CN115201745A - A deep seabed fixed beacon and navigation device - Google Patents
A deep seabed fixed beacon and navigation device Download PDFInfo
- Publication number
- CN115201745A CN115201745A CN202210674251.2A CN202210674251A CN115201745A CN 115201745 A CN115201745 A CN 115201745A CN 202210674251 A CN202210674251 A CN 202210674251A CN 115201745 A CN115201745 A CN 115201745A
- Authority
- CN
- China
- Prior art keywords
- signal
- battery
- energy
- deep
- navigation device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 57
- 230000000694 effects Effects 0.000 claims abstract description 16
- 230000005855 radiation Effects 0.000 claims abstract description 10
- 238000007599 discharging Methods 0.000 claims abstract description 6
- 239000004065 semiconductor Substances 0.000 claims abstract description 5
- 230000002285 radioactive effect Effects 0.000 claims abstract 9
- 238000001514 detection method Methods 0.000 claims description 16
- 230000004913 activation Effects 0.000 claims description 14
- 239000006258 conductive agent Substances 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 239000013535 sea water Substances 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 239000007770 graphite material Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000013589 supplement Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003471 anti-radiation Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/72—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/72—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
- G01S1/74—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及深远海底传感器网络节点领域,特别涉及一种深远海底固定信标与导航装置,实现为水下无人载具提供精准的定位导航功能。The invention relates to the field of far-reaching seabed sensor network nodes, in particular to a far-reaching seabed fixed beacon and a navigation device, which can provide accurate positioning and navigation functions for underwater unmanned vehicles.
背景技术Background technique
无人水下载具是指可用于侦察、遥控猎雷和作战等任务,在水下自主航行的无人智能武器装备平台,利用无人水下载具可以进行探测网探潜、水下战场情报准备、水下战场预设、战场监视分析、战场感知传播、水下水声对抗等,其将在未来水下战中扮演重要角色。全球定位系统和北斗卫星导航系统等卫星定位系统可通过电磁波实现陆地和海面设备的精确定位。但是海水对电磁波具有强吸收作用,这些系统无法用于水下无人载具的定位。Unmanned underwater vehicles refer to unmanned intelligent weapons and equipment platforms that can be used for reconnaissance, remote mine hunting and combat, and autonomous navigation underwater. Using unmanned underwater vehicles can be used for network exploration and underwater battlefield intelligence preparation. , underwater battlefield presets, battlefield surveillance analysis, battlefield perception propagation, underwater underwater acoustic confrontation, etc., which will play an important role in future underwater warfare. Satellite positioning systems such as the Global Positioning System and the Beidou Satellite Navigation System can achieve precise positioning of land and sea equipment through electromagnetic waves. However, seawater has a strong absorption effect on electromagnetic waves, and these systems cannot be used for the positioning of underwater unmanned vehicles.
为了避免其因航行太远丢失位置而遗失海底,需要建设深远海信标与导航站。然而深海领域具有无人值守、维护不方便、环境苛刻等特点,因此,应用于这些领域的传感监测、通讯与导航、预警等设备对能源提出了长期免维护、小体积、集成化高等要求。太阳光照无法传播到达水下几百米,无法满足应用要求;海洋能、温差能等在水下几百米已非常微弱,难易获取,同样无法满足应用要求;化学燃料能需要定期维护更换,也无法满足应用要求,故太阳能、化学燃料能、海洋能、温差能等常规能源方式由于寿命短、需要维护、受环境影响、体积重量大等问题,均无法满足深海信标与导航设备的供电需求。In order to avoid losing its position on the seabed due to sailing too far, it is necessary to build a far-reaching sea beacon and navigation station. However, the deep-sea field has the characteristics of unattended, inconvenient maintenance and harsh environment. Therefore, the sensing monitoring, communication and navigation, early warning and other equipment used in these fields put forward long-term maintenance-free, small size, and high integration requirements for energy. . Sunlight cannot reach hundreds of meters underwater, which cannot meet the application requirements; ocean energy and temperature difference energy are very weak and difficult to obtain in hundreds of meters underwater, and also cannot meet the application requirements; chemical fuel energy needs regular maintenance and replacement, It also cannot meet the application requirements. Therefore, conventional energy methods such as solar energy, chemical fuel energy, ocean energy, and temperature difference energy cannot meet the power supply of deep-sea beacons and navigation equipment due to problems such as short life, maintenance, environmental impact, and large volume and weight. need.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于:克服现有技术的不足,提供一种深远海底固定信标与导航装置,以解决水下无人载具在海底执行任务时丢失位置信号而遗失在海底的问题。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a deep seabed fixed beacon and navigation device to solve the problem that the underwater unmanned vehicle loses its position signal and is lost on the seabed when it performs tasks on the seabed.
