传感器速度变化量;其中不同目标传感器通过刚性连接搭载于所述目标设备;Determine the target sensor speed variation corresponding to the different target sensors on the target device when performing the external parameter calibration movement operation; wherein the different target sensors are mounted on the target device through a rigid connection; 依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定;依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定,包括:采用待优化外参标定参数变量与相同目标时间间隔内两个目标传感器对应的目标传感器速度变化量,构建目标传感器间的速度残差;所述速度残差用于描述不同目标传感器通过外参转换到相同坐标系下,速度变化量之间的差值;对不同目标时间间隔的目标传感器间的速度残差进行优化,确定待优化外参标定参数的优化值;其中,对不同目标时间间隔的目标传感器间的速度残差函数进行优化,包括:将不同目标时间间隔对应的目标传感器间的速度残差与所述目标传感器间的速度残差转置之间相乘结果的求和作为目标函数;对所述目标函数进行求解,确定使目标函数取最小值时所述待优化外参标定参数变量的取值。According to the target sensor speed change corresponding to different target sensors, perform external parameter calibration for different target sensors; according to the target sensor speed change corresponding to different target sensors, perform external parameter calibration for different target sensors, including: using the external parameter calibration to be optimized The parameter variable and the target sensor speed variation corresponding to the two target sensors in the same target time interval construct the speed residual between the target sensors; the speed residual is used to describe the conversion of different target sensors to the same coordinate system through external parameters, The difference between the speed changes; optimize the speed residuals between target sensors at different target time intervals, and determine the optimal value of the external parameter calibration parameters to be optimized; among them, the speed residuals between target sensors at different target time intervals The difference function is optimized, including: taking the sum of the multiplication results between the speed residuals between the target sensors corresponding to different target time intervals and the transposition of the speed residuals between the target sensors as the target function; Solving is performed to determine the value of the calibration parameter variable of the external parameter to be optimized when the objective function takes the minimum value. 2.根据权利要求1所述的方法,其特征在于,所述控制目标设备执行外参标定运动操作,包括:2. The method according to claim 1, wherein the controlling the target device to perform an extrinsic calibration movement operation comprises: 控制目标设备沿预设形状的外参标定运动路线进行加减速移动,且使目标设备的速度调整频次大于预设频次阈值;Control the target device to accelerate and decelerate along the preset shape of the external parameter calibration movement route, and make the speed adjustment frequency of the target device greater than the preset frequency threshold; 其中,所述速度调整包括速度大小和/或速度方向;所述加减速移动包括固定加速、固定减速、变加速以及变减速。Wherein, the speed adjustment includes speed magnitude and/or speed direction; the acceleration/deceleration movement includes fixed acceleration, fixed deceleration, variable acceleration and variable deceleration. 3.根据权利要求2所述的方法,其特征在于,控制目标设备沿预设形状的外参标定运动路线进行加减速移动,包括:3. The method according to claim 2, wherein controlling the target device to move with acceleration and deceleration along the preset shape of the extrinsic calibration movement route includes: 对所述目标设备的载重量进行调整,控制经载重量调整的目标设备沿预设形状的外参标定运动路线进行加减速移动。The load capacity of the target device is adjusted, and the target device adjusted by the load capacity is controlled to move with acceleration and deceleration along a movement route calibrated by external parameters of a preset shape. 4.根据权利要求1所述的方法,其特征在于,确定执行外参标定运动操作时所述目标设备上不同目标传感器对应的目标传感器速度变化量,包括:4. The method according to claim 1, wherein the determination of the target sensor speed variation corresponding to different target sensors on the target device when performing the extrinsic calibration movement operation comprises: 针对各个目标传感器,确定在各个采集时刻所述目标设备执行外参标定运动操作时,所采集的目标传感器对应的目标传感器数据;For each target sensor, determine the target sensor data corresponding to the target sensor collected when the target device performs the external parameter calibration movement operation at each collection moment; 依据目标传感器在各个采集时刻的目标传感器数据,确定目标传感器在目标时间间隔的目标传感器速度变化量;According to the target sensor data of the target sensor at each collection moment, determine the target sensor speed variation of the target sensor in the target time interval; 其中,每个目标时间间隔通过从各个采集时刻中选取的任意两个相邻采集时刻之间的时间间隔进行确定,不同目标时间间隔在时间上不重叠。Wherein, each target time interval is determined by the time interval between any two adjacent collection moments selected from each collection moment, and different target time intervals do not overlap in time. 5.根据权利要求4所述的方法,其特征在于,依据目标传感器在各个采集时刻的目标传感器数据,确定目标传感器在目标时间间隔的目标传感器速度变化量,包括:5. The method according to claim 4, characterized in that, according to the target sensor data of the target sensor at each acquisition moment, determining the target sensor velocity variation of the target sensor at the target time interval comprises: 若目标传感器适用进行速度测量,则从目标传感器在各个采集时刻的目标传感器数据中确定目标传感器在各个采集时刻的加速度;If the target sensor is suitable for speed measurement, then determine the acceleration of the target sensor at each collection time from the target sensor data at each collection time; 依据目标传感器在各个采集时刻的加速度和目标时间间隔时长,计算目标传感器在不同目标时间间隔的目标传感器速度变化量。