CN115181029A - d-f跃迁稀土Eu(II)配合物、其制备方法及应用 - Google Patents

d-f跃迁稀土Eu(II)配合物、其制备方法及应用 Download PDF

Info

Publication number
CN115181029A
CN115181029A CN202210804206.4A CN202210804206A CN115181029A CN 115181029 A CN115181029 A CN 115181029A CN 202210804206 A CN202210804206 A CN 202210804206A CN 115181029 A CN115181029 A CN 115181029A
Authority
CN
China
Prior art keywords
unsubstituted
complex
rare earth
hydrogen
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210804206.4A
Other languages
English (en)
Inventor
刘志伟
吴傲奔
赵子丰
霍培昊
郭若垚
卞祖强
黄春辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202210804206.4A priority Critical patent/CN115181029A/zh
Publication of CN115181029A publication Critical patent/CN115181029A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/14Amines containing amino groups bound to at least two aminoalkyl groups, e.g. diethylenetriamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/12Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic the nitrogen atom of the amino group being further bound to hydrocarbon groups substituted by hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/52Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种d‑f跃迁稀土Eu(II)配合物,具有如下任一种结构:
Figure DDA0003735882360000011
,其中,R1,R2独立地选自氢、未取代的烷基、卤素取代的烷基、烷氧基、未取代的烯基、卤素取代的烯基、未取代的炔基、卤素取代的炔基、未取代的芳基、取代的芳基、未取代的苯基、取代的苯基、含O、N、S配位点的烷基或杂环中的任一种;R3,R3’,R4,R4’独立地选自氢、未取代的烷基、卤素取代的烷基、烷氧基、未取代的烯基、卤素取代的烯基、未取代的炔基、卤素取代的炔基、未取代的芳基、取代的芳基、未取代的苯基、取代的苯基中的任一种;X为负一价离子。

Description

d-f跃迁稀土Eu(II)配合物、其制备方法及应用
技术领域
本发明属于有机荧光粉和有机电致发光领域。特别的,本发明涉及一种多齿螯合d-f跃迁稀土Eu(II)配合物及其作为转光荧光粉和电致发光材料的应用。
背景技术
相较于传统的Eu(III),Tb(III)等f-f跃迁稀土离子,Eu(II)为代表的d-f跃迁稀土离子具有激发态寿命短,吸收强度高,光谱可调的特点。但是Eu(II)离子还原性较强,在空气中很容易被氧化为Eu(III)离子,因此其配合物在空气中较难稳定存在,大大限制了此类材料的研究和应用。
如果将Eu(II)离子局限在无机材料的晶格中,可以有效隔绝环境中氧气的侵蚀。目前,基于稀土Eu(II)离子的无机荧光粉已有大量商业化应用,在照明和显示领域中发挥着重要的作用。但是此类无机荧光粉发光效率与粒径存在依赖关系,制备方法大都需要经过高温过程,产品与有机基质的相容性低,可加工性差,限制了Eu(II)稀土发光材料的应用前景。相比之下,稀土配合物发光来自于稀土离子本身,无尺寸依赖效应,合成过程相对温和,与有机体系相容性较好,在光致发光和电致发光等领域都具有广阔的应用前景。
另一方面,旋涂法制备有机发光电致二极管(organic light emitting diodes,OLEDs)具有方法简单、成本低廉、对配合物热稳定性要求不高等优点,但目前商业应用的大部分OLEDs均为真空蒸镀法制备,文献中尚未有关于d-f跃迁配合物旋涂器件的报道。因此,合成具有良好溶解度的Eu(II)配合物,进而通过旋涂法制备OLEDs对于d-f跃迁配合物和OLEDs的发展具有非常重要的意义。
发明内容
在努力解决Eu(II)容易被氧化、旋涂法制备有机发光电致二极管等问题的过程中,本发明的发明人发现,使用一类三氨乙基胺配体对Eu(II)离子进行保护,可以在很大程度上隔绝空气中氧气对Eu(II)离子的侵蚀,进而得到可以在空气中稳定存在的Eu(II)配合物。在此基础上,通过改变配体上取代基,可以实现对发光性质的调控,并改善配合物的溶解性,进而实现旋涂法制备有机发光电致二极管。
本发明的实施例提供一种d-f跃迁稀土Eu(II)配合物,其具有如下任一种结构:
Figure BDA0003735882340000021
,其中,R1,R2独立地选自氢、未取代的烷基、卤素取代的烷基、烷氧基、未取代的烯基、卤素取代的烯基、未取代的炔基、卤素取代的炔基、未取代的芳基、取代的芳基、未取代的苯基、取代的苯基、含O、N、S配位点的烷基或杂环中的任一种;
R3,R3’,R4,R4’独立地选自氢、未取代的烷基、卤素取代的烷基、烷氧基、未取代的烯基、卤素取代的烯基、未取代的炔基、卤素取代的炔基、未取代的芳基、取代的芳基、未取代的苯基、取代的苯基中的任一种;
X为负一价离子;优选的,X选自三氟甲磺酸根、卤素、拟卤素、四氟硼酸根、六氟磷酸根中的至少一种;
优选的,R1,R2独立地选自氢、未取代的C1-C18烷基、卤素取代的C1-C18烷基、C1-C18烷氧基、未取代的C2-C18烯基、卤素取代的C2-C18烯基、未取代的C2-C18炔基、卤素取代的C2-C18炔基、未取代的C6-C30芳基、取代的C6-C30芳基、未取代的苯基、取代的苯基、含O、N、S配位点的烷基或杂环中的任一种;
优选的,R3,R3’,R4,R4’独立地选自氢、未取代的C1-C18烷基、卤素取代的C1-C18烷基、C1-C18烷氧基、未取代的C2-C18烯基、卤素取代的C2-C18烯基、未取代的C2-C18炔基、卤素取代的C2-C18炔基、未取代的C6-C30芳基、取代的C6-C30芳基、未取代的苯基、取代的苯基中的任一种;
优选的,R1,R2独立地选自氢、未取代的C1-C18烷基、卤素取代的C1-C18烷基、未取代的C6-C30芳基、取代的C6-C30芳基、含O、N、S配位点的C1-C18烷基或杂环,R3,R4独立地选自氢、未取代的C1-C18的烷基;
进一步优选的,R1,R2独立地选自氢、甲基、亚甲基呋喃、亚甲基噻吩、苄基、亚甲基咔唑、亚甲基吡唑中的任一种,R3,R4独立地选自氢、甲基;
进一步优选的,R1为氢,R2选自甲基、亚甲基呋喃、亚甲基噻吩、苄基中的任一种,R3、R4为氢。
根据本发明的一种实施方式,例如,所述d-f跃迁稀土Eu(II)配合物的结构式为:
Figure BDA0003735882340000041
其中,R1、R2、R3、R3’、R4、R4’均为氢,X为I、Br或Cl。
根据本发明的一种实施方式,例如,所述d-f跃迁稀土Eu(II)配合物的结构式为:
Figure BDA0003735882340000042
其中,X为I,R1、R3、R3’、R4、R4’均为氢;
或者,X为I,R1、R3’、R4、R4’均为氢,R3为CH3
或者,X为I,R3、R3’、R4、R4’均为氢,R1为CH3
根据本发明的一种实施方式,例如,所述d-f跃迁稀土Eu(II)配合物的结构式为:
Figure BDA0003735882340000051
其中,X为I,R1、R2为CH3,R3、R3’、R4、R4’为氢;
或者,X为I,R1为H,R2为苯基,R3、R3’、R4、R4’为氢;
或者,X为I,R1为H,R2为噻吩基,R3、R3’、R4、R4’为氢。
根据本发明的一种实施方式,例如,所述d-f跃迁稀土Eu(II)配合物的结构式为:
Figure BDA0003735882340000052
其中,X为I,R1为H,R2为呋喃基,R3、R3’、R4、R4’为氢。
本发明的实施例还提供一种电致发光器件,所述包括电致发光器件阴极、阳极,以及位于所述阴极和所述阳极之间的发光层,所述发光层包括如上所述的d-f跃迁稀土Eu(II)配合物;
优选的,所述发光层包括主体材料和掺杂材料,所述掺杂材料包括如上所述的d-f跃迁稀土Eu(II)配合物;
优选的,所述主体材料的三重态能级ET>2.7eV;
优选的,所述d-f跃迁稀土Eu(II)配合物在所述主体材料中的掺杂浓度为5-15wt%,优选8-13wt%,优选10-12wt%,优选11wt%;
优选的,所述电致发光器件还进一步包括位于所述阳极和所述发光层之间的空穴传输层;
优选的,所述电致发光器件还进一步包括位于所述阴极和所述发光层之间的电子传输层;
优选的,所述电致发光器件的结构为:ITO/PEDOT:PSS(40nm)/PVK(Approx.Mw90000)(50nm)/PCZAC:Eu5(11wt%,60nm)/TmPyPB(40nm)/LiF(0.7nm)/Al。
根据本发明的一种实施方式,例如,所述发光层和所述空穴传输层均采用旋涂法制备。
本发明的实施例还提供一种发光膜,所述发光膜包括高分子材料及如上所述的d-f跃迁稀土Eu(II)配合物;
优选的,所述d-f跃迁稀土Eu(II)配合物与所述高分子材料的质量比为0.1-10:100,优选为0.5-2:100,进一步优选为0.8-1.2:100;
优选的,所述高分子材料为PMMA树脂,所述d-f跃迁稀土Eu(II)配合物与所述PMMA树脂的质量比为1:100。
本发明的实施例还提供一种LED器件,所述LED器件包括LED芯片及附着在所述LED芯片上的发光层,所述发光层包括高分子材料及如上所述的d-f跃迁稀土Eu(II)配合物;
优选的,所述高分子材料为热固型树脂;
优选的,所述d-f跃迁稀土Eu(II)配合物与所述高分子材料的质量比为0.1-10:10,优选为0.5-2:10,进一步优选为0.8-1.2:10;
优选的,所述高分子材料为热固型硅酮封装胶;所述d-f跃迁稀土Eu(II)配合物与所述高分子材料的质量比为1:10。
附图说明
图1是本发明实施例提供的配合物Eu1-3、Eu5-8、Eu10的晶体结构,其中,Eu1-3、Eu5-8、Eu10在50%概率水平上原子表现为球体的晶体结构示意图。
图2是本发明实施例制备的Eu2固体粉末量子产率随紫外老化时间变化曲线。
图3是本发明实施例制备的配合物的室温发射光谱。
图4是本发明实施例制备的配合物Eu5掺杂薄膜光致发光量子产率。
图5是本发明实施例制备的电致发光器件D1的电致发光发射光谱。
图6是本发明实施例制备的电致发光器件D1的电流密度-电压-亮度曲线。
图7是本发明实施例制备的电致发光器件D1的功率效率-亮度-EQE曲线。
图8是采用本发明实施例的配合物Eu3制造的LED器件亮度随电压变化曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于附图和以下实施例。
下文将结合具体实施例对本发明的Eu(II)配合物及其作为电致发光材料、光致发光材料的应用做更进一步的说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
本发明的实施例从三氨乙基胺出发,合成了三种Eu(II)配合物,其结构如下式1所示。得到的Eu(II)配合物具有明亮的黄光发射,同时兼具较高的量子产率和空气稳定性。以此为基础,通过在三氨乙基胺配体引入大位阻基团、新的配位基团以及改变骨架配位原子的方式,得到了一系列发光从蓝光到黄光的Eu(II)配合物,实现了这类配合物的光谱调节。
Figure BDA0003735882340000081
式1三氨乙基胺和Eu(II)配位结构示意图。
合成与表征:
Figure BDA0003735882340000082
式2配合物Eu1~Eu10合成路线
配合物的合成路线如上式2所示,其中Eu-1、Eu-2、Eu-3、Eu-4、Eu-8、Eu-9的配体均为直接购买得到;Eu-5、Eu-6、Eu-7的配体通过三氨乙基胺和醛反应得到希夫碱中间体,再进行还原得到;Eu-10的配体通过三乙醇胺拔氢后和碘甲烷反应得到。所得配体和卤化亚铕在四氢呋喃或二氯甲烷中反应即可得到配合物。
配合物的晶体结构如图1所示。
目前已经得到Eu1-3、Eu5-8、Eu10的单晶结构,如图1所示。其中Eu1-3、Eu8、Eu10为配体与Eu(II)2:1配位的结构,Eu5、7为碘离子桥连的双核配合物,配体与Eu(II)比例为1:1,由于位阻基团的引入限制了第二个配体的配位,最终Eu(II)的配位数为7。Eu-6为配体与Eu(II)比例1:1直接配位的配合物,配位基团的引入增加了配体的配位点,使得配合物不需要I离子的桥连即可实现较高的配位数。
鉴于Eu(II)配合物理论上是一类优异的电致发光材料,本发明的发明人合成了十个Eu(II)配合物Eu1-10(四种化合物的结构如上式2所示),并对其光致发光和电致发光性质进行了相应的研究。四种配合物的发光均来自于中心Eu(II)的d-f跃迁,且通过改变配体结构进而改变Eu(II)周围的配体场获得了不同发光颜色的Eu(II)配合物。黄绿光发射的Eu2、Eu3在固体粉末状态下的光致发光量子产率(PLQY)均大于70%,在波长365nm辐照强度为25-30瓦每平米的紫外灯照射400小时,配合物Eu2仍能保持大于10%的量子产率,证明了此类配合物有可能在LED荧光粉、农用转光膜等领域具有应用潜力。同时,本发明的发明人还制备了基于Eu5的OLEDs器件,通过器件结构优化,发现最优器件的最大亮度为1780cd m-2,最大外量子效率为9.2%,说明这类材料也是一类非常有潜力的OLEDs发光材料。
实施例1配合物的制备与表征:
Eu1的合成:手套箱中取0.4058g(1mmol)碘化亚铕分散于20mL甲醇中,0.3mL(2mmol)三(2-氨