为了解决上述技术问题,本发明的技术方案是:In order to solve the above-mentioned technical problems, the technical scheme of the present invention is:
一种深远海底固定信标与导航装置,包括:放射性同位素电池、线缆、微能量智能管理电路、锂电池以及声电换能器;A far-reaching submarine fixed beacon and navigation device, comprising: radioisotope battery, cable, micro-energy intelligent management circuit, lithium battery and acoustic-electric transducer;
放射性同位素电池、微能量智能管理电路、锂电池以及信号发射器之间通过线缆连接,采用放射性同位素电池作为能量来源,为锂电池充电;The radioisotope battery, the micro-energy intelligent management circuit, the lithium battery and the signal transmitter are connected by cables, and the radioisotope battery is used as the energy source to charge the lithium battery;
微能量智能管理电路控制放射性同位素电池的能量收集、锂电池的充放电以及声电换能器的开关;声电换能器接收路过的无人水下载具发出的定位需求信息,通过声波反馈位置信息,为无人水下载具提供位置信息。The micro-energy intelligent management circuit controls the energy collection of the radioisotope battery, the charging and discharging of the lithium battery, and the switch of the acoustic-electric transducer; the acoustic-electric transducer receives the positioning demand information sent by the passing unmanned underwater vehicle, and feeds back the position through the sound wave. information to provide location information for unmanned underwater vehicles.
进一步的,还包括深海密封腔室,放射性同位素电池、线缆、微能量智能管理电路、锂电池以及声电换能器均设置在深海密封腔室内部且实现密封;声电换能器包括信号发射器以及信号接收器;信号发射器以及信号接收器从深海密封腔室侧壁上预留孔探出,用于接收和发射信号,信号发射器以及信号接收器均与深海密封腔室之间密封。Further, it also includes a deep-sea sealed chamber, and radioisotope batteries, cables, micro-energy intelligent management circuits, lithium batteries and acoustic-electric transducers are all arranged inside the deep-sea sealed chamber and sealed; the acoustic and electrical transducers include signal The transmitter and the signal receiver; the signal transmitter and the signal receiver are protruded from the reserved hole on the side wall of the deep-sea sealed chamber for receiving and transmitting signals, and the signal transmitter and the signal receiver are between the deep-sea sealed chamber seal.
进一步的,收到附近所需定位的水下无人载具发出的定位需求信号时,声电换能器才会工作,通过声波反馈位置信息。Further, the acousto-electric transducer will only work when receiving the positioning demand signal from the nearby underwater unmanned vehicle that needs to be positioned, and feedback the position information through sound waves.
进一步的,所述放射性同位素电池包括基于辐射伏特效应、辐光伏效应、半导体温差效应的同位素电池中的一种或几种;放射性同位素电池采取抗辐照屏蔽措施。Further, the radioisotope battery includes one or more of the isotope batteries based on radiation volt effect, radiation photovoltaic effect, and semiconductor temperature difference effect; the radioisotope battery adopts anti-radiation shielding measures.
进一步的,所述深海密封腔室为耐腐蚀金属或合金制备的密封腔体,保证腔体内部不受海水侵蚀。Further, the deep-sea sealed chamber is a sealed chamber made of corrosion-resistant metal or alloy to ensure that the interior of the chamber is not eroded by seawater.
进一步的,所述微能量智能管理电路包括微能量采集器、信号检测单元、最大功率点跟踪控制单元、充电管理单元、放电管理控制器及升压变换器;Further, the micro-energy intelligent management circuit includes a micro-energy collector, a signal detection unit, a maximum power point tracking control unit, a charging management unit, a discharge management controller and a boost converter;
微能量采集器用于收集放射性同位素电池输出的电能;信号检测单元对放射性同位素电池和锂电池的电流、电压和温度等信号进行实时监测,以判断系统工作模式;The micro-energy collector is used to collect the electrical energy output by the radioisotope battery; the signal detection unit monitors the current, voltage and temperature of the radioisotope battery and lithium battery in real time to judge the system working mode;
最大功率点跟踪控制单元根据信号检测单元的信号,对微能量采集器收集的电能进行调控,从而调节放射性同位素电池处于最大功率状态;充电管理单元根据信号检测单元的信号,使用所述调控后的电能对锂电池进行充电;放电管理控制器根据信号检测单元的信号控制系统工作于静默模式或者工作模式;升压变换器根据后端负载需求,将供电母线变换为声电换能器供电所需能量。The maximum power point tracking control unit regulates the electrical energy collected by the micro-energy harvester according to the signal of the signal detection unit, so as to adjust the radioisotope battery to be in the maximum power state; the charging management unit uses the regulated power according to the signal of the signal detection unit. The electric energy charges the lithium battery; the discharge management controller controls the system to work in the silent mode or the working mode according to the signal of the signal detection unit; energy.
进一步的,静默模式是指:深远海底固定信标与导航装置未收到定位需求信号时的状态,此时放射性同位素电池为锂电池充电,若锂电池的电量充满,放射性同位素电池产生的电能则通过放电管理控制器耗散。Further, the silent mode refers to the state when the deep-sea fixed beacon and the navigation device do not receive the positioning demand signal. At this time, the radioisotope battery is charging the lithium battery. If the lithium battery is fully charged, the radioisotope battery generates electricity. Dissipated through the discharge management controller.
工作模式是指:深远海底固定信标与导航装置收到定位需求信号后的状态,此时锂电池为声电换能器供电,声电换能器的信号发射器根据激活指令,将特殊信号以超声波形式发送出去。The working mode refers to the state after the deep seabed fixed beacon and navigation device receive the positioning demand signal. At this time, the lithium battery supplies power to the acoustic-electric transducer, and the signal transmitter of the acoustic-electric transducer transmits the special signal according to the activation command. sent out in the form of ultrasound.
进一步的,所述锂电池通过负极活性锂调控,将外部锂源预先储存于负极令负极锂过量,实现负极补锂;采用导电剂提升正极的导电性,提升电池的倍率性能;负极为石墨材料,不添加额外导电剂。Further, the lithium battery is regulated by the active lithium of the negative electrode, and the external lithium source is pre-stored in the negative electrode to make the negative electrode lithium excess, so that the negative electrode is supplemented with lithium; a conductive agent is used to improve the conductivity of the positive electrode and improve the rate performance of the battery; the negative electrode is a graphite material. , without adding additional conductive agent.
进一步的,所述声电换能器采用溢流圆管换能器,实现半空间发射;通过镶拼方式制作溢流圆管换能器的圆环,降低功放输出电压;声电换能器信号传播距离大于1000m。Further, the acousto-electric transducer adopts an overflow circular tube transducer to realize half-space emission; the ring of the overflow circular tube transducer is made by inlaying the method to reduce the output voltage of the power amplifier; the acoustic-electric transducer The signal propagation distance is greater than 1000m.
进一步的,当水下无人载具潜行到某个深远海底固定信标与导航装置附近时,发出定位需求信号,该定位需求信号为超声波信号;Further, when the underwater unmanned vehicle sneaks to the vicinity of a certain deep seabed fixed beacon and navigation device, a positioning demand signal is sent, and the positioning demand signal is an ultrasonic signal;
声电换能器的信号接收器包括前置放大器、锁相放大器以及功率放大器,信号接收器将接收到的超声波信号转化为电信号,并编译成信号发射器的激活指令,同时触发充电管理单元控制激活锂电池为声电换能器短时大功率供电;声电换能器的信号发射器根据激活指令,将包括深远海底固定信标与导航装置的位置在内的信息通过电信号转为声信号,以超声波形式发送出去;The signal receiver of the acoustic-electric transducer includes a preamplifier, a lock-in amplifier and a power amplifier. The signal receiver converts the received ultrasonic signal into an electrical signal, and compiles it into an activation command for the signal transmitter, and triggers the charging management unit at the same time. Control and activate the lithium battery to supply short-term high-power power for the acoustic-electric transducer; the signal transmitter of the acoustic-electric transducer converts the information, including the position of the deep seabed fixed beacon and the navigation device, into electrical signals according to the activation command. The acoustic signal is sent out in the form of ultrasonic waves;
外界无人水下载具接收到相关信息,将信号放大处理输送至测量电路中,进行记录或显示,通过解析信号即可得到其自身水下所处位置。The external unmanned underwater vehicle receives the relevant information, amplifies the signal and transmits it to the measurement circuit for recording or display, and can get its own underwater position by analyzing the signal.
本发明与现有技术相比带来的有益效果为:The beneficial effects brought by the present invention compared with the prior art are:
(1)本发明提供的放射性同位素电池,通过辐射伏特效应/辐光伏效应或半导体温差热电转换效应等将放射性同位素的辐射能转换为电能;(1) The radioisotope cell provided by the present invention converts the radiant energy of the radioisotope into electrical energy through the radiation volt effect/radiation photovoltaic effect or the semiconductor thermoelectric conversion effect, etc.;
(2)本发明通过微能量智能管理电路控制放射性同位素电池的能量收集、长寿命锂电池的充放电以及声电换能器的开关,一方面,有效收集并利用放射性同位素电池微弱的电能为锂电池充电,另一方面,解决了声电换能器工作所需瞬时功率大的问题。(2) The present invention controls the energy collection of the radioisotope battery, the charging and discharging of the long-life lithium battery, and the switch of the acoustic-electric transducer through the micro-energy intelligent management circuit. Battery charging, on the other hand, solves the problem of large instantaneous power required for the operation of the acoustic-electric transducer.
(3)本发明提供的声电换能器包含信号接收器和信号发射器,信号接收器将外界特定信号转化为电信号,既转化成信号发射器的激活指令,随后信号发射器向外界发射含位置信息的声信号,实现为长远距离航行的无人水下载具提供精准的定位导航功能,避免其因丢失位置而遗失海底。(3) The acoustic-electric transducer provided by the present invention includes a signal receiver and a signal transmitter. The signal receiver converts external specific signals into electrical signals, which are converted into activation instructions of the signal transmitter, and then the signal transmitter transmits to the outside world. Acoustic signals with location information can provide accurate positioning and navigation functions for unmanned underwater vehicles for long-distance navigation, avoiding the loss of the seabed due to loss of position.
附图说明Description of drawings
下面结合附图对发明作进一步说明:The invention is further described below in conjunction with the accompanying drawings:
图1为本发明装置结构图;Fig. 1 is the structure diagram of the device of the present invention;
图2为微能量智能管理电路示意图;Figure 2 is a schematic diagram of a micro-energy intelligent management circuit;
其中:1、放射性同位素电池;2、线缆;3、深海密封腔室;4、微能量智能管理电路;5、长寿命锂电池;6、声电换能器;7、信号发射器;8、信号接收器;9、无人水下载具。Among them: 1. Radioisotope battery; 2. Cable; 3. Deep-sea sealed chamber; 4. Micro-energy intelligent management circuit; 5. Long-life lithium battery; 6. Acoustic-electric transducer; 7. Signal transmitter; 8 , Signal receiver; 9. Unmanned underwater vehicle.
具体实施方式Detailed ways
以下结合附图和具体实施例对本发明提出的一种深远海底固定信标与导航装置进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。The deep seabed fixed beacon and navigation device proposed by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become apparent from the following description and claims.
放射性同位素电池具有寿命长、不受环境影响、免维护等特点,可以成为传感器监测设备理想供电电源。同位素电池有温差、直接充电、辐伏和辐光伏等几种转换机制,根据不同的转换机制,选取不同的放射性同位素、屏蔽措施和结构设计,其输出功率可达uW—W级,易于小型化、集成化,是上述领域传感监测、通讯与导航等设备的较为理想能源形式。采用放射性同位素电池和长寿命锂电池复合的能源系统,可提供一种集能量获取与电能转化、存储一体化的自主集成电源,很好的解决了深海信标与导航设备的能源供给问题,具有传统电源不可比拟的优势。Radioisotope batteries have the characteristics of long life, no environmental impact, and maintenance-free, and can be an ideal power supply for sensor monitoring equipment. The isotope battery has several conversion mechanisms such as temperature difference, direct charging, radiovoltaic and radiovoltaic, etc. According to different conversion mechanisms, different radioisotopes, shielding measures and structural design are selected, and the output power can reach uW-W level, which is easy to miniaturize , integration, is an ideal energy form for sensing monitoring, communication and navigation equipment in the above fields. Using a composite energy system of radioisotope batteries and long-life lithium batteries can provide an independent integrated power source that integrates energy acquisition, electric energy conversion and storage, and solves the problem of energy supply for deep-sea beacons and navigation equipment. The incomparable advantages of traditional power supply.
如图1所示,本发明提出一种深远海底固定信标与导航装置,包括:放射性同位素电池1、线缆2、微能量智能管理电路4、锂电池5以及声电换能器6;As shown in FIG. 1 , the present invention proposes a deep seabed fixed beacon and navigation device, including: a
放射性同位素电池1、微能量智能管理电路4、锂电池5以及信号发射器7之间通过线缆2连接,采用放射性同位素电池1作为能量来源,为锂电池5充电;The
微能量智能管理电路4控制放射性同位素电池1的能量收集、锂电池5的充放电以及声电换能器6的开关;声电换能器6接收路过的无人水下载具9发出的定位需求信息,通过声波反馈位置信息,为无人水下载具9提供位置信息。The micro-energy
进一步的,本发明装置还包括深海密封腔室3,放射性同位素电池1、线缆2、微能量智能管理电路4、锂电池5以及声电换能器6均设置在深海密封腔室3内部且实现密封;声电换能器6包括信号发射器7以及信号接收器8;信号发射器7以及信号接收器8从深海密封腔室3侧壁上预留孔探出,用于接收和发射信号,信号发射器7以及信号接收器8均与深海密封腔室3之间密封。Further, the device of the present invention also includes a deep-sea sealed
优选的,收到附近所需定位的水下无人载具9发出的定位需求信号时,声电换能器才会工作,通过声波反馈位置信息。这样可以降低系统功耗,增加系统工作时长,在实际中有着广泛应用的潜力。Preferably, the acousto-electric transducer will work only when a positioning demand signal from the nearby underwater unmanned vehicle 9 to be positioned is received, and the position information will be fed back through sound waves. This can reduce the power consumption of the system, increase the working time of the system, and has the potential for wide application in practice.
优选的,所述放射性同位素电池1包括基于辐射伏特效应、辐光伏效应、半导体温差效应的同位素电池中的一种或几种;放射性同位素电池1采取抗辐照屏蔽措施。Preferably, the
优选的,所述深海密封腔室3为耐腐蚀金属或合金制备的密封腔体,保证腔体内部不受海水侵蚀。Preferably, the deep-sea sealed
如图2所示,本发明微能量智能管理电路4包括微能量采集器、信号检测单元、最大功率点跟踪控制单元、充电管理单元、放电管理控制器及升压变换器;As shown in FIG. 2, the micro-energy
微能量采集器用于收集放射性同位素电池1输出的电能;信号检测单元对放射性同位素电池1和锂电池5的电流、电压和温度等信号进行实时监测,以判断系统工作模式;The micro-energy collector is used to collect the electric energy output by the
最大功率点跟踪控制单元(MPPT控制单元)根据信号检测单元的信号调节放射性同位素电池1处于最大功率状态;充电管理单元根据信号检测单元的信号控制锂电池5的充电过程,防止过充;放电管理控制器根据信号检测单元的信号控制系统工作于静默模式或者工作模式;升压变换器根据后端负载需求,将供电母线变换为声电换能器供电所需能量。The maximum power point tracking control unit (MPPT control unit) adjusts the
静默模式是指:深远海底固定信标与导航装置未收到定位需求信号时的状态,此时放射性同位素电池1为锂电池5的充电,若锂电池5的电量充满,放射性同位素电池1产生的电能则通过放电管理控制器耗散。The silent mode refers to the state when the deep-sea fixed beacon and the navigation device do not receive the positioning demand signal. At this time, the
工作模式是指:深远海底固定信标与导航装置收到定位需求信号后的状态,此时锂电池5为声电换能器6供电,声电换能器6的信号发射器7根据激活指令,将特殊信号以超声波形式发送出去。The working mode refers to the state in which the deep-sea fixed beacon and navigation device receive the positioning demand signal. At this time, the
优选的,长寿命锂电池寿命≥10年。锂电池5通过负极活性锂调控,将外部锂源预先储存于负极令负极锂过量,实现负极补锂;采用导电剂提升正极的导电性,提升电池的倍率性能;负极为石墨材料,不添加额外导电剂。Preferably, the long-life lithium battery has a lifespan of ≥10 years.
优选的,所述声电换能器6采用溢流圆管换能器,实现半空间发射;通过镶拼方式制作溢流圆管换能器的圆环,降低功放输出电压;声电换能器6信号传播距离大于1000m。Preferably, the acousto-
优选的,当水下无人载具9潜行到某个深远海底固定信标与导航装置附近时,发出定位需求信号,该定位需求信号为超声波信号;Preferably, when the underwater unmanned vehicle 9 sneaks near a certain deep seabed fixed beacon and a navigation device, a positioning demand signal is sent, and the positioning demand signal is an ultrasonic signal;
声电换能器的信号接收器8包括前置放大器、锁相放大器以及功率放大器,信号接收器8将接收到的超声波信号转化为电信号,并编译成信号发射器7的激活指令,同时触发充电管理单元控制激活锂电池5为声电换能器6短时大功率供电;声电换能器6的信号发射器7根据激活指令,将包括深远海底固定信标与导航装置的位置在内的信息通过电信号转为声信号,以超声波形式发送出去;The
外界无人水下载具9接收到相关信息,将信号放大处理输送至测量电路中,进行记录或显示,通过解析信号即可得到其自身水下所处位置。The external unmanned underwater vehicle 9 receives the relevant information, amplifies the signal and transmits it to the measurement circuit for recording or display, and can obtain its own underwater position by analyzing the signal.
实施例:Example:
首先对无人水下载具的活动海域进行位置划分,规划深远海底固定信标与导航装置的分布,在声电换能器6的作用下,深远海底固定信标与导航装置的信号发射器7可以发射特定的声波信号,这些声波携带了对应远海底固定信标与导航装置的位置。Firstly, the location of the active sea area of the unmanned underwater vehicle is divided, and the distribution of the deep seabed fixed beacons and navigation devices is planned. Specific sound waves can be emitted, and these sound waves carry the positions of fixed beacons and navigation devices corresponding to the far sea floor.
当水下无人载具9潜行到某个深远海底固定信标与导航装置附近时,发出定位需求信号。声电换能器的信号接收器8(含前置放大器、锁相放大器以及功率放大器)将接收到超声波信号转化为电信号,并编译成信号发射器的激活指令,同时触发逻辑控制器控制激活长寿命锂电池5为声电换能器6短时大功率供电;声电换能器6的信号发射器7根据激活指令,将包括深远海底固定信标与导航装置的位置在内的信息通过电信号转为声信号,以超声波形式发送出去。外界无人水下载具9接收到相关信息,将信号放大处理输送至测量电路中,就能记录或显示结果,通过解析数字信号即可得到其自身水下所处位置。When the underwater unmanned vehicle 9 sneaks to the vicinity of a certain deep seabed fixed beacon and navigation device, it sends out a positioning demand signal. The signal receiver 8 (including preamplifier, lock-in amplifier and power amplifier) of the acoustic-electric transducer converts the received ultrasonic signal into an electrical signal, and compiles it into an activation command for the signal transmitter, and triggers the logic controller to control the activation. The long-
微能量智能管理电路的连接如图2所示,The connection of the micro-energy intelligent management circuit is shown in Figure 2,
放射性同位素电池1可24小时不间断提供微弱的电能输出,微能量采集器收集放射性同位素电池1输出的电能,为深远海底固定信标与导航装置提供充源源不断的电能;信号检测单元对放射性同位素电池1和长寿命锂电池5的电流、电压和温度等信号进行实时监测,以判断系统工作模式;MPPT控制单元能够对不同辐照强度和温度进行识别和控制,保证放射性同位素电池1实时输出最大功率;充电管理及放电管理控制起到保护的作用,通过控制蓄电池的电压和电流,防止出现过压、过流、欠充和过充等现象;当深远海底固定信标与导航装置收到外界定位需求信号时,升压变换器根据后端负载需求,将电压变换为声电换能器6供电所需能量,从而向外界水下无人载具9提供位置等信息。The
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。The principles and implementations of the present invention are described herein using specific examples, and the descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210674251.2A CN115201745A (en) | 2022-06-14 | 2022-06-14 | A deep seabed fixed beacon and navigation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210674251.2A CN115201745A (en) | 2022-06-14 | 2022-06-14 | A deep seabed fixed beacon and navigation device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115201745A true CN115201745A (en) | 2022-10-18 |
Family
ID=83576596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210674251.2A Pending CN115201745A (en) | 2022-06-14 | 2022-06-14 | A deep seabed fixed beacon and navigation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115201745A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116470602A (en) * | 2023-03-14 | 2023-07-21 | 中子高新技术产业发展(重庆)有限公司 | Stable power isotope battery coupled with secondary capacitor |
-
2022
- 2022-06-14 CN CN202210674251.2A patent/CN115201745A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116470602A (en) * | 2023-03-14 | 2023-07-21 | 中子高新技术产业发展(重庆)有限公司 | Stable power isotope battery coupled with secondary capacitor |
CN116470602B (en) * | 2023-03-14 | 2023-11-28 | 中子高新技术产业发展(重庆)有限公司 | Stable power isotope battery coupled with secondary capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210465693U (en) | Low-power-consumption Beidou short message terminal for monitoring sea wave height | |
CN115201745A (en) | A deep seabed fixed beacon and navigation device | |
JP2020200024A (en) | Independent type buoy provided with seawater battery | |
JP2007237823A (en) | Marine buoy | |
CN107014971A (en) | Underwater hiding-machine with efficient charging and remote data transmission function uses buoy base station | |
CN108132292B (en) | Deep sea in-situ electrochemical testing device capable of realizing remote data transmission and implementation method | |
CN111404235B (en) | Deep and open sea energy relay system for energy supply of unmanned underwater vehicle | |
CN108844484A (en) | A kind of complete extra large depth AUV overall-in-one control schema cabin and control method | |
CN207366008U (en) | An Environmental Monitoring System Based on Unmanned Boat | |
CN204794271U (en) | Control location communication system of container | |
CN106025310B (en) | A long-term power supply system for seabed sediment fuel cell power supply for marine monitoring instruments | |
CN209961916U (en) | A marine search and rescue terminal | |
CN212114906U (en) | A long-distance charger and long-distance charging system | |
Kesavakumar et al. | Design of optimal power source for NIOT offshore moored buoy system | |
CN204937448U (en) | A kind of wind light mutual complementing water surface robot | |
CN210893473U (en) | Temperature measuring device for power transmission system | |
CN210744809U (en) | Device for performing seabed wireless charging by using ocean current energy | |
CN100367322C (en) | Remote telemetry automatic photoelectric detection buoy | |
CN210570717U (en) | NB-IoT intelligent student card based on light energy collection and system thereof | |
CN110510068B (en) | A stereoscopic buoy observation system based on photoelectric composite cable for full-sea depth profile | |
CN216206702U (en) | Groundwater information dynamic monitoring system | |
CN219535689U (en) | Wireless charging device of cableway robot | |
CN221631700U (en) | Buoy type intelligent radiation monitoring terminal | |
CN117908082B (en) | Throwing type radiation detection device | |
CN220039638U (en) | Direct scattering solar irradiation measuring device applying machine learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |