CN115204758A - 一种编队飞行总体燃油消耗收益评估方法 - Google Patents

一种编队飞行总体燃油消耗收益评估方法 Download PDF

Info

Publication number
CN115204758A
CN115204758A CN202211125434.5A CN202211125434A CN115204758A CN 115204758 A CN115204758 A CN 115204758A CN 202211125434 A CN202211125434 A CN 202211125434A CN 115204758 A CN115204758 A CN 115204758A
Authority
CN
China
Prior art keywords
lift coefficient
flight
formation
aircraft
fuel consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211125434.5A
Other languages
English (en)
Inventor
陆连山
陶洋
吴军强
路波
熊能
刘大伟
夏洪亚
王晓冰
刘光远
杨茵
马上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Original Assignee
High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center filed Critical High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Priority to CN202211125434.5A priority Critical patent/CN115204758A/zh
Publication of CN115204758A publication Critical patent/CN115204758A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明属于飞机编队飞行技术领域,公开了一种编队飞行总体燃油消耗收益评估方法。本发明的编队飞行总体燃油消耗收益评估方法首先针对双机编队进行升力系数配平,然后基于配平升力系数计算诱导阻力极曲线和总阻力极曲线,之后结合编队中飞机的飞行参数将总体飞行任务分解为子任务,依据牛顿运动定律评估子任务效能,最后根据Breguet方程,评估总任务燃油消耗收益。本发明的编队飞行总体燃油消耗收益评估方法有机连接了编队飞行诱导阻力计算和全局燃油消耗收益评估,且保真度高、计算资源消耗少,能为编队飞行总体效能评估提供直接依据。

Description

一种编队飞行总体燃油消耗收益评估方法
技术领域
本发明属于飞机编队飞行技术领域,具体涉及一种编队飞行总体燃油消耗收益评估方法。
背景技术
燃油价格、成本和环境可持续性仍然是现代航空产业面临的重大问题,因而需要更加节能的飞机。减少燃料燃烧和排放研究是航空工业和学术界的中心课题之一。在所有的相关技术和概念设计中,编队飞行是最有前途和最适用的解决方案之一。
受到鸟类编队飞行可以节省能量这一想法的启发,在过去的几十年里,业界对飞机编队飞行进行了广泛的研究。其目的是利用前机尾部的涡流来提高后机的空气动力学效率,从而进一步减少燃料消耗和排放、降低经济成本,或者延长相同有效载荷下飞机的续航里程。为了了解和量化编队飞行的潜在好处,进行了有关数值模拟、风洞试验和飞行试验的研究工作。从最简单的马蹄涡方法到高保真的数值方法都表明,根据不同的飞机类型、编队构型等,编队飞行的诱导阻力减阻率可达40%~80%。德国和美国也进行了一些示范性的风洞和飞行试验。根据飞行试验结果,双机编队飞行可以减少18%的燃料消耗、获取高达20%的总减阻率。
需要指出的是,相关研究大多集中在编队飞行的一个或两个孤立方面,如编队中两架或两架以上飞机的诱导阻力减阻计算,搜索和维持最佳效益点的制导和控制方法,航线优化,系统级编队飞行效益研究等。然而,对编队飞行总体效能评估的研究还很少,尤其是,如何以较高的保真度和较小的计算代价,连接编队飞行诱导阻力计算和全局级编队飞行燃油消耗收益评估,这对于将编队飞行引入现实应用,特别是民用航空运输是极其重要的。
当前,亟需发展一种编队飞行总体燃油消耗收益评估方法。
发明内容
本发明所要解决的技术问题是提供一种编队飞行总体燃油消耗收益评估方法。
本发明的编队飞行总体燃油消耗收益评估方法,包括以下步骤:
S10.由前机的期望升力系数
Figure 552385DEST_PATH_IMAGE001
,计算前机的期望飞行迎角
Figure 375984DEST_PATH_IMAGE002
;其中,1表示期望,leading表示前机,C L 表示升力系数,α表示迎角;
S20.由前机的期望升力系数
Figure 233082DEST_PATH_IMAGE001
,依据公式
Figure 583161DEST_PATH_IMAGE003
,计算后机的期望升力系数
Figure 234722DEST_PATH_IMAGE004
;其中,
Figure 811197DEST_PATH_IMAGE005
表示飞机的翼载,Trailing表示后机;
S30.由前机的期望升力系数
Figure 206406DEST_PATH_IMAGE001
,利用现有的飞机气动分析程序计算前机尾涡上洗流场;
S40.在后机的初始飞行迎角
Figure 161724DEST_PATH_IMAGE006
条件下,利用飞机气动分析程序计算前机尾涡上洗流场中后机的实际升力系数
Figure 249765DEST_PATH_IMAGE007
;其中,0表示初始,2表示实际;
S50.对比计算得到的后机的实际升力系数
Figure 516799DEST_PATH_IMAGE007
与后机的期望升力系数
Figure 246857DEST_PATH_IMAGE004
,判断是否满足
Figure 650157DEST_PATH_IMAGE008
;其中,
Figure 561962DEST_PATH_IMAGE009
为预设的极小值;
若不满足
Figure 316292DEST_PATH_IMAGE008
,则调整后机的初始飞行迎角
Figure 584462DEST_PATH_IMAGE006
,重新计算后机的实际升力系数
Figure 107847DEST_PATH_IMAGE007
,直至满足
Figure 944216DEST_PATH_IMAGE008
,进而确定后机的期望飞行迎角
Figure 920262DEST_PATH_IMAGE010
,完成编队飞行升力系数配平;
S60.在编队飞行升力系数配平的基础上,依据公式
Figure 460965DEST_PATH_IMAGE011
计算诱导阻力系数极曲线;其中,C Di表示诱导阻力系数,
Figure 635595DEST_PATH_IMAGE012
表示飞机的展弦比;C L 升力系数,分别取值后机的期望升力系数
Figure 970761DEST_PATH_IMAGE004
和后机的实际升力系数
Figure 355475DEST_PATH_IMAGE007
S70.在编队飞行升力系数配平的基础上,由前机的期望升力系数
Figure 434289DEST_PATH_IMAGE001
、后机的实际升力系数
Figure 463425DEST_PATH_IMAGE007
、马赫数M、雷诺数Re确定总阻力极曲线,总阻力为
Figure 969493DEST_PATH_IMAGE013
S80.将飞行任务分解为若干段子任务,结合编队中前机和后机的飞行参数,将前机和后机都看做质点,依据牛顿运动定律评估子任务效能;
S90.基于总阻力极曲线、每段子任务中飞机总重量以及飞机热力发动机模型,依据Breguet方程,评估总体飞行任务的燃油消耗收益。
