CN115218724B - 一种用于弹药殉爆防护的柔性内衬结构 - Google Patents
一种用于弹药殉爆防护的柔性内衬结构 Download PDFInfo
- Publication number
- CN115218724B CN115218724B CN202210991922.8A CN202210991922A CN115218724B CN 115218724 B CN115218724 B CN 115218724B CN 202210991922 A CN202210991922 A CN 202210991922A CN 115218724 B CN115218724 B CN 115218724B
- Authority
- CN
- China
- Prior art keywords
- lining structure
- ammunition
- lining
- flexible
- fragment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004880 explosion Methods 0.000 title claims abstract description 38
- 230000002889 sympathetic effect Effects 0.000 title claims abstract description 22
- 239000012634 fragment Substances 0.000 claims abstract description 26
- 238000005474 detonation Methods 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 229920000271 Kevlar® Polymers 0.000 claims description 14
- 239000004761 kevlar Substances 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 239000002360 explosive Substances 0.000 claims description 12
- 230000035939 shock Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 7
- 239000010410 layer Substances 0.000 claims description 6
- 239000011257 shell material Substances 0.000 claims description 6
- 238000004200 deflagration Methods 0.000 claims description 5
- 230000000977 initiatory effect Effects 0.000 claims description 4
- LSLGCKBDVWXMSH-UHFFFAOYSA-N 1-[1-(2,2-dinitropropoxy)ethoxy]-2,2-dinitropropane;1-(2,2-dinitropropoxymethoxy)-2,2-dinitropropane Chemical compound [O-][N+](=O)C([N+]([O-])=O)(C)COCOCC(C)([N+]([O-])=O)[N+]([O-])=O.[O-][N+](=O)C(C)([N+]([O-])=O)COC(C)OCC(C)([N+]([O-])=O)[N+]([O-])=O LSLGCKBDVWXMSH-UHFFFAOYSA-N 0.000 claims description 3
- 239000011324 bead Substances 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 238000007667 floating Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 230000009257 reactivity Effects 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 abstract description 20
- 239000003814 drug Substances 0.000 abstract description 2
- 230000001066 destructive effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 10
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 208000011380 COVID-19–associated multisystem inflammatory syndrome in children Diseases 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002319 photoionisation mass spectrometry Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002181 anti-sympathetic effect Effects 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B3/00—Blasting cartridges, i.e. case and explosive
- F42B3/28—Cartridge cases characterised by the material used, e.g. coatings