According to the acceleration of the target sensor at each acquisition moment and the length of the target time interval, the velocity variation of the target sensor at different target time intervals is calculated. 6.根据权利要求4所述的方法,其特征在于,依据目标传感器在各个采集时刻的目标传感器数据,确定目标传感器在目标时间间隔的目标传感器速度变化量,包括:6. The method according to claim 4, wherein, according to the target sensor data of the target sensor at each collection moment, determining the target sensor velocity variation of the target sensor at the target time interval comprises: 若目标传感器适用进行位置测量,则从目标传感器在各个采集时刻的目标传感器数据中确定目标传感器在各个采集时刻的传感器位置;If the target sensor is suitable for position measurement, then determine the sensor position of the target sensor at each collection time from the target sensor data at each collection time; 依据目标传感器在各个采集时刻的传感器位置和目标时间间隔时长,计算目标传感器在不同目标时间间隔的目标传感器速度变化量。According to the sensor position of the target sensor at each acquisition moment and the length of the target time interval, the velocity variation of the target sensor at different target time intervals is calculated. 7.一种传感器外参标定装置,其特征在于,所述装置包括:7. A sensor external reference calibration device, characterized in that the device comprises: 控制模块,用于控制目标设备执行外参标定运动操作;A control module, configured to control the target device to perform external parameter calibration motion operations; 速度变化量确定模块,用于确定执行外参标定运动操作时所述目标设备上不同目标传感器对应的目标传感器速度变化量;其中不同目标传感器通过刚性连接搭载于所述目标设备;The speed change determination module is used to determine the speed change of the target sensor corresponding to the different target sensors on the target device when the external parameter calibration operation is performed; wherein the different target sensors are mounted on the target device through a rigid connection; 标定模块,用于依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定;依据不同目标传感器对应的目标传感器速度变化量,对不同目标传感器进行外参标定,包括:采用待优化外参标定参数变量与相同目标时间间隔内两个目标传感器对应的目标传感器速度变化量,构建目标传感器间的速度残差;所述速度残差用于描述不同目标传感器通过外参转换到相同坐标系下,速度变化量之间的差值;对不同目标时间间隔的目标传感器间的速度残差进行优化,确定待优化外参标定参数的优化值;其中,对不同目标时间间隔的目标传感器间的速度残差函数进行优化,包括:将不同目标时间间隔对应的目标传感器间的速度残差与所述目标传感器间的速度残差转置之间相乘结果的求和作为目标函数;对所述目标函数进行求解,确定使目标函数取最小值时所述待优化外参标定参数变量的取值。The calibration module is used to perform external parameter calibration on different target sensors according to the target sensor speed variation corresponding to different target sensors; to perform external parameter calibration on different target sensors according to the target sensor speed variation corresponding to different target sensors, including: using The parameter variable of the external parameter calibration to be optimized and the target sensor speed change corresponding to the two target sensors in the same target time interval are used to construct the speed residual between the target sensors; the speed residual is used to describe the conversion of different target sensors to Under the same coordinate system, the difference between the speed changes; optimize the speed residual between the target sensors at different target time intervals, and determine the optimized value of the external parameter calibration parameters to be optimized; among them, the target at different target time intervals Optimizing the speed residual function between sensors includes: taking the sum of the multiplication results between the speed residuals between the target sensors corresponding to different target time intervals and the transposition of the speed residuals between the target sensors as the target function; Solve the objective function, and determine the value of the external parameter calibration parameter variable to be optimized when the objective function takes the minimum value. 8.一种电子设备,其特征在于,所述电子设备包括:8. An electronic device, characterized in that the electronic device comprises: 至少一个处理器;以及at least one processor; and 与所述至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein, 所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-6中任一项所述的传感器外参标定方法。The memory stores a computer program executable by the at least one processor, the computer program is executed by the at least one processor, so that the at least one processor can perform any one of claims 1-6 The external parameter calibration method of the sensor.
CN202210861100.8A 2022-07-20 2022-07-20 Sensor external parameter calibration method, device and electronic equipment Active CN115235527B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210861100.8A CN115235527B (en) 2022-07-20 2022-07-20 Sensor external parameter calibration method, device and electronic equipment
PCT/CN2023/099581 WO2024016892A1 (en) 2022-07-20 2023-06-12 Method and apparatus for external-parameter calibration of sensors, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210861100.8A CN115235527B (en) 2022-07-20 2022-07-20 Sensor external parameter calibration method, device and electronic equipment

Publications (2)

Publication Number Publication Date
CN115235527A CN115235527A (en) 2022-10-25
CN115235527B true CN115235527B (en) 2023-05-12

Family

ID=83674850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210861100.8A Active CN115235527B (en) 2022-07-20 2022-07-20 Sensor external parameter calibration method, device and electronic equipment

Country Status (2)

Country Link
CN (1) CN115235527B (en)
WO (1) WO2024016892A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115235527B (en) * 2022-07-20 2023-05-12 上海木蚁机器人科技有限公司 Sensor external parameter calibration method, device and electronic equipment
CN118603138B (en) * 2024-05-31 2025-05-27 哈尔滨工业大学 Motion constraint construction method for vehicle-mounted laser radar-inertial navigation calibration

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761737B (en) * 2014-01-22 2016-08-31 北京工业大学 Robot motion's method of estimation based on dense optical flow
CN112113582A (en) * 2019-06-21 2020-12-22 上海商汤临港智能科技有限公司 Time synchronization processing method, electronic device, and storage medium
CN110361201A (en) * 2019-07-29 2019-10-22 深兰科技(上海)有限公司 A kind of vehicle control parameters scaling method and equipment
WO2021042332A1 (en) * 2019-09-05 2021-03-11 西门子(中国)有限公司 Calibration check assembly, robot system, check method, and calibration method
CN110782496B (en) * 2019-09-06 2022-09-09 深圳市道通智能航空技术股份有限公司 Calibration method, calibration device, aerial photographing equipment and storage medium
CN111025250B (en) * 2020-01-07 2022-05-13 湖南大学 On-line calibration method for vehicle-mounted millimeter wave radar
CN113701745B (en) * 2020-05-21 2024-03-08 杭州海康威视数字技术股份有限公司 External parameter change detection method, device, electronic equipment and detection system
CN112307564B (en) * 2020-11-10 2024-05-10 交控科技股份有限公司 Train ATO target running speed curve optimization method and device
CN112444798B (en) * 2020-11-27 2024-04-09 杭州易现先进科技有限公司 Method and device for calibrating space-time external parameters of multi-sensor equipment and computer equipment
CN115047869B (en) * 2020-12-30 2025-02-11 速感科技(北京)有限公司 Method and device for determining motion parameters of autonomous mobile device
CN112729344B (en) * 2020-12-30 2022-09-13 珠海市岭南大数据研究院 Sensor external reference calibration method without reference object
CN112873280B (en) * 2021-01-11 2022-10-25 上海思岚科技有限公司 Calibration method and device for sensor of robot
CN113310505B (en) * 2021-06-15 2024-04-09 苏州挚途科技有限公司 External parameter calibration method and device of sensor system and electronic equipment
CN113639782B (en) * 2021-08-13 2024-10-29 北京地平线信息技术有限公司 External parameter calibration method and device, equipment and medium of vehicle-mounted sensor
CN114549633B (en) * 2021-09-16 2024-12-03 北京小米移动软件有限公司 Position detection method, device, electronic device and storage medium
CN113933818A (en) * 2021-11-11 2022-01-14 阿波罗智能技术(北京)有限公司 Method, device, storage medium and program product for calibration of external parameters of lidar
CN114440928A (en) * 2022-01-27 2022-05-06 杭州申昊科技股份有限公司 Combined calibration method for laser radar and odometer, robot, equipment and medium
CN115235527B (en) * 2022-07-20 2023-05-12 上海木蚁机器人科技有限公司 Sensor external parameter calibration method, device and electronic equipment

Also Published As

Publication number Publication date
WO2024016892A1 (en) 2024-01-25
CN115235527A (en) 2022-10-25

Similar Documents

Publication Publication Date Title
CN115235527B (en) Sensor external parameter calibration method, device and electronic equipment
CN114323033B (en) Positioning method and equipment based on lane lines and feature points and automatic driving vehicle
CN113933818A (en) Method, device, storage medium and program product for calibration of external parameters of lidar
CN114179825B (en) Method for obtaining confidence of measurement value through multi-sensor fusion and automatic driving vehicle
CN110111384A (en) A kind of scaling method, the apparatus and system of TOF depth mould group
CN108534744A (en) A kind of attitude angle acquisition methods, device and handle
CN112082547B (en) Integrated navigation system optimization method, device, electronic device and storage medium
CN110345946A (en) A kind of indoor vehicle map constructing method
CN115164936B (en) Global pose correction method and device for point cloud stitching in high-precision map production
CN115509135A (en) A laser scanning galvanometer model predictive control method and system
CN113029136A (en) Method, apparatus, storage medium, and program product for positioning information processing
CN111708033A (en) Coordinate system calibration method and device, electronic equipment and storage medium
CN114915913A (en) UWB-IMU combined indoor positioning method based on sliding window factor graph
CN110044377A (en) A kind of IMU off-line calibration method based on Vicon
CN119437300B (en) On-orbit calibration method and device for scale factors
CN116878510A (en) Multi-source fusion indoor positioning method, device and system based on factor graph optimization
CN114861725A (en) A post-processing method, device, device and medium for target perception tracking
CN111307176B (en) Online calibration method for visual inertial odometer in VR head-mounted display equipment
CN111426278A (en) A kind of dynamic measurement method of blade tip clearance of mining fan
CN118032011A (en) External parameter calibration method, device, equipment and storage medium in autonomous navigation system
CN115727871A (en) Track quality detection method and device, electronic equipment and storage medium
CN108107882B (en) Automatic calibration and detection system of service robot based on optical motion tracking
CN115900697A (en) Object motion trajectory information processing method, electronic device and automatic driving vehicle
CN111342918A (en) Sampling time delay determining equipment, sampling time delay determining method and device
CN116380056B (en) Inertial positioning method, inertial positioning device, electronic equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20221025

Assignee: Muyi (Huzhou) Technology Development Co.,Ltd.

Assignor: SHANGHAI MOOE-ROBOT TECHNOLOGY Co.,Ltd.

Contract record no.: X2024980007103

Denomination of invention: Sensor extrinsic calibration method, device, and electronic equipment

Granted publication date: 20230512

License type: Common License

Record date: 20240613

EE01 Entry into force of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: Muyi (Huzhou) Technology Development Co.,Ltd.

Assignor: SHANGHAI MOOE-ROBOT TECHNOLOGY Co.,Ltd.

Contract record no.: X2024980007103

Date of cancellation: 20240726

EC01 Cancellation of recordation of patent licensing contract
TR01 Transfer of patent right

Effective date of registration: 20241016

Address after: Building 3-3, Yangtze River Delta Artificial Intelligence Industrial Park, South of Xiangyang West Road, Nanxun Economic Development Zone, Huzhou City, Zhejiang Province, China 313030

Patentee after: Muyi (Huzhou) Technology Development Co.,Ltd.

Country or region after: China

Address before: Room a685-24, building 2, No. 351, GuoShouJing Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 201203

Patentee before: SHANGHAI MOOE-ROBOT TECHNOLOGY Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right