进一步地,所述的步骤S80中的飞行参数包括升阻比
Figure 592235DEST_PATH_IMAGE014
、真实空速
Figure 5899DEST_PATH_IMAGE015
、飞行高度
Figure 358383DEST_PATH_IMAGE016
、当前飞机重量
Figure 956723DEST_PATH_IMAGE017
、发动机推力
Figure 394658DEST_PATH_IMAGE018
;所述的牛顿运动定律公式为:
Figure 346433DEST_PATH_IMAGE019
,评估过程中对牛顿运动定律公式进行迭代求解;其中,g为重力加速度,L为升力,D为阻力,t为时间。
进一步地,所述的步骤S90中的Breguet方程表示为
Figure 819003DEST_PATH_IMAGE020
,式中
Figure 73398DEST_PATH_IMAGE021
为航程、
Figure 998629DEST_PATH_IMAGE022
为发动机耗油率、
Figure 222937DEST_PATH_IMAGE023
为巡航速度、
Figure 81171DEST_PATH_IMAGE024
为飞机初始重量、
Figure 365522DEST_PATH_IMAGE025
为消耗燃油重量;所述的燃油消耗收益表示为百分比形式的燃油节省率。
本发明的编队飞行总体燃油消耗收益评估方法包含升力系数配平、极曲线计算、子任务效能评估、总任务燃油消耗收益评估四个部分。
本发明的编队飞行总体燃油消耗收益评估方法首先针对双机编队进行升力系数配平,然后基于配平升力系数计算诱导阻力极曲线和总阻力极曲线,之后结合编队中飞机的飞行参数将总体飞行任务分解为子任务,依据牛顿运动定律评估子任务效能,最后根据Breguet方程,评估总任务燃油消耗收益。
本发明的编队飞行总体燃油消耗收益评估方法有机连接了编队飞行诱导阻力计算和全局燃油消耗收益评估,且保真度高、计算资源消耗少,能为编队飞行总体效能评估提供直接依据。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的符号表示相同的物理量。在附图中:
图1a为本发明的编队飞行总体燃油消耗收益评估方法流程图(整体图);
图1b为本发明的编队飞行总体燃油消耗收益评估方法流程图(第Ⅰ部分放大图);
图1c为本发明的编队飞行总体燃油消耗收益评估方法流程图(第Ⅱ部分放大图);
图2为实施例1获得的诱导阻力极曲线;
图3为实施例1获得的总阻力极曲线;
图4为实施例1获得的编队飞行燃油消耗收益。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。
实施例1
如图1a、图1b、图1c所示,本实施例的一种编队飞行总体燃油消耗收益评估方法,由前机的期望升力系数
Figure 433841DEST_PATH_IMAGE001
,分别计算前机的期望飞行迎角
Figure 196261DEST_PATH_IMAGE002
、后机的期望升力系数
Figure 377843DEST_PATH_IMAGE004
和前机尾涡上洗流场。在后机的初始飞行迎角
Figure 364254DEST_PATH_IMAGE006
条件下,利用飞机气动分析程序计算前机尾涡上洗流场中后机的实际升力系数
Figure 264077DEST_PATH_IMAGE007
,完成编队飞行升力系数配平。随后,在配平升力系数条件下,计算如图2所示的诱导阻力极曲线和如图3所示的总阻力极曲线。再将编队飞行任务分解为子任务,结合编队中飞机的飞行参数,评估子任务效能。进而,基于总阻力极曲线、每段子任务中飞机总重量以及飞机热力发动机模型,依据Breguet方程,评估总体飞行任务燃油消耗收益,获得如图4所示的编队飞行燃油消耗收益。
本实施例中,如果计算得到的后机升力系数
Figure 236712DEST_PATH_IMAGE007
不满足
Figure 272801DEST_PATH_IMAGE008
,则调整后机的初始飞行迎角
Figure 898955DEST_PATH_IMAGE006
,重新计算后机的实际升力系数
Figure 817232DEST_PATH_IMAGE007
,并判断新的后机的实际升力系数是否满足
Figure 921454DEST_PATH_IMAGE008
。若计算得到的后机的实际升力系数
Figure 736351DEST_PATH_IMAGE026
满足
Figure 533406DEST_PATH_IMAGE008
,则确定后机的期望飞行迎角
Figure 142242DEST_PATH_IMAGE010
,完成编队飞行升力系数配平。
本实施例中,在编队飞行升力系数配平的条件下,计算诱导阻力极曲线和总阻力极曲线。
本实施例中,将总体飞行任务分解为多段子任务,依据牛顿运动定律评估子任务效能。
本实施例中,基于总阻力极曲线、每段子任务中飞机总重量以及飞机热力发动机模型,依据Breguet方程,评估总体飞行任务燃油消耗收益。

Claims (3)

1.一种编队飞行总体燃油消耗收益评估方法,其特征在于,包括以下步骤:
S10.由前机的期望升力系数
Figure DEST_PATH_IMAGE001
,计算前机的期望飞行迎角
Figure 79355DEST_PATH_IMAGE002
;其中,1表示期望,leading表示前机,C L 表示升力系数,α表示迎角;
S20.由前机的期望升力系数
Figure 978041DEST_PATH_IMAGE001
,依据公式
Figure DEST_PATH_IMAGE003
,计算后机的期望升力系数
Figure 219667DEST_PATH_IMAGE004
;其中,
Figure DEST_PATH_IMAGE005
表示飞机的翼载,Trailing表示后机;
S30.由前机的期望升力系数
Figure 88265DEST_PATH_IMAGE001
,利用现有的飞机气动分析程序计算前机尾涡上洗流场;
S40.在后机的初始飞行迎角
Figure 200578DEST_PATH_IMAGE006
条件下,利用飞机气动分析程序计算前机尾涡上洗流场中后机的实际升力系数
Figure DEST_PATH_IMAGE007
;其中,0表示初始,2表示实际;
S50.对比计算得到的后机的实际升力系数
Figure 129220DEST_PATH_IMAGE007
与后机的期望升力系数
Figure 858141DEST_PATH_IMAGE004
,判断是否满足
Figure 936956DEST_PATH_IMAGE008
;其中,
Figure DEST_PATH_IMAGE009
为预设的极小值;
若不满足
Figure 903775DEST_PATH_IMAGE008
,则调整后机的初始飞行迎角
Figure 268897DEST_PATH_IMAGE006
,重新计算后机的实际升力系数
Figure 219535DEST_PATH_IMAGE007
,直至满足
Figure 570882DEST_PATH_IMAGE008
,进而确定后机的期望飞行迎角
Figure 923366DEST_PATH_IMAGE010
,完成编队飞行升力系数配平;
S60.在编队飞行升力系数配平的基础上,依据公式
Figure DEST_PATH_IMAGE011
计算诱导阻力系数极曲线;其中,C Di表示诱导阻力系数,
Figure 459390DEST_PATH_IMAGE012
表示飞机的展弦比;C L 升力系数,分别取值后机的期望升力系数
Figure 897324DEST_PATH_IMAGE004
和后机的实际升力系数
Figure 786783DEST_PATH_IMAGE007
S70.在编队飞行升力系数配平的基础上,由前机的期望升力系数
Figure 259353DEST_PATH_IMAGE001
、后机的实际升力系数
Figure 372802DEST_PATH_IMAGE007
、马赫数M、雷诺数Re确定总阻力极曲线,总阻力为
Figure DEST_PATH_IMAGE013
S80.将飞行任务分解为若干段子任务,结合编队中前机和后机的飞行参数,将前机和后机都看做质点,依据牛顿运动定律评估子任务效能;
S90.基于总阻力极曲线、每段子任务中飞机总重量以及飞机热力发动机模型,依据Breguet方程,评估总体飞行任务的燃油消耗收益。
2.根据权利要求1所述的一种编队飞行总体燃油消耗收益评估方法,其特征在于,所述的步骤S80中的飞行参数包括升阻比
Figure 891508DEST_PATH_IMAGE014
、真实空速
Figure DEST_PATH_IMAGE015
、飞行高度
Figure 584658DEST_PATH_IMAGE016
、当前飞机重量
Figure DEST_PATH_IMAGE017
、发动机推力
Figure 242560DEST_PATH_IMAGE018
;所述的牛顿运动定律公式为:
Figure DEST_PATH_IMAGE019
,评估过程中对牛顿运动定律公式进行迭代求解;其中,g为重力加速度,L为升力,D为阻力,t为时间。
3.根据权利要求1所述的一种编队飞行总体燃油消耗收益评估方法,其特征在于,所述的步骤S90中的Breguet方程表示为
Figure 995752DEST_PATH_IMAGE020
,式中
Figure DEST_PATH_IMAGE021
为航程、
Figure 1754DEST_PATH_IMAGE022
为发动机耗油率、
Figure DEST_PATH_IMAGE023
为巡航速度、
Figure 498595DEST_PATH_IMAGE024
为飞机初始重量、
Figure DEST_PATH_IMAGE025
为消耗燃油重量;所述的燃油消耗收益表示为百分比形式的燃油节省率。
CN202211125434.5A 2022-09-16 2022-09-16 一种编队飞行总体燃油消耗收益评估方法 Pending CN115204758A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211125434.5A CN115204758A (zh) 2022-09-16 2022-09-16 一种编队飞行总体燃油消耗收益评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211125434.5A CN115204758A (zh) 2022-09-16 2022-09-16 一种编队飞行总体燃油消耗收益评估方法

Publications (1)

Publication Number Publication Date
CN115204758A true CN115204758A (zh) 2022-10-18

Family

ID=83571874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211125434.5A Pending CN115204758A (zh) 2022-09-16 2022-09-16 一种编队飞行总体燃油消耗收益评估方法

Country Status (1)

Country Link
CN (1) CN115204758A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107491608A (zh) * 2017-08-18 2017-12-19 中国空气动力研究与发展中心高速空气动力研究所 一种飞机编队飞行的队形参数优化方法及系统
CN110046735A (zh) * 2018-12-10 2019-07-23 南京航空航天大学 基于飞行数据分析的飞机离场燃油消耗评估方法
CN113636062A (zh) * 2021-08-19 2021-11-12 徐筱拿 一种模块化协同作业无人机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107491608A (zh) * 2017-08-18 2017-12-19 中国空气动力研究与发展中心高速空气动力研究所 一种飞机编队飞行的队形参数优化方法及系统
CN110046735A (zh) * 2018-12-10 2019-07-23 南京航空航天大学 基于飞行数据分析的飞机离场燃油消耗评估方法
CN113636062A (zh) * 2021-08-19 2021-11-12 徐筱拿 一种模块化协同作业无人机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAOLONG LIU等: "Estimation of Vehicle-Level Fuel Burn Benefits of Aircraft Formation Flight", 《JOURNAL OFAIRCRAFT》 *

Similar Documents

Publication Publication Date Title
US11132476B2 (en) Automatic aircraft design optimization based on joint aerodynamic, structural, and energy performance
CN112060983B (zh) 一种新能源无人机混合电源架构评估方法
CN106529093A (zh) 一种针对大展弦比机翼的气动/结构/静气弹耦合优化方法
Tielin et al. Analysis of technical characteristics of fixed-wing VTOL UAV
EP3499391A1 (en) Automatic aircraft design optimization based on joint aero-dynamic, structural, and energy performance
Reist et al. Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission
WO2013047038A1 (ja) 航空機設計装置、航空機設計プログラム、及び航空機設計方法
Kenway et al. High-fidelity aerostructural otimization considering buffet onset
Ahuja et al. A method for modeling the aero-propulsive coupling characteristics of BLI aircraft in conceptual design
Droney et al. Subsonic ultra-green aircraft research: transonic truss-braced wing technical maturation
Silberhorn et al. Multidisciplinary Investigation of Partially Turboelectric, Boundary Layer Ingesting Aircraft Concepts CleanSky2 LPA WP1. 6.1 special session
CN116186904B (zh) 一种具有升力面在流体中运动的机械总体气动布局方法
CN115204758A (zh) 一种编队飞行总体燃油消耗收益评估方法
Hall CFD modeling of US army UAVs using NASA's OVERFLOW CFD code
Andrews et al. Parametric study of box-wing aerodynamics for minimum drag under stability and maneuverability constraints
CN114329976B (zh) 一种螺旋桨飞机巡航状态气动数据分析处理方法
CN113626935B (zh) 一种高巡航效率跨音速月形机翼设计方法
Nikkhoo et al. Effect of different aero-structural optimization in the commercial airplane
Jedamski et al. Distributed Electric Propulsion and Vehicle Integration with Ducted Fans
Semotiuk et al. Design and FEM Analysis of an Unmanned Aerial Vehicle Wing
Kunwar et al. Sizing and Optimization of an Urban Air Mobility Aircraft Using Parametric Aero-Propulsive Model
Coiro et al. Improving hang-glider maneuverability using multiple winglets: a numerical and experimental investigation
Liu et al. Assessment of potential benefit of formation flight at preliminary aircraft design level
Miao et al. The Aerodynamic Characteristics of a Diamond Joined‐Wing Morphing Aircraft
Makgantai et al. Design optimization of wingtip devices to reduce induced drag on fixed-wings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20221018