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Lining And Supports For Tunnels (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种用于弹药殉爆防护的柔性内衬结构,属于不敏感弹药技术领域。使用该发明能够在保证原弹药毁伤威力性能不降低的前提下,显著提高弹药殉爆防护性能,满足殉爆安全性考核要求。本发明提出的柔性内衬结构排列顺序为:战斗部壳体‑KevlarKM‑2抗破片纤维衬层‑GXTI‑1抗冲击涂层‑战斗部装药。本发明提出的柔性内衬结构在破片群和爆轰产物耦合作用时,可有效降低被发药入射冲量和反应烈度,提高弹药受意外刺激时的整体安全性。
Description
技术领域
本发明涉及一种用于弹药殉爆防护的柔性内衬结构,属于不敏感弹药技术领域。
背景技术
武器弹药在存储、运输或服役过程中会遭受各类意外刺激,从而诱发爆炸。爆炸产生的高压爆轰产物、高温火焰、高速破片等刺激元易引发邻近弹药殉爆,导致灾难性后果。现有弹药殉爆防护技术通过膨胀漆涂层、力热防护隔层、复合壳体等结构减小外部刺激元能量输入,降低装药反应烈度,提升弹药殉爆安全性。
实际殉爆过程中,被发弹药易受到主发弹药爆炸刺激元的耦合作用,从而诱发燃烧甚至剧烈爆轰。国外Daniels等通过数值和实验研究发现,在弹药中添加冲击缓冲衬层(Partical Impact Mitigation Sleeve,PIMS)可显著降低破片撞击过程中入射压力和装药反应烈度,研究表明相比无内衬结构,添加4mm的PIMS结构后,入射压力衰减50%,装药反应烈度由爆轰降低为爆燃,弹药破片防护性能显著提高。国内刘嘉韵等通过实验研究发现,添加复合结构衬层可显著降低主发药爆轰产物压力。结果表明添加钢-铝-聚氨酯泡沫衬层结构后,见证板破片穿孔数和结构形变显著降低,装药反应烈度由爆轰降低为爆燃。上述研究表明,被发弹药受殉爆刺激元作用时,添加内衬结构可有效降低装药反应烈度,提高弹药整体安全性。
目前,国外已经在XM-1083高爆弹,TWO-2B导弹,120mm杀爆榴弹等武器中成功应用复合结构的冲击缓冲内衬。而国内现有战斗部内衬结构仍采用石蜡,沥青,硅橡胶,铝等材料,存在防护性能单一,附加重量和空间占比大,耦合防护机制不清楚,工程化应用可行性不足等问题。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提出一种用于弹药殉爆防护的柔性内衬结构,能够解决现有殉爆防护内衬结构防护性能单一,附加重量大,工程化应用可行性不足等问题,具体为一种考虑爆轰产物和破片群耦合响应的柔性防护内衬结构,可为不敏感弹药和殉爆防护技术研究提供参考。
本发明的技术解决方案是:
一种用于弹药殉爆防护的柔性内衬结构,该柔性内衬结构包括GXTI-1抗冲击涂层和Kevlar KM-2抗破片纤维衬层,即在战斗部装药与Kevlar衬层之间为GXTI-1涂层,GXTI-1涂层与金属壳体之间为Kevlar衬层;
所述的Kevlar KM-2抗破片纤维衬层的厚度为0.9-1.3mm,优选1mm;
所述的GXTI-1抗冲击涂层的厚度为1.8-2.2mm,优选2mm。
所述的壳体材料为30CrMnSiNi2A,密度为7.8g/cm3,厚度为2mm;
所述的战斗部装药为PBX9501(95% HMX,3% BDNPA/F,3%estane),密度为1.83g/cm3,装药直径40mm,长径比为2;
所述的Kevlar衬层采用美国杜邦公司KM-2系列高性能抗弹纤维,织物面密度0.018g/cm3,纱线支数13支/cm,单层厚度0.23mm。Kevlar衬层密度为1.45g/cm3,剪切模量为25GPa,屈服强度为2.88GPa,熔化温度为700K,比热为1.42J/(g·K);
所述的GXTI-1抗冲击隔热涂层微观表征为内含大量漂珠的多孔疏松结构,初始孔隙率N=0.205,基体密度为1g/cm3,拉伸强度为5.1MPa,撕裂强度为22MPa,比热为1.63J/(g·K),导热系数为0.08W/(m·K)。
所述的柔性内衬结构防护性能检测包括:破片防护性能检测、冲击波防护性能检测和殉爆防护性能检测,具体为:
破片防护性能检测:参考北约STANAG 4496破片撞击安全性实验,使用单破片对待测试的战斗部结构进行侵彻,检测获得内衬-装药界面冲量历史;实验中单破片初始速度为2250m/s。
冲击波防护性能检测:使用爆炸冲击波对待测试的战斗部结构进行入射加载,检测获得内衬-装药界面冲量历史;入射爆炸冲击波压力峰值约7GPa,脉宽为7μs;
为综合表征柔性内衬结构在破片和冲击波加载下的防护性能,定义单变量冲量防护因子fIi和耦合防护性能因子fI,表示为:
式中,Pni代表无柔性内衬结构时内衬-装药界面压力,Pi代表添加柔性内衬结构后界面压力,下标i=1代表破片防护因子,i=2代表冲击波防护因子;
殉爆防护性能检测:将待测试的战斗部结构放置在主发弹药的设定距离范围内,检测被发装药在殉爆刺激下的入射冲量和反应烈度;对比无内衬结构战斗部,添加柔性内衬结构后,被发装药入射冲量和反应度峰值显著降低,反应烈度由爆轰降低为爆燃,达到了STANAG 4396殉爆安全性考核标准。
有益效果
(1)本申请基于弹药近场威力特性和结构耦合响应机制,率先提出了一种满足弹药殉爆防护工程化应用需求的复合柔性内衬结构,克服了现有内衬结构防护性能单一,工程化应用可行性不足问题。
(2)本申请创新设计的柔性内衬结构总厚度3mm,重量仅为等体积铝质内衬的34%,克服了现有防护内衬结构额外重量多,空间占比大的问题。
(3)防护性能测试结果表明,本发明设计的新型柔性内衬结构可有效降低殉爆刺激下被发药入射冲量和反应烈度,能够满足弹药殉爆安全性考核要求,可显著提高弹药受意外刺激时的整体安全性。
附图说明
图1为典型杀爆战斗部简化模型;
图2为抗殉爆柔性内衬结构示意图
图3为内衬结构破片防护测试模型;
图4为内衬结构冲击波防护测试模型;
图5为内衬结构殉爆防护测试模型。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
实施例
结构设计:
(1)根据实际弹药结构,建立杀爆战斗部简化模型,如图1所示。本例中战斗部主发装药3为PBX9501(95% HMX,3% BDNPA/F,3%estane),装药直径40mm,长径比为2,壳体6材料为30CrMnSiNi2A,厚度为2mm,起爆药2为压装聚黑-14炸药,起爆方式为电雷管1起爆。
(2)本发明设计的新型抗殉爆柔性内衬结构,如图2所示。本例中柔性内衬结构总厚度3mm,具体结构为:1mm Kevlar抗破片纤维衬层5+2mm GXTI-1抗冲击涂层4;
(3)新型柔性内衬结构选用材料为:Kevlar内衬5采用美国杜邦公司KM-2系列高性能抗弹纤维,织物面密度0.018g/cm3,纱线支数13支/cm,单层厚度0.23mm,Kevlar内衬密度为1.45g/cm3,剪切模量为25GPa,屈服强度为2.88GPa,熔化温度为700K,比热为1.42J/(g·K);GXTI-1抗冲击隔热涂层4微观表征为内含漂珠的多孔疏松结构,初始孔隙率N=0.205,基体密度为1g/cm3,拉伸强度5.1MPa,撕裂强度22MPa,比热为1.63J/(g·K),导热系数为0.08W/(m·K);
防护性能检测:
(4)参考北约STANAG 4496破片撞击安全性实验,建立内衬结构破片防护测试模型,如图3所示。本例中单破片7尺寸为Φ14.30×15.56(mm),初始速度为2250m/s,柔性内衬结构参考图2。进一步开展数值模拟测试,获取内衬-装药界面冲量历史。
(5)建立内衬结构冲击波防护测试模型,如图4所示。本例中入射爆炸冲击波压力峰值7GPa,脉宽为7μs,柔性内衬结构参考图2。进一步开展数值模拟测试,获取内衬-装药界面冲量历史。
(6)为综合表征柔性内衬结构在破片和爆炸冲击波加载下的防护性能,定义单变量冲量防护因子fIi和耦合防护性能因子fI,表示为:
式中,Pni代表无内衬结构时内衬-装药界面压力,Pi代表添加内衬后界面压力。下标i=1代表破片防护因子,i=2代表冲击波防护因子。
根据(5),(6)中数值测试结果,分析得到柔性内衬结构破片防护因子fI1=34.2%,冲击波防护因子fI2=6%,耦合防护性能因子fI=20%。
(7)为进一步检测本例中柔性内衬结构殉爆防护性能,建立内衬结构殉爆防护测试模型,如图5所示。本例中殉爆间距为两倍弹径,底部见证板9材料为45#钢,被发装药8为PBX9501,其余结构参数和图2一致。数值测试结果表明,相比无内衬结构,添加柔性防护内衬结构后,冲量衰减可达32%,被发装药8反应度峰值减小为0.55,反应烈度由爆轰降低为爆燃,达到了STANAG 4396殉爆安全性考核标准。
Claims (1)
1.一种用于弹药殉爆防护的柔性内衬结构,其特征在于:
该柔性内衬结构包括GXTI-1抗冲击涂层(4)和Kevlar KM-2抗破片纤维衬层(5),内衬结构排列顺序为:战斗部壳体(6)、Kevlar KM-2抗破片纤维衬层、GXTI-1抗冲击涂层、战斗部装药(3);
所述的Kevlar KM-2抗破片纤维衬层的厚度为1mm;
所述的GXTI-1抗冲击涂层的厚度为2mm;
所述的壳体材料为30CrMnSiNi2A,密度为7.8g/cm3,厚度为2mm;
所述战斗部装药为PBX9501,战斗部装药PBX9501包括95%HMX,3%BDNPA/F,3%estane,密度为1.83g/cm3,装药直径40mm,长径比为2;起爆药(2)为压装聚黑-14炸药,起爆方式为电雷管(1)起爆;
所述的Kevlar KM-2抗破片纤维衬层采用美国杜邦公司KM-2系列高性能抗弹纤维,织物面密度0.018g/cm3,纱线支数13支/cm,单层厚度0.23mm;Kevlar衬层密度为1.45g/cm3,剪切模量25GPa,屈服强度为2.88GPa,熔化温度700K,比热为1.42J/(g·K);
所述的GXTI-1抗冲击涂层微观表征为内含大量漂珠的多孔疏松结构,初始孔隙率N=0.205,基体密度为1g/cm3,拉伸强度5.1MPa,撕裂强度22MPa,比热为1.63J/(g·K),导热系数为0.08W/(m·K);
所述的柔性内衬结构进行破片防护性能检测,结果表明相比无内衬结构,入射冲量衰减达到34.2%;
所述的柔性内衬结构进行冲击波防护性能检测,结果表明相比无内衬结构,入射冲量衰减为6%;
所述的柔性内衬结构进行殉爆防护性能检测,结果表明相比无内衬结构,入射冲量衰减达到32%,装药反应度减小为0.55,反应烈度由爆轰降低为爆燃,达到了殉爆安全性考核要求。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210991922.8A CN115218724B (zh) | 2022-08-17 | 2022-08-17 | 一种用于弹药殉爆防护的柔性内衬结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210991922.8A CN115218724B (zh) | 2022-08-17 | 2022-08-17 | 一种用于弹药殉爆防护的柔性内衬结构 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115218724A CN115218724A (zh) | 2022-10-21 |
CN115218724B true CN115218724B (zh) | 2024-05-28 |
Family
ID=83615243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210991922.8A Active CN115218724B (zh) | 2022-08-17 | 2022-08-17 | 一种用于弹药殉爆防护的柔性内衬结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115218724B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110823007A (zh) * | 2019-11-05 | 2020-02-21 | 南京理工大学 | 一种双重增益战斗部 |
CN111141185A (zh) * | 2020-01-21 | 2020-05-12 | 宜晨虹 | 一种多功能弹药包装箱 |
CN111879187A (zh) * | 2020-07-22 | 2020-11-03 | 北京理工大学 | 强约束不敏感侵彻爆破战斗部结构 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040118271A1 (en) * | 2002-07-01 | 2004-06-24 | Puckett David L. | Lightweight ceramic armor with improved blunt trauma protection |
-
2022
- 2022-08-17 CN CN202210991922.8A patent/CN115218724B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110823007A (zh) * | 2019-11-05 | 2020-02-21 | 南京理工大学 | 一种双重增益战斗部 |
CN111141185A (zh) * | 2020-01-21 | 2020-05-12 | 宜晨虹 | 一种多功能弹药包装箱 |
CN111879187A (zh) * | 2020-07-22 | 2020-11-03 | 北京理工大学 | 强约束不敏感侵彻爆破战斗部结构 |
Also Published As
Publication number | Publication date |
---|---|
CN115218724A (zh) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Deniz | Ballistic penetration of hardened steel plates | |
Gálvez et al. | Analysis of failure of add-on armour for vehicle protection against ballistic impact | |
AU2022203168A1 (en) | Reactive armor | |
US9091509B2 (en) | Armor assembly | |
CN115218724B (zh) | 一种用于弹药殉爆防护的柔性内衬结构 | |
CN104943838A (zh) | 前置陶瓷式抗高速射弹吸收液舱结构 | |
CN107944145B (zh) | 一种用于破片撞击试验用爆轰驱动式发射装置的设计方法 | |
CN116597920A (zh) | 含能复合防护结构的设计方法及防护结构 | |
Wang et al. | Initiation behavior of covered explosive subjected to reactive fragment | |
US8074552B1 (en) | Flyer plate armor systems and methods | |
Chen et al. | Shock-induced detonation of high explosives by high velocity impact | |
CN112703362B (zh) | 竖直爆炸反应装甲及其构造和操作方法 | |
Victor | Insensitive munitions technology for tactical rocket motors | |
Hussain et al. | Experimental and simulation optimization analysis of the Whipple shields against shaped charge | |
CA3005020A1 (en) | Reactive armor | |
Rasheed et al. | Analysis of EFP and single sandwich ERA interaction | |
Tang et al. | Penetration and jet flame effects induced by the interaction between a new energetic penetrator and a simulated shielding charge | |
Yiqing et al. | Impact testing of shaped charge jet on fuze | |
Chairi et al. | Preliminary study of lightweight fibre-ceramic composite structures for the ballistic protection on military vessels | |
Fan et al. | Anti-strike capability of steel-fiber reactive powder concrete | |
RU2651476C2 (ru) | Динамическая броня для человека и боевого робота | |
RU95094U1 (ru) | Плита для защиты брони машин и фортификационных сооружений | |
Zou et al. | Research on structural design and anti-penetration performance of ceramic composite armor | |
Ślęzak | Employment of the new advanced structural materials in the military vehicles and heavy equipment | |
ZHENG et al. | Combined Damage Behavior of Penetration and Blast of Reactive/Metal Tandem EFPs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |