CN115193228A - 一种吸湿组件的制备方法 - Google Patents

一种吸湿组件的制备方法 Download PDF

Info

Publication number
CN115193228A
CN115193228A CN202210785672.2A CN202210785672A CN115193228A CN 115193228 A CN115193228 A CN 115193228A CN 202210785672 A CN202210785672 A CN 202210785672A CN 115193228 A CN115193228 A CN 115193228A
Authority
CN
China
Prior art keywords
moisture
moisture absorption
chitosan
solution
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210785672.2A
Other languages
English (en)
Other versions
CN115193228B (zh
Inventor
张月
毛萃
曹青福
孟凡锦
李焕焕
孙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Pulp and Paper Research Institute
Original Assignee
China National Pulp and Paper Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Pulp and Paper Research Institute filed Critical China National Pulp and Paper Research Institute
Priority to CN202210785672.2A priority Critical patent/CN115193228B/zh
Publication of CN115193228A publication Critical patent/CN115193228A/zh
Application granted granted Critical
Publication of CN115193228B publication Critical patent/CN115193228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种吸湿组件的制备方法,所述吸湿组件从内到外依次包括非织造材料作为亲水导湿层,吸湿复合膜作为吸湿储湿层,无尘纸作为导湿储湿层,塑料底膜作为透湿阻气层。其中,吸湿复合膜由湿感金属盐与醇胺类物质进行配位反应制得的金属络合物与壳聚糖溶液混合,自然风干,加热去除水分后制得。本发明制备的吸湿组件,吸湿速率快,除湿性能强,应用于冰箱冷藏室内或果蔬盒内,可以解决内部严重的凝露现象,有效地降低了相对湿度,提升了保鲜效果,增强了用户使用体验。

Description

一种吸湿组件的制备方法
技术领域
本发明涉及吸湿材料技术领域,尤其是涉及一种吸湿组件的制备方法。
背景技术
冰箱储藏室内有冷风循环,所以内部是相对密闭的高湿低温环境。为了长时期保持果蔬的新鲜度而优选将其保存于冰箱冷藏室或者密闭的果蔬盒内,保证果蔬处于高湿度的保存环境。但是过高的湿度会在冰箱冷藏室或果蔬盒内部发生明显的结露现象。严重的凝露会成股流下浸泡果蔬影响其保鲜,同时还会影响用户体验。为了解决该技术问题,通常使用吸湿材料,充分吸收周围环境的水汽,降低相对湿度,保证果蔬具有良好的储存条件。
常用的吸湿材料包括固体干燥剂、液体吸湿剂、复合吸湿材料、吸湿除湿膜等。一般采用氯化钙、氯化锂等易潮解无机盐类作为吸湿材料,材料的吸湿性能好,但是易形成潮解溶液流失,造成质量损失。有机高分子类吸湿材料,储湿容量大,性能稳定,但是吸湿速率差,且不易放湿。复合型吸湿材料将吸湿性能好的无机盐与高分子材料混合使用,虽然不易潮解,但是整体吸湿性能仍然有待改善。而采用溶液蒸发法制备的常规吸湿膜的吸附和脱附速率都比较缓慢,吸湿能力较弱,难以满足实际应用。
发明内容
本发明的目的是为了弥补现有技术的缺陷,提供了一种吸湿组件的制备方法。
本发明制备的吸湿组件,由非织造材料、吸湿复合膜、无尘纸、塑料底膜复合组成。
进一步的,所述非织造材料为亲水性强的水刺布、纺粘布中的一种。
进一步的,所述塑料底膜为微孔PE透气底膜,透湿量范围为500~3000g/m2*24hr(25℃,60%RH)。
其中,吸湿复合膜材料是通过以下技术方案实现的:
S1、将金属盐溶解在无水有机醇溶液中形成混合溶液;
S2、在不断搅拌的条件下,将醇胺类加入到混合溶液中进行反应,制得络合物;
S3、将壳聚糖溶解于去离子水中,制得5~20%的壳聚糖溶液;
S4、将络合物与壳聚糖溶液按照一定比例搅拌2~4h,得到了分散液;
S5、将分散液倒入培养皿中风干24~48h,继续在50~80℃的烘箱中加热1~4h,去除剩余水分,得到吸湿复合膜。
优选的,步骤S1所述金属盐为氯化锌、氯化钴中的一种;无水有机醇溶液为甲醇、乙醇、丙醇中的一种;更优选的,有机溶液为无水乙醇。
优选的,步骤S2所述醇胺类为乙醇胺、二乙醇胺、三乙醇胺中的一种;更优选的,所述醇胺类为乙醇胺。
优选的,步骤S2中,混合溶液中金属盐与醇胺类物质的摩尔比为1∶1-5∶1,更优选的,混合溶液中金属盐与醇胺类物质的摩尔比为2∶1。
优选的,步骤S4中,金属络合物与壳聚糖溶液的体积比为1∶1-1∶5;更优选的,络合物与壳聚糖溶液的体积比为1∶2。
吸湿组件中,所述非织造材料作为亲水导湿层,所述吸湿复合膜作为吸湿储湿层,所述无尘纸作为导湿储湿层,所述塑料底膜作为透湿阻气层。
非织造材料作为亲水导湿层,亲水性强的多孔非织造材料能够迅速导湿,有利于吸湿复合膜进行吸湿,同时对吸湿复合膜起到一定的保护和支撑作用。
吸湿复合膜作为吸湿储湿层,吸湿性能极佳的吸湿复合膜可以迅速吸湿、储湿,防止湿度过大,减少凝露的形成。
无尘纸作为导湿储湿层,可以在吸湿复合膜吸湿过程中,进一步将水分进行传递,有利于吸湿复合膜不断进行吸湿和散湿,同时也起到一定的支撑和保护作用。
塑料底膜作为透湿阻气层,主要在于减少空气和水汽的过分散失,防止湿度过低,造成果蔬等食材的不新鲜。塑料底膜还具有一定的透湿效果,使得吸收的水分可以不断散发。
本发明的有益效果包括:
1.本发明的制备的吸湿复合膜是通过醇胺类有机物与湿感金属盐的不饱和配位制成。湿感盐的吸湿性能好,与醇胺类物质进行配位反应,可以形成具有大量多孔结构的络合物,能够快速吸收大量水分。在配位反应的过程中,通过密度泛函理论计算,计算一个水分子的包埋能,不断调整醇胺类物质和金属盐的摩尔比,可以得到吸湿性能极佳的多孔材料。按照最佳配比制备的金属络合物,具有一个开放的多孔结构,这种结构与硅胶非常相似,但是吸水能力对比硅胶大大提升,并且也高于氯化钙的吸水率。
2.本发明制备的吸湿复合膜具有较强的吸水趋势,所以材料的吸湿速率快,形成的多孔结构使得材料的吸湿容量也高。这是因为当最初的几个水分子被引入时,它们往往在结构中发生羟基化,从而产生较高的结合能。然而,随着材料吸附水分子数量的增加,水的吸收主要是由物理吸附而不是羟基化,这导致了后续吸湿过程中,每一个额外的水分子附着到材料上所需的能量的急剧下降。也就是说,在吸湿过程中,本发明制备的吸湿复合膜吸收一个水分子的能量极低,所以材料具有优越的吸湿性能。
3.壳聚糖具有很强的吸湿性、良好的成膜性和力学性能。与金属络合物混合,作为吸湿复合膜的基础支架,保证了材料具有一定的强度和延展性,进一步提高了材料的吸湿能力。
4.本发明制备的吸湿组件由非织造材料、吸湿复合膜、无尘纸、塑料底膜多种材料组合而成。吸湿复合膜主要发挥快速吸湿的作用,非织造材料和无尘纸起到传湿导湿的作用,并对吸湿复合膜起到保护和支撑的作用,保证了吸湿组件的硬挺度和耐久性。塑料底膜控制着吸湿组件的透气和透湿性能,确保了吸湿组件的长期使用。
附图说明
图1为本发明制备的吸湿组件层结构示意图;
图中:1-非织造材料,2-吸湿复合膜,3-无尘纸,4-塑料底膜;
图2为实施例1中制备的吸湿组件和吸湿复合膜,以及氯化钙粉末、硅胶材料的吸湿性能测试结果;
图3为实施例1中制备的吸湿组件在风冷冰箱冷藏室内的吸湿曲线图。
具体实施方式
以下通过具体实施例进一步说明本发明描述的方法,但是并不意味着本发明局限于这些实施例。
实施例1
将1mol氯化锌溶解在无水乙醇中形成混合溶液;在不断搅拌的条件下,将0.5mol乙醇胺加入氯化锌溶液中,制得络合物,其中氯化锌与乙醇胺的摩尔比为2∶1。在85℃下制备了10%的壳聚糖溶液。将络合物与壳聚糖溶液按1∶2的体积比搅拌2小时,得到了Zn-壳聚糖分散体系。将Zn-壳聚糖分散液倒入培养皿中风干24小时,得到Zn-壳聚糖复合膜。将Zn-壳聚糖复合膜在50℃加热3小时,去除剩余水分。将水刺布、吸湿复合膜、无尘纸、PE底膜(透湿量为3000g/m2*24hr)依次粘结在一起,制得吸湿组件。
实施例2
将1mol氯化钴溶解在无水甲醇中形成混合溶液;在不断搅拌的条件下,将1mol乙醇胺加入氯化钴溶液中,制得络合物,其中氯化钴与乙醇胺的摩尔比为1∶1。在85℃下制备了5%的壳聚糖溶液。将络合物与壳聚糖溶液按1∶1的体积比搅拌3小时,得到了Co-壳聚糖分散体系。将Co-壳聚糖分散液倒入培养皿中风干48小时,得到Co-壳聚糖复合膜。将Co-壳聚糖复合膜在80℃加热1小时,去除剩余水分。将纺粘布、吸湿复合膜、无尘纸、PE底膜(透湿量为1500g/m2*24hr)依次粘结在一起,制得吸湿组件。
实施例3
将1.2mol氯化锌溶解在无水乙醇中形成混合溶液;在不断搅拌的条件下,将0.4mol二乙醇胺加入氯化锌溶液中,制得络合物,其中氯化锌与乙醇胺的摩尔比为3∶1。在85℃下制备了10%的壳聚糖溶液。将络合物与壳聚糖溶液按1∶5的体积比搅拌2小时,得到了Zn-壳聚糖分散体系。将Zn-壳聚糖分散液倒入培养皿中风干48小时,得到Zn-壳聚糖复合膜。将Zn-壳聚糖复合膜在50℃加热4小时,去除剩余水分。将水刺布、吸湿复合膜、无尘纸、PE底膜(透湿量为1000g/m2*24hr)依次粘结在一起,制得吸湿组件。
实施例4
将2mol氯化锌溶解在无水乙醇中形成混合溶液;在不断搅拌的条件下,将0.5mol乙醇胺加入氯化锌溶液中,制得络合物,其中氯化锌与乙醇胺的摩尔比为4∶1。在85℃下制备了20%的壳聚糖溶液。将络合物与壳聚糖溶液按1∶3的体积比搅拌4小时,得到了Zn-壳聚糖分散体系。将Zn-壳聚糖复合膜在60℃加热2小时,去除剩余水分。将纺粘布、吸湿复合膜、无尘纸、PE底膜(透湿量为870g/m2*24hr)依次粘结在一起,制得吸湿组件。
实施例5
将2.5mol氯化锌溶解在无水乙醇中形成混合溶液;在不断搅拌的条件下,将0.5mol三乙醇胺加入氯化锌溶液中,制得络合物,其中氯化锌与乙醇胺的摩尔比为5∶1。在80℃下制备了10%的壳聚糖溶液。将络合物与壳聚糖溶液按1∶4的体积比搅拌2小时,得到了Zn-壳聚糖分散体系。将Zn-壳聚糖分散液倒入培养皿中风干24小时,得到Zn-壳聚糖复合膜。将Zn-壳聚糖复合膜在65℃加热2小时,去除剩余水分。将纺粘布、吸湿复合膜、无尘纸、PE底膜(透湿量为500g/m2*24hr)依次粘结在一起,制得吸湿组件。
吸湿性能实验
测试方法:将实施例1制备的吸湿组件、吸湿复合膜,与氯化钙粉末、硅胶材料放入恒温恒湿箱内进行吸湿。其中,恒温恒湿箱内的相对湿度为90%,温度为25℃。测试实验前后材料的质量变化。
吸湿量s的计算公式:s=(m1-m0)/m0
其中,m0:材料未吸湿前质量,m1:材料充分吸湿后重量。
吸湿性能测试结果如图2所示。
本发明制备的吸湿复合膜的吸湿能力对比硅胶大大提升,并且也高于氯化钙的吸湿量,复合而成的吸湿组件吸湿性能优越。
将实施例1制备的吸湿组件置于冰箱冷藏室内,如图3所示,湿度短时间内下降并且可以维持,冷藏室内环境湿度维持在较为合适的湿度范围内,保证了果蔬的保鲜度,也没有凝露现象生成。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种吸湿组件的制备方法,其特征在于,所述吸湿组件从内到外依次包括非织造材料、吸湿复合膜、无尘纸和塑料底膜;所述非织造材料作为亲水导湿层,所述吸湿复合膜作为吸湿储湿层,所述无尘纸作为导湿储湿层,所述塑料底膜作为透湿阻气层;所述吸湿复合膜的制备方法,包括以下步骤:
S1、将金属盐溶解在无水有机醇溶液中形成混合溶液;
S2、在不断搅拌的条件下,将醇胺类加入到混合溶液中进行反应,制得络合物;
S3、将壳聚糖溶解于去离子水中,制得5~20%的壳聚糖溶液;
S4、将络合物与壳聚糖溶液按照一定比例搅拌2~4h,得到了分散液;
S5、将分散液倒入培养皿中风干24~48h,继续在50~80℃的烘箱中加热1~4h,去除剩余水分,得到吸湿复合膜。
2.如权利要求1所述的制备方法,其特征在于,步骤S1所述金属盐为氯化锌、氯化钴中的一种;无水有机醇溶液为甲醇、乙醇、丙醇中的一种。
3.如权利要求1所述的制备方法,其特征在于,步骤S2所述醇胺类为乙醇胺、二乙醇胺、三乙醇胺中的一种;混合溶液中金属盐与醇胺类物质的摩尔比为1∶1-5∶1。
4.如权利要求1所述的制备方法,其特征在于,步骤S4中,金属络合物与壳聚糖溶液的体积比为1∶1-1∶5。
5.如权利要求1所述的吸湿组件,其特征在于,所述吸湿组件是由非织造材料、吸湿复合膜、无尘纸和塑料底膜依次通过粘胶相互粘结在一起。
CN202210785672.2A 2022-07-05 2022-07-05 一种吸湿组件的制备方法 Active CN115193228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210785672.2A CN115193228B (zh) 2022-07-05 2022-07-05 一种吸湿组件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210785672.2A CN115193228B (zh) 2022-07-05 2022-07-05 一种吸湿组件的制备方法

Publications (2)

Publication Number Publication Date
CN115193228A true CN115193228A (zh) 2022-10-18
CN115193228B CN115193228B (zh) 2024-04-30

Family

ID=83577411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210785672.2A Active CN115193228B (zh) 2022-07-05 2022-07-05 一种吸湿组件的制备方法

Country Status (1)

Country Link
CN (1) CN115193228B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024153113A1 (en) * 2023-01-18 2024-07-25 The Hong Kong University Of Science And Technology Reusable materials for air dehumidification and moisture removal that is regenerable by mechanical means

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279085A (ja) * 1999-03-31 2000-10-10 Kurashiki Seni Kako Kk 青果物用鮮度保持材
CN106237713A (zh) * 2016-08-05 2016-12-21 安徽嘉乐斯乐净化工程有限公司 一种加湿器用无机粉体协同抗菌改性混合纤维滤料
KR20170040646A (ko) * 2015-10-05 2017-04-13 한국생산기술연구원 유무기나노세공체-금속염화물 하이브리드 수분 흡착 조성물의 제조방법 및 이를 통해 제조되는 수분 흡착 조성물 및 이의 용도

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279085A (ja) * 1999-03-31 2000-10-10 Kurashiki Seni Kako Kk 青果物用鮮度保持材
KR20170040646A (ko) * 2015-10-05 2017-04-13 한국생산기술연구원 유무기나노세공체-금속염화물 하이브리드 수분 흡착 조성물의 제조방법 및 이를 통해 제조되는 수분 흡착 조성물 및 이의 용도
CN106237713A (zh) * 2016-08-05 2016-12-21 安徽嘉乐斯乐净化工程有限公司 一种加湿器用无机粉体协同抗菌改性混合纤维滤料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024153113A1 (en) * 2023-01-18 2024-07-25 The Hong Kong University Of Science And Technology Reusable materials for air dehumidification and moisture removal that is regenerable by mechanical means

Also Published As

Publication number Publication date
CN115193228B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
Karmakar et al. A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications
Kalmutzki et al. Metal–organic frameworks for water harvesting from air
Gordeeva et al. Metal-organic frameworks for energy conversion and water harvesting: A bridge between thermal engineering and material science
Zhu et al. High water adsorption MOFs with optimized pore‐nanospaces for autonomous indoor humidity control and pollutants removal
De Lange et al. Adsorption-driven heat pumps: the potential of metal–organic frameworks
Canivet et al. Structure–property relationships of water adsorption in metal–organic frameworks
Hao et al. Novel porous solids for carbon dioxide capture
US12000122B2 (en) Atmospheric water harvesting system with cross-flow configuration
CN115193228A (zh) 一种吸湿组件的制备方法
US20220168689A1 (en) Use of metal organic frameworks for h2o sorption
Steinert et al. Metal‐Organic Frameworks as Sorption Materials for Heat Transformation Processes
Luo et al. Solar-driven smart ceramic fiber-based monolithic adsorbent for autonomous indoor humidity control
Cheng et al. Recent Advances in Metal-Organic Frameworks for Water Absorption and their Applications
CN111718508A (zh) 一种包含醋酸纤维素的阻气透湿薄膜及其制备方法和应用
US20230173457A1 (en) Package of a tobacco or nicotine containing product comprising a moisture regulating product
CN114849652A (zh) 一种具有高气体分离选择性的活性炭封装咪唑类金属有机骨架复合材料及其制备方法
Zhao et al. Preparation and characterization of composite adsorbent LiCl/zeolite 13X for adsorption system
JPH11190584A (ja) 冷蔵庫
CN111013402B (zh) 一种智能控湿薄膜及制备方法与应用
Bai et al. Performance evaluation of PVA/PEO/LiCl composite as coated heat exchangers desiccants
JP3580334B2 (ja) 真空断熱材
Li et al. PKU-2: An intrinsically microporous aluminoborate with the potential in selective gas separation of CO2/CH4 and C2H2/C2H4
JP3980905B2 (ja) 湿度制御方法
US20230332033A1 (en) Composite material for thermochemical energy storage and method of making same
US20220168704A1 (en) Polymer compositions containing zeolite for enhanced water adsorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant