JP2007237823A - Marine buoy - Google Patents

Marine buoy Download PDF

Info

Publication number
JP2007237823A
JP2007237823A JP2006060655A JP2006060655A JP2007237823A JP 2007237823 A JP2007237823 A JP 2007237823A JP 2006060655 A JP2006060655 A JP 2006060655A JP 2006060655 A JP2006060655 A JP 2006060655A JP 2007237823 A JP2007237823 A JP 2007237823A
Authority
JP
Japan
Prior art keywords
power
controller
buoy
power monitoring
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006060655A
Other languages
Japanese (ja)
Inventor
Kazunari Kobayashi
一成 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2006060655A priority Critical patent/JP2007237823A/en
Publication of JP2007237823A publication Critical patent/JP2007237823A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a marine buoy capable of allowing a light emitter to continuously emit light without being influenced by weather condition. <P>SOLUTION: The marine buoy is equipped with a power monitoring controller mounted on a buoy body, a wave power generation device which is mounted to the buoy body so as to be connected to the power monitoring controller, a solar energy generation device mounted to the buoy body so as to be connected to the power monitoring controller, an electric discharge controller mounted to the buoy body so as to connected to the power monitoring controller, the light emitter mounted to the buoy body so as to be connected to the electric discharge controller, a capacitor which is mounted to the buoy so as to be connected to the power monitoring controller and discharges the power of large current, and a lithium ion secondary battery which is mounted to the buoy body so as to be connected to the capacitor, connected to the discharge controller through a switch, and has an anode containing lithium titanium oxide as a negative electrode active material, and an electrolysis solution containing γ-butyl lactone. The electric discharge controller detects the electric energy supplied from the power monitoring controller, and has a function for turning on the switch when the detected electric energy is less than the electric energy required for enabling the light emitter to emit the light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、海洋上に設置される灯浮標、いわゆる海上ブイに関する。   The present invention relates to a light buoy installed on the ocean, a so-called maritime buoy.

従来、船舶の安全な航行、海上事故の察知、宇宙から信号受信、緊急時の信号発信、気象情報の収集などを目的にさまざまな海上ブイが設置されている。この海上ブイに組み込まれる発電システムとしては、一般的に太陽光発電装置、波力発電装置および空気電池などの一次電池を組み合せて構成されている。   Conventionally, various maritime buoys have been installed for the purpose of safe navigation of ships, detection of marine accidents, reception of signals from space, transmission of emergency signals, collection of weather information, and the like. As a power generation system incorporated in this marine buoy, it is generally configured by combining a primary battery such as a solar power generation device, a wave power generation device, and an air battery.

しかしながら、一次電池の場合は充電ができないことより大洋上に設置される海上ブイのメンテナンスに費用と労苦が必要である。   However, in the case of a primary battery, since it cannot be charged, cost and labor are required for the maintenance of the maritime buoy installed on the ocean.

一方、特許文献1には太陽電池装置、燃料電池装置および信号発信、表示発光を行う電気を逐電する蓄電池を備えたブイが開示されている。また、特許文献2には蓄電池(二次電池)およびこの蓄電池を充電するための発電機を備えた自己充電式観測ブイが開示されている。   On the other hand, Patent Document 1 discloses a buoy including a solar cell device, a fuel cell device, and a storage battery that sequentially discharges electricity for signal transmission and display light emission. Patent Document 2 discloses a self-charging observation buoy equipped with a storage battery (secondary battery) and a generator for charging the storage battery.

しかしながら、従来の二次電池、例えば負極活物質に炭素材料を使用したリチウムイオン二次電池、ニッケル水素二次電池またはニッケルカドミウム二次電池のような蓄電池は、通常その充電に1時間から2時間を要するため、太陽光発電装置、波力発電装置からの余剰の電力を効率よく充電できない。また、ニッケル水素二次電池、ニッケルカドミウム二次電池または一次電池である空気電池は水溶液系電解液が収容されているため、マイナスの温度に達する洋上の環境下において電解液の一部が凍結して電池本来の動作が制限される。その結果、海上ブイの動作に支障を来たす。
特開2001−278183 特開平7-223583号公報
However, a conventional secondary battery, for example, a storage battery such as a lithium ion secondary battery using a carbon material as a negative electrode active material, a nickel hydride secondary battery, or a nickel cadmium secondary battery, is usually charged for 1 to 2 hours. Therefore, the surplus electric power from a solar power generation device and a wave power generation device cannot be charged efficiently. In addition, since nickel-hydrogen secondary batteries, nickel cadmium secondary batteries, or primary batteries, which are air batteries, contain aqueous electrolytes, some of the electrolytes freeze in an offshore environment that reaches negative temperatures. This limits the original operation of the battery. As a result, the operation of the maritime buoy is hindered.
JP 2001-278183 A JP-A-7-223583

本発明は、気象状況に影響されずに発光機を継続的に発光させることが可能な海上ブイを提供するものである。   The present invention provides a marine buoy that can continuously emit light from a light emitter without being affected by weather conditions.

本発明によると、海洋上に設置されるブイ本体と、
前記ブイ本体に搭載される電力監視制御器と、
前記ブイ本体に前記電力監視制御器と接続されるように取り付けられる波力発電装置と、
前記ブイ本体に前記電力監視制御器と接続されるように取り付けられる太陽光発電装置と、
前記ブイ本体に前記電力監視制御器と接続されるように搭載される放電制御器と、
前記ブイ本体に前記放電制御器と接続されるように取り付けられる発光機と、
前記ブイ本体に前記電力監視制御器と接続されるように取り付けられ、大電流の電力を放電するキャパシタと、
前記ブイ本体に前記キャパシタに接続されるとともに、前記放電制御器にスイッチを通して接続されるように装填され、リチウムチタン酸化物を負極活物質として含む負極およびγ−ブチルラクトンを含む電解液を有するリチウムイオン二次電池と
を備え、
前記放電制御器は、前記電力監視制御器から供給される電力量を検出し、その検出電力量が前記発光機を発光させるのに必要な電力量未満のときに前記スイッチをオンさせる機能を有することを特徴とする海上ブイが提供される。
According to the present invention, a buoy body installed on the ocean;
A power monitoring controller mounted on the buoy body;
A wave power generator attached to the buoy body so as to be connected to the power monitoring controller;
A solar power generator attached to the buoy body so as to be connected to the power monitoring controller;
A discharge controller mounted on the buoy body to be connected to the power monitoring controller;
A light emitter attached to the buoy body to be connected to the discharge controller;
A capacitor that is attached to the buoy body so as to be connected to the power monitoring controller, and that discharges a large amount of power,
Lithium having a negative electrode containing lithium titanium oxide as a negative electrode active material and an electrolyte containing γ-butyllactone, connected to the capacitor on the buoy body and connected to the discharge controller through a switch An ion secondary battery,
The discharge controller has a function of detecting the amount of power supplied from the power monitoring controller and turning on the switch when the detected amount of power is less than the amount of power required to cause the light emitter to emit light. A maritime buoy characterized by that is provided.

本発明によれば、気象状況により波力発電装置および太陽光発電装置のいずれからも長い時間に亘って電力を取得できない場合やマイナスの温度(例えばマイナス20℃)に達する洋上の環境下に曝された場合おいても発光機を安定的に発光させることが可能な海上ブイを提供できる。   According to the present invention, when it is not possible to obtain power from a wave power generator or a solar power generator for a long time due to weather conditions, or when exposed to an offshore environment that reaches a negative temperature (for example, minus 20 ° C.). Even in such a case, it is possible to provide a maritime buoy capable of causing the light emitting device to emit light stably.

以下、本発明の実施形態に係る海上ブイを図1および図2を参照して詳細に説明する。図1は、実施形態に係る海上ブイの概略断面図、図2は図1の海上ブイの等価回路図である。   Hereinafter, a marine buoy according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view of a maritime buoy according to the embodiment, and FIG. 2 is an equivalent circuit diagram of the maritime buoy of FIG.

ブイ本体1は、中空円形体2とこの中空円形体2の中心を貫通して垂直方向に延びるに支持軸3と、前記中空円形体2上に前記支持軸3に同軸的に固定された円筒体4と、前記中空円形体2内に配置され、前記支持軸3に上下に軸着された第1支持台5および第2支持台6とを有する。このブイ本体1の中空円形体2底部には、接続環7が取り付かれ、ワイヤ8を通して水底の錘9に連結することにより海上の一定位置に浮遊する。   The buoy body 1 includes a hollow circular body 2, a support shaft 3 extending vertically through the center of the hollow circular body 2, and a cylinder coaxially fixed to the support shaft 3 on the hollow circular body 2. A body 4 and a first support base 5 and a second support base 6 that are disposed in the hollow circular body 2 and are vertically mounted on the support shaft 3. A connecting ring 7 is attached to the bottom of the hollow circular body 2 of the buoy main body 1 and is connected to a weight 9 on the bottom of the water through a wire 8 to float at a certain position on the sea.

太陽光発電装置10は、前記ブイ本体1の前記円筒体4上部に取り付けられた太陽光パネル11と、前記円筒体4に内蔵されて発電制御器12とから構成されている。波力発電装置13は、前記ブイ本体1の中空円形体2上に取り付けられている。波力発電装置12は、図2に示す回路図に示すようにエアータービン14および発電機15とから構成されている。アンテナ16は、前記ブイ本体1の前記円筒体4頂部に取り付けられている。このアンテナ16は図示しない信号の送受信装置に接続されている。   The solar power generation device 10 includes a solar panel 11 attached to the upper part of the cylindrical body 4 of the buoy main body 1 and a power generation controller 12 built in the cylindrical body 4. The wave power generation device 13 is mounted on the hollow circular body 2 of the buoy main body 1. The wave power generation device 12 includes an air turbine 14 and a generator 15 as shown in the circuit diagram shown in FIG. The antenna 16 is attached to the top of the cylindrical body 4 of the buoy body 1. The antenna 16 is connected to a signal transmitting / receiving device (not shown).

リチウムイオン二次電池17は、前記ブイ本体1の中空円形体2内の第2支持台6上に装填されている。この二次電池17は、リチウムチタン酸化物を負極活物質として含む負極およびγ−ブチルラクトンを含む電解液を有する。発光機18は、前記ブイ本体1の前記円筒体4側面に取り付けられている。電力監視制御器19は、前記ブイ本体1の中空円形体2内の第1支持台5上に取り付けられている。電力監視制御器19には、前記太陽光発電装置10、波力発電装置12、二次電池17および発光機18が接続されている。   The lithium ion secondary battery 17 is loaded on the second support 6 in the hollow circular body 2 of the buoy body 1. The secondary battery 17 has a negative electrode containing lithium titanium oxide as a negative electrode active material and an electrolytic solution containing γ-butyllactone. The light emitter 18 is attached to the side surface of the cylindrical body 4 of the buoy main body 1. The power monitoring controller 19 is attached on the first support 5 in the hollow circular body 2 of the buoy body 1. The power monitoring controller 19 is connected to the solar power generation device 10, the wave power generation device 12, the secondary battery 17, and the light emitter 18.

前述した海上ブイを図2に示すブロック図を参照して説明する。   The above-described maritime buoy will be described with reference to the block diagram shown in FIG.

波力で動作するエアータービン14によって発電する発電機15は、電力監視制御器19に接続され、発電された交流電力をその電力監視制御器19に供給する。太陽光で直流電力を発生する太陽光パネル11は、発電制御器12を通して前記電力監視制御器19に接続され、発電された直流電力をその電力監視制御器19に供給する。この電力監視制御器19は、波力発電装置13および太陽光発電装置10での発生電力に応じていずれか一方または両方を選択する機能、それらの電力を安定化する機能、波力発電装置13からの交流電力を直流電力に変換するAC/DCコンバータを備えている。   The generator 15 that generates power by the air turbine 14 that operates with wave power is connected to the power monitoring controller 19, and supplies the generated AC power to the power monitoring controller 19. The solar panel 11 that generates direct-current power by sunlight is connected to the power monitoring controller 19 through the power generation controller 12 and supplies the generated DC power to the power monitoring controller 19. The power monitoring controller 19 has a function of selecting one or both of the wave power generation apparatus 13 and the solar power generation apparatus 10 according to the generated power, a function of stabilizing the power, the wave power generation apparatus 13. The AC / DC converter which converts the alternating current power from DC into direct current power is provided.

前記電力監視制御器19は、放電制御器20および第1充電制御器21に接続されている。この放電制御器20は、発光機18に接続され、その発光機18を発光させるための直流電力を供給する。前記第1充電制御器21は大電流の放電がなされるキャパシタ22に接続されている。このキャパシタ22は、第2充電制御器23を通してリチウム二次電池17に接続されている。   The power monitoring controller 19 is connected to a discharge controller 20 and a first charge controller 21. The discharge controller 20 is connected to the light emitter 18 and supplies DC power for causing the light emitter 18 to emit light. The first charge controller 21 is connected to a capacitor 22 that discharges a large current. The capacitor 22 is connected to the lithium secondary battery 17 through the second charge controller 23.

前記放電制御器20は、また前記二次電池17と接続されている。例えばFETからなるスイッチ24は、前記放電制御器20と前記二次電池17の間に介装され、通常時(充電時)においてはオフ状態になっている。前記放電制御器20は、前記電力監視制御器19から供給される直流電力量を検出し、その検出電力量が前記発光機18を発光させるのに必要な電力量(しきい値)未満のときに、前記スイッチ24に所定の電圧を印加してオンさせる機能を有する。つまり、前記電力監視制御器19から供給される直流電力量が前記発光機18を発光させるのに必要な電力量に満たないとき、または前記電力監視制御器19から前記放電制御器20に電力が供給されないとき、二次電池17の放電で発生した直流電力が放電制御器20を経由して発光機18に供給されて発光がなされる。   The discharge controller 20 is also connected to the secondary battery 17. For example, the switch 24 composed of an FET is interposed between the discharge controller 20 and the secondary battery 17 and is in an OFF state during normal operation (charging). The discharge controller 20 detects the amount of DC power supplied from the power monitoring controller 19, and when the detected power amount is less than the power amount (threshold value) necessary for causing the light emitter 18 to emit light. The switch 24 has a function of applying a predetermined voltage to turn it on. That is, when the amount of DC power supplied from the power monitoring controller 19 is less than the amount of power required to cause the light emitter 18 to emit light, or the power is supplied from the power monitoring controller 19 to the discharge controller 20. If not, the DC power generated by the discharge of the secondary battery 17 is supplied to the light emitter 18 via the discharge controller 20 to emit light.

前記第1充電制御器21は、前記電力監視制御器19から前記放電制御器20に供給される電力量が余剰のときにその電力を前記キャパシタ22に供給するとともに、このキャパシタ22を充電する際の充電制御をなす。前記第2充電制御器23は、上流側の前記キャパシタ22の放電タイミングおよび前記二次電池17の充電状態を制御するとともに、前記二次電池17が満充電状態のときに二次電池への電力供給を制限する機能を有する。   The first charge controller 21 supplies the power to the capacitor 22 when the amount of power supplied from the power monitoring controller 19 to the discharge controller 20 is excessive, and when charging the capacitor 22 Charge control. The second charge controller 23 controls the discharge timing of the capacitor 22 on the upstream side and the charge state of the secondary battery 17, and power to the secondary battery when the secondary battery 17 is fully charged. It has a function to limit supply.

なお、前記電力監視制御器19は図示しない信号の送受信装置に接続され、この装置の駆動のための電力が供給される。   The power monitoring controller 19 is connected to a signal transmission / reception device (not shown) and supplied with power for driving the device.

このような構成の海上ブイにおいて、海上に波が発生し、かつ太陽光が降り注ぐ気象状況の場合には波力エネルギーは波力発電装置13により交流電力に変換され、電力監視制御器19に供給され、ここでAC/DCコンバータにより直流電力に変換される。また、太陽光のエネルギーは太陽光発電装置10により直流電力に変換されて電力監視制御器19に供給される。電力監視制御器19に供給された直流電力は、ここで安定化され、その電力は放電制御器20および第1充電制御器21にそれぞれ供給される。   In a maritime buoy having such a configuration, in a weather situation where waves are generated on the sea and sunlight falls, the wave energy is converted into AC power by the wave power generator 13 and supplied to the power monitoring controller 19. Here, it is converted into DC power by an AC / DC converter. The solar energy is converted into DC power by the solar power generation device 10 and supplied to the power monitoring controller 19. The DC power supplied to the power monitoring controller 19 is stabilized here, and the power is supplied to the discharge controller 20 and the first charge controller 21, respectively.

前記放電制御器20では、前記電力監視制御器19から供給される直流電力量を検出し、その検出電力量が前記発光機18を発光させるのに必要なしきい値以上であるか、しきい値未満であるかを判定する。供給される直流電力量がしきい値以上である場合には、二次電池17と放電制御器20の間のスイッチ24をオンすることなく、つまり二次電池17からの電力供給(放電電力)を受けることなく、前記電力監視制御器19から供給される直流電力を発光機18に供給して発光させる。   The discharge controller 20 detects the amount of DC power supplied from the power monitoring controller 19, and the detected power amount is greater than or less than a threshold necessary for causing the light emitter 18 to emit light. It is determined whether it is. When the supplied DC power amount is equal to or greater than the threshold value, the power supply (discharge power) from the secondary battery 17 is not performed without turning on the switch 24 between the secondary battery 17 and the discharge controller 20. Without being received, the DC power supplied from the power monitoring controller 19 is supplied to the light emitter 18 to emit light.

前記第1充電制御器21では、供給された直流電力量が余剰であるかを判定し、余剰である場合にはその電力をキャパシタ22に供給して電荷として充電する。ここで、『余剰』とは前記発光機18を発光させるのに必要な電力量を超えていることを意味する。このキャパシタ22への電荷蓄積において、第2充電制御器23によりキャパシタ22から目的とする大電流の放電がなされる十分な電荷が蓄積されたことを検出すると、キャパシタ22から大電流が第2充電制御器23を通してリチウムチタン酸化物を負極活物質として含む負極を有する急速充電が可能なリチウムイオン二次電池17に放電され、急速充電される。前記キャパシタ22から大電流を第2充電制御器23を通して二次電池17に放電し、急速充電する操作を複数回繰り返し、前記二次電池17が満充電状態のときには、前記第2充電制御器23により二次電池17への電力供給が制限される。   The first charge controller 21 determines whether or not the supplied DC power amount is surplus, and if it is surplus, the power is supplied to the capacitor 22 and charged as a charge. Here, “surplus” means that the amount of power necessary to cause the light emitter 18 to emit light is exceeded. In this charge accumulation in the capacitor 22, when the second charge controller 23 detects that a sufficient amount of charge has been accumulated from the capacitor 22 to be discharged, the capacitor 22 is charged with the second current. The battery is discharged through the controller 23 to the rapidly chargeable lithium ion secondary battery 17 having a negative electrode containing lithium titanium oxide as a negative electrode active material, and is quickly charged. The operation of discharging a large current from the capacitor 22 to the secondary battery 17 through the second charge controller 23 and rapidly charging it is repeated a plurality of times, and when the secondary battery 17 is fully charged, the second charge controller 23 Thus, power supply to the secondary battery 17 is limited.

一方、海上が凪状態で、曇天のような気象状況に変化した場合には波力発電装置13および太陽光発電装置10から電力監視制御器19への電力供給が僅かになる。このような状況では、前記第1充電制御器21に供給される電力量を余剰と判定されず、キャパシタ22への電力供給がなされない。また、前記放電制御器20で検出される直流電力量がしきい値未満になるため、二次電池17と放電制御器20の間のスイッチ24がオンする。このスイッチ24のオンにより、二次電池17の放電電力が放電制御器20を通して発光機18に供給され、気象状況が変化しても発光機18を継続的に発光させる。   On the other hand, when the sea is in a dredging state and changes to a weather condition such as cloudy, the power supply from the wave power generation device 13 and the solar power generation device 10 to the power monitoring controller 19 becomes small. In such a situation, the amount of power supplied to the first charge controller 21 is not determined to be excessive, and power supply to the capacitor 22 is not performed. Further, since the DC power amount detected by the discharge controller 20 becomes less than the threshold value, the switch 24 between the secondary battery 17 and the discharge controller 20 is turned on. When the switch 24 is turned on, the discharge power of the secondary battery 17 is supplied to the light emitter 18 through the discharge controller 20, and the light emitter 18 is caused to emit light continuously even if the weather condition changes.

前記リチウム二次電池は、リチウムチタン酸化物を活物質として含む負極およびγ−ブチルラクトンを含む電解液(例えばγ−ブチルラクトンとエチレンカーボネートを有機溶媒として含む電解液)を備えている。   The lithium secondary battery includes a negative electrode containing lithium titanium oxide as an active material and an electrolytic solution containing γ-butyllactone (for example, an electrolytic solution containing γ-butyllactone and ethylene carbonate as an organic solvent).

活物質である前記リチウムチタン酸化物は、特開2005−123183に開示されるとおり、リチウムを吸蔵・放出可能な材料であり、リチウムイオンの挿入・離脱が1.4Vから1.7V/Li付近で行われる。このため、この二次電池は大電流での急速充電を行っても、従来の負極活物質に炭素材料を用いた場合と比べてリチウムの析出が起こらずに安全性を確保できる。また、リチウムの吸蔵放出に伴う膨張収縮が生じるのを抑制することができるため、20C電流の急速充電を繰り返し行った際にも負極活物質の構造破壊を抑えることができる。その結果、充放電を繰り返し行った場合においても長い寿命を維持できる。   As disclosed in JP-A-2005-123183, the lithium titanium oxide as an active material is a material capable of inserting and extracting lithium, and insertion / extraction of lithium ions is around 1.4V to 1.7V / Li. Done in For this reason, even if the secondary battery is rapidly charged with a large current, it is possible to ensure safety without causing lithium deposition compared to the case where a carbon material is used as a conventional negative electrode active material. In addition, since expansion and contraction associated with insertion and extraction of lithium can be suppressed, structural destruction of the negative electrode active material can be suppressed even when rapid charging with 20 C current is repeatedly performed. As a result, a long life can be maintained even when charging and discharging are repeated.

また、電解液中の有機溶媒であるγ−ブチルラクトンは、低温特性に優れているため、この電解液を有するリチウムイオン二次電池はマイナスの温度(例えばマイナス20℃)に達する洋上の環境下においても正常な充放電を行うことが可能になる。   In addition, since γ-butyllactone, which is an organic solvent in the electrolytic solution, is excellent in low temperature characteristics, a lithium ion secondary battery having this electrolytic solution is under an offshore environment that reaches a negative temperature (eg, minus 20 ° C.). It becomes possible to perform normal charging / discharging.

具体的には、以下のような方法で組み立てたリチウムイオン二次電池は−10℃の環境下にて20Cで3分間充電することにより約80%の電池容量まで充電することが可能な急速充電二次電池であることを確認した。ここで、『C』は充放電率を表す単位であり、完全放電から完全充電(または完全充電から完全放電)までを定電流充電した場合に計算上1時間で行えるレートを1Cとして表現する。1/10時間の場合、10Cと表現する。したがって、例えば20C充電とは、1C充電の20倍の電流が必要になる。   Specifically, a lithium ion secondary battery assembled by the following method can be charged to a battery capacity of about 80% by charging at 20 C for 3 minutes in an environment of −10 ° C. It was confirmed that it was a secondary battery. Here, “C” is a unit representing a charge / discharge rate, and a rate that can be calculated in one hour when a constant current charge from complete discharge to full charge (or from full charge to complete discharge) is calculated is expressed as 1C. In the case of 1/10 hour, it is expressed as 10C. Therefore, for example, 20C charging requires 20 times as much current as 1C charging.

<負極の作製>
活物質として、平均粒子径5μmでLi吸蔵電位が1.55V(vs.Li/Li+)のチタン酸リチウム(Li4Ti512)粉末と、導電剤として平均粒子径0.4μmの炭素粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比で90:7:3となるように配合し、これらをn−メチルピロリドン(NMP)溶媒に分散してスラリーを調製した。
<Production of negative electrode>
As an active material, lithium titanate (Li 4 Ti 5 O 12 ) powder having an average particle diameter of 5 μm and an Li storage potential of 1.55 V (vs. Li / Li + ), and carbon having an average particle diameter of 0.4 μm as a conductive agent. The powder and polyvinylidene fluoride (PVdF) as a binder were blended in a weight ratio of 90: 7: 3, and these were dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry.

なお、活物質の粒子径の測定には、レーザー回折式粒度分布測定装置(島津製作所株式会社 型番SALD−300)を用いた。まず、ビーカー等に試料約0.1gを入れた後、界面活性剤と1〜2mLの蒸留水を添加して十分に攪拌し、攪拌水槽に注入した。2秒間隔で、64回光強度分布を測定し、粒度分布データを解析し、累積度数分布が50%の粒径(D50)を平均粒子径とした。   In addition, the laser diffraction type particle size distribution measuring apparatus (Shimadzu Corporation model number SALD-300) was used for the measurement of the particle diameter of an active material. First, about 0.1 g of a sample was put in a beaker or the like, and then a surfactant and 1 to 2 mL of distilled water were added and stirred sufficiently, and poured into a stirred water tank. The light intensity distribution was measured 64 times at intervals of 2 seconds, the particle size distribution data was analyzed, and the particle size (D50) having a cumulative frequency distribution of 50% was defined as the average particle size.

次いで、厚さ10μmのアルミニウム箔(純度99.99%)を負極集電体に前記スラリーを塗布し、乾燥した後、プレスを施すことにより電極密度2.4g/cm3の負極を作製した。 Next, an aluminum foil (purity: 99.99%) having a thickness of 10 μm was applied to the negative electrode current collector, dried, and then pressed to prepare a negative electrode having an electrode density of 2.4 g / cm 3 .

<正極の作製>
活物質としてリチウムコバルト酸化物(LiCoO2)と、導電材として黒鉛粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを重量比で87:8:5となるように配合し、これらをn−メチルピロリドン(NMP)溶媒に分散させてスラリーを調製した。厚さ15μmのアルミニウム箔(純度99.99%)にスラリーを塗布し、乾燥した後、プレスすることにより電極密度3.5g/cm3の正極を作製した。
<Preparation of positive electrode>
Lithium cobalt oxide (LiCoO 2 ) as an active material, graphite powder as a conductive material, and polyvinylidene fluoride (PVdF) as a binder are blended in a weight ratio of 87: 8: 5. -A slurry was prepared by dispersing in a methylpyrrolidone (NMP) solvent. The slurry was applied to an aluminum foil (purity 99.99%) having a thickness of 15 μm, dried, and then pressed to prepare a positive electrode having an electrode density of 3.5 g / cm 3 .

<二次電池の組み立て>
容器(外装部材)の形成材料として、厚さが0.1mmのアルミニウム含有ラミネートフィルムを用意した。このアルミニウム含有ラミネートフィルムのアルミニウム層は、膜厚約0.03mmであった。アルミニウム層を補強する樹脂には、ポリプロピレンを使用した。このラミネートフィルムを熱融着で貼り合わせることにより、容器(外装部材)を得、さらに金属アルミニウムの容器に収めた。
<Assembly of secondary battery>
An aluminum-containing laminate film having a thickness of 0.1 mm was prepared as a forming material for the container (exterior member). The aluminum layer of this aluminum-containing laminate film had a thickness of about 0.03 mm. Polypropylene was used as the resin for reinforcing the aluminum layer. By laminating the laminate film by heat fusion, a container (exterior member) was obtained, and further housed in a metal aluminum container.

次いで、前記正極に帯状の正極端子を電気的に接続すると共に、前記負極に帯状の負極端子を電気的に接続した。厚さ12μmのポリエチレン製多孔質フィルムからなるセパレータを正極に密着させて被覆した。セパレータで被覆された正極に負極を対向するように重ね、これらを渦巻状に捲回して電極群を作製した。この電極群をプレスして扁平状に成形した。容器(外装部材)に扁平状に成形した電極群を挿入した。   Next, a strip-like positive electrode terminal was electrically connected to the positive electrode, and a strip-like negative electrode terminal was electrically connected to the negative electrode. A separator made of a polyethylene porous film having a thickness of 12 μm was coated in close contact with the positive electrode. The positive electrode covered with the separator was overlapped with the negative electrode so as to face each other, and these were wound in a spiral shape to produce an electrode group. This electrode group was pressed into a flat shape. An electrode group formed into a flat shape was inserted into a container (exterior member).

エチレンカーボネート(EC)とγ−ブチルラクトン(GBL)が体積比(EC:GBL)で1:2の割合で混合された有機溶媒にリチウム塩であるLiBF4を1.5mol/L溶解させ、液状の非水電解質を調製した。得られた非水電解質を前記容器内に注液し、リチウム二次電池を組み立てた。 LiBF 4 , which is a lithium salt, is dissolved in an organic solvent in which ethylene carbonate (EC) and γ-butyllactone (GBL) are mixed at a volume ratio (EC: GBL) of 1: 2 to obtain a liquid. A non-aqueous electrolyte was prepared. The obtained nonaqueous electrolyte was poured into the container to assemble a lithium secondary battery.

直流電源に第1充電制御器、100Fのキャパシタおよび第2充電制御器をこの順序で接続し、最後に得られた二次電池を第2充電制御器に接続した。直流電源から−10℃の環境下にて直流電力を20Cで3分間、第1充電制御器を通してキャパシタに供給し、このキャパシタから大電流の電力を第2充電制御器を通して二次電池に供給した。その結果、約80%の電池容量まで充電することが可能であった。なお、この二次電池は満充電時電圧2.8V、放電終止電圧1.5Vで使用できた。   The first charge controller, the capacitor of 100F, and the second charge controller were connected to the DC power source in this order, and the finally obtained secondary battery was connected to the second charge controller. DC power was supplied from the DC power source to the capacitor through the first charge controller for 3 minutes at 20 C in an environment of −10 ° C., and a large current was supplied from the capacitor to the secondary battery through the second charge controller. . As a result, it was possible to charge up to about 80% battery capacity. The secondary battery could be used at a full charge voltage of 2.8 V and a discharge end voltage of 1.5 V.

以上説明した実施形態によれば、リチウムチタン酸化物を活物質として含む負極を有するリチウムイオン二次電池17、つまり大電流での急速充電が可能なリチウムイオン二次電池17をキャパシタ22と組み合わせてブイ本体1に装填することによって、気象状況に影響されることなく発光機18を継続的に発光させることができるため、船舶の安全な航行等に寄与できる。   According to the embodiment described above, the lithium ion secondary battery 17 having a negative electrode containing lithium titanium oxide as an active material, that is, the lithium ion secondary battery 17 capable of rapid charging with a large current is combined with the capacitor 22. By mounting the buoy body 1 on the buoy body 1, the light-emitting device 18 can continuously emit light without being affected by the weather conditions, which can contribute to safe navigation of the ship.

すなわち、波力発電装置13および太陽光発電装置10での発電電力量が余剰であるときには、その余剰電力を電力監視制御器19から第1充電制御器21、キャパシタ22、第2充電制御器23を通して前記二次電池17に急速充電でき、海上が凪状態で、曇天のような気象状況に変化した場合にその二次電池17からの放電電力により発光機18を発光できる。   That is, when the power generation amount in the wave power generation device 13 and the solar power generation device 10 is surplus, the surplus power is transferred from the power monitoring controller 19 to the first charge controller 21, the capacitor 22, and the second charge controller 23. The secondary battery 17 can be quickly charged through the light source 18, and the light emitting device 18 can emit light by the discharge power from the secondary battery 17 when the sea surface is in a drought state and changes to a weather condition such as cloudy weather.

また、例えば海上が凪状態で、晴れたり、曇たりする気象状況のように太陽光発電装置10で発電した余剰電力を電力監視制御器19から第1充電制御器21、キャパシタ22、第2充電制御器23を通して二次電池17に十分に長い時間に亘って供給できない場合においても、前記二次電池17は急速充電が可能(例えば20Cで3分間充電することにより約80%の電池容量まで充電することが可能)であるため、二次電池17に満充電に近い状態まで充電できる。つまり、充電に1時間から2時間を要する二次電池が装填された従来の海上ブイではこのような気象状況下で二次電池を満充電に近い状態まで充電することは実質的に困難であり、発光機のバックアップ電源として十分に機能させることができなくなる。   Further, for example, surplus power generated by the solar power generation device 10 such as a weather condition where the sea is in a drought condition and is sunny or cloudy is converted from the power monitoring controller 19 to the first charging controller 21, the capacitor 22, and the second charging. Even when the secondary battery 17 cannot be supplied to the secondary battery 17 through the controller 23 for a sufficiently long time, the secondary battery 17 can be rapidly charged (for example, charged to about 80% battery capacity by charging at 20 C for 3 minutes). Therefore, the secondary battery 17 can be charged to a state near full charge. In other words, with a conventional maritime buoy loaded with a secondary battery that takes 1 to 2 hours to charge, it is practically difficult to charge the secondary battery to a nearly full state under such weather conditions. It becomes impossible to function as a backup power source of the light emitter.

したがって、大電流での急速充電が可能なリチウムイオン二次電池17をキャパシタ22と組み合わせてブイ本体1に装填することによって、気象状況に影響されることなく発光機18を継続的に発光させることができるため、船舶の安全な航行等に寄与できる。   Therefore, by loading the buoy body 1 with the lithium ion secondary battery 17 capable of rapid charging with a large current in combination with the capacitor 22, the light emitter 18 can continuously emit light without being affected by weather conditions. Can contribute to safe navigation of ships.

さらに、前記リチウムイオン二次電池17は従来使用されている炭酸ジメチルや炭酸ジエチルに比べてマイナス温度(例えばマイナス20℃)での電気伝導度が高く低温特性に優れたγ−ブチルラクトンを含む電解液を有するため、マイナスの温度(例えばマイナス20℃)に達する洋上の環境下においても正常な充放電でなされ、発光機18のバックアップ電源として機能させることができる。   Further, the lithium ion secondary battery 17 has an electroconductivity containing γ-butyllactone, which has high electrical conductivity at a minus temperature (eg, minus 20 ° C.) and excellent low-temperature characteristics as compared with conventionally used dimethyl carbonate and diethyl carbonate. Since it has a liquid, it is charged and discharged normally even in an offshore environment that reaches a negative temperature (for example, minus 20 ° C.), and can function as a backup power source for the light emitting device 18.

さらに、大電流での急速充電が可能なリチウムイオン二次電池17をキャパシタ22と組み合わせにおいて、電力監視制御器から前記放電制御器に供給される電力量が余剰のときにその電力を前記キャパシタに供給するための第1充電制御器21をキャパシタ22の上流側に設け、かつ前記二次電池17の充電状態を制御するとともに、前記二次電池17が満充電状態のときに二次電池17への電力供給を制限するための第2充電制御器23を前記キャパシタ22と二次電池17の間に介装することによって、波力発電装置13および太陽光発電装置10での発電電力を二次電池17に効率よく充電できるとともに、二次電池17の寿命を向上できる。   Further, when the lithium ion secondary battery 17 capable of rapid charging with a large current is combined with the capacitor 22, when the amount of power supplied from the power monitoring controller to the discharge controller is excessive, the power is supplied to the capacitor. A first charging controller 21 for supplying is provided on the upstream side of the capacitor 22 and controls the charging state of the secondary battery 17, and to the secondary battery 17 when the secondary battery 17 is fully charged. By interposing a second charging controller 23 between the capacitor 22 and the secondary battery 17 to limit the power supply of the secondary power generated by the wave power generator 13 and the solar power generator 10 The battery 17 can be charged efficiently and the life of the secondary battery 17 can be improved.

本発明の実施形態に係る海上ブイを示す概略断面図。1 is a schematic cross-sectional view showing a maritime buoy according to an embodiment of the present invention. 図1の海上ブイのブロック図。The block diagram of the maritime buoy of FIG.

符号の説明Explanation of symbols

1…ブイ本体、10…太陽光発電装置、12…波力発電装置、17…リチウムイオン二次電池、18…発光機、19…電力監視制御器、20…放電制御器、21…第1充電制御器、22…キャパシタ、23…第2充電制御器、24…スイッチ。   DESCRIPTION OF SYMBOLS 1 ... Buoy body, 10 ... Solar power generation device, 12 ... Wave power generation device, 17 ... Lithium ion secondary battery, 18 ... Light-emitting device, 19 ... Electric power monitoring controller, 20 ... Discharge controller, 21 ... 1st charge Controller, 22 ... capacitor, 23 ... second charge controller, 24 ... switch.

Claims (2)

海洋上に設置されるブイ本体と、
前記ブイ本体に搭載される電力監視制御器と、
前記ブイ本体に前記電力監視制御器と接続されるように取り付けられる波力発電装置と、
前記ブイ本体に前記電力監視制御器と接続されるように取り付けられる太陽光発電装置と、
前記ブイ本体に前記電力監視制御器と接続されるように搭載される放電制御器と、
前記ブイ本体に前記放電制御器と接続されるように取り付けられる発光機と、
前記ブイ本体に前記電力監視制御器と接続されるように取り付けられ、大電流の電力を放電するキャパシタと、
前記ブイ本体に前記キャパシタに接続されるとともに、前記放電制御器にスイッチを通して接続されるように装填され、リチウムチタン酸化物を負極活物質として含む負極およびγ−ブチルラクトンを含む電解液を有するリチウムイオン二次電池と
を備え、
前記放電制御器は、前記電力監視制御器から供給される電力量を検出し、その検出電力量が前記発光機を発光させるのに必要な電力量未満のときに前記スイッチをオンさせる機能を有することを特徴とする海上ブイ。
A buoy body installed on the ocean,
A power monitoring controller mounted on the buoy body;
A wave power generator attached to the buoy body so as to be connected to the power monitoring controller;
A solar power generator attached to the buoy body so as to be connected to the power monitoring controller;
A discharge controller mounted on the buoy body to be connected to the power monitoring controller;
A light emitter attached to the buoy body to be connected to the discharge controller;
A capacitor that is attached to the buoy body so as to be connected to the power monitoring controller, and that discharges a large amount of power,
Lithium having a negative electrode containing lithium titanium oxide as a negative electrode active material and an electrolyte containing γ-butyllactone, connected to the capacitor on the buoy body and connected to the discharge controller through a switch An ion secondary battery,
The discharge controller has a function of detecting the amount of power supplied from the power monitoring controller and turning on the switch when the detected amount of power is less than the amount of power required to cause the light emitter to emit light. A maritime buoy characterized by that.
前記電力監視制御器から前記放電制御器と前記キャパシタとに分岐される分岐部と前記キャパシタの間に介装され、前記電力監視制御器から前記放電制御器に供給される電力量が余剰のときにその電力を前記キャパシタに供給するための第1充電制御器と、前記キャパシタと二次電池の間に介装され、前記二次電池の充電状態を制御するとともに、前記二次電池が満充電状態のときに二次電池への電力供給を制限するための第2充電制御器とをさらに備えることを特徴とする請求項1記載の海上ブイ。   When the power monitoring controller is interposed between the capacitor and the branching part that branches from the power monitoring controller to the discharge controller and the capacitor, and when the power supplied from the power monitoring controller to the discharge controller is excessive A first charge controller for supplying the power to the capacitor, and interposed between the capacitor and the secondary battery to control a charging state of the secondary battery and to fully charge the secondary battery. The marine buoy according to claim 1, further comprising a second charge controller for restricting power supply to the secondary battery in a state.
JP2006060655A 2006-03-07 2006-03-07 Marine buoy Withdrawn JP2007237823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060655A JP2007237823A (en) 2006-03-07 2006-03-07 Marine buoy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060655A JP2007237823A (en) 2006-03-07 2006-03-07 Marine buoy

Publications (1)

Publication Number Publication Date
JP2007237823A true JP2007237823A (en) 2007-09-20

Family

ID=38583780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060655A Withdrawn JP2007237823A (en) 2006-03-07 2006-03-07 Marine buoy

Country Status (1)

Country Link
JP (1) JP2007237823A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064713A1 (en) 2008-12-04 2010-06-10 日本電気株式会社 Power generator, fluid sensor, and fluid sensor net
ES2400637A1 (en) * 2010-11-29 2013-04-11 Satlink, S.L. Communications buoy feeded by solar energy. (Machine-translation by Google Translate, not legally binding)
US20140088893A1 (en) * 2012-09-27 2014-03-27 Rosemount Inc. Hybrid power module with fault detection
WO2015034559A1 (en) * 2013-09-06 2015-03-12 Rosemount Inc. Hybrid power module with fault detection
RU2617607C1 (en) * 2016-05-05 2017-04-25 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Navigation buoy with integrated power plant
CN106677974A (en) * 2016-11-23 2017-05-17 中国电子科技集团公司第五十四研究所 Sea wave electricity generation device for deep sea buoy
RU2672830C1 (en) * 2018-02-12 2018-11-19 Владимир Васильевич Чернявец Navigation buoy with complex energy installation
CN110426496A (en) * 2019-07-23 2019-11-08 自然资源部第二海洋研究所 A kind of ocean dissolved oxygen on-line checking monitoring system
RU2728887C1 (en) * 2019-09-19 2020-07-31 Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П. Ширшова Российской академии наук (ИО РАН) Buoy for long-term oceanographic stations
CN111483553A (en) * 2020-01-17 2020-08-04 杭州腾海科技有限公司 Alga in-situ section buoy system
RU216957U1 (en) * 2022-12-27 2023-03-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Navigation buoy with integrated power plant

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064713A1 (en) 2008-12-04 2010-06-10 日本電気株式会社 Power generator, fluid sensor, and fluid sensor net
US8499627B2 (en) 2008-12-04 2013-08-06 Nec Corporation Power generator, fluid sensor, and fluid sensor net
ES2400637A1 (en) * 2010-11-29 2013-04-11 Satlink, S.L. Communications buoy feeded by solar energy. (Machine-translation by Google Translate, not legally binding)
US20140088893A1 (en) * 2012-09-27 2014-03-27 Rosemount Inc. Hybrid power module with fault detection
US9518852B2 (en) * 2012-09-27 2016-12-13 Rosemount Inc. Hybrid power module with fault detection
WO2015034559A1 (en) * 2013-09-06 2015-03-12 Rosemount Inc. Hybrid power module with fault detection
RU2617607C1 (en) * 2016-05-05 2017-04-25 Открытое акционерное общество "Государственный научно-исследовательский навигационно-гидрографический институт" (ОАО "ГНИНГИ") Navigation buoy with integrated power plant
CN106677974A (en) * 2016-11-23 2017-05-17 中国电子科技集团公司第五十四研究所 Sea wave electricity generation device for deep sea buoy
RU2672830C1 (en) * 2018-02-12 2018-11-19 Владимир Васильевич Чернявец Navigation buoy with complex energy installation
CN110426496A (en) * 2019-07-23 2019-11-08 自然资源部第二海洋研究所 A kind of ocean dissolved oxygen on-line checking monitoring system
CN110426496B (en) * 2019-07-23 2024-03-05 自然资源部第二海洋研究所 Marine dissolved oxygen on-line detection monitoring system
RU2728887C1 (en) * 2019-09-19 2020-07-31 Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П. Ширшова Российской академии наук (ИО РАН) Buoy for long-term oceanographic stations
CN111483553A (en) * 2020-01-17 2020-08-04 杭州腾海科技有限公司 Alga in-situ section buoy system
RU216957U1 (en) * 2022-12-27 2023-03-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Navigation buoy with integrated power plant
RU216958U1 (en) * 2022-12-27 2023-03-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Navigation buoy with autonomous power plant

Similar Documents

Publication Publication Date Title
JP2007237823A (en) Marine buoy
Bagotsky et al. Electrochemical power sources: batteries, fuel cells, and supercapacitors
JP3740323B2 (en) Secondary battery charging method and apparatus
Pistoia Battery operated devices and systems: From portable electronics to industrial products
Toussaint et al. Development of a rechargeable zinc-air battery
JP4314223B2 (en) Regenerative power storage system, storage battery system and automobile
JP5158193B2 (en) Lithium air battery
JP5002927B2 (en) Non-aqueous electrolyte secondary battery and battery pack using the same
US20070259234A1 (en) Metal-air semi-fuel cell with an aqueous acid based cathode
US20180175470A1 (en) Lithium-bromine rechargeable electrochemical system and applications thereof
DK2926403T3 (en) METAL AIR BATTERY WITH A DEVICE TO CONTROL THE POTENTIAL OF THE NEGATIVE ELECTRODE
JP4960326B2 (en) Secondary battery
US9847560B2 (en) Electrochemical energy cell, and rechargeable battery for repeatedly storing electrical energy, and also method for determining an electrode potential of an electrode of an electrochemical energy storage cell
WO2002041420A1 (en) Nonaqueous lithium secondary cell
KR101404704B1 (en) Secondary Battery Having Volume Expandable Material
EP2869383B1 (en) Large-capacity power storage device
US20110033753A1 (en) Electrode for lithium battery and its manufacturing method, and lithium battery
KR20150090197A (en) Method for charging a zinc-air battery with limited potential
US6596430B2 (en) Lithium secondary battery and transportation method thereof
JP5650424B2 (en) Lithium-ion battery storage method
WO2021166677A1 (en) Method for controlling aircraft, aircraft, and computer program
JP2017004934A (en) Aluminum-manganese electrochemical cell
KR101712877B1 (en) Apparatus for saving a life
JP5198940B2 (en) Lithium secondary battery
JP2007166698A (en) Charging type power unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080306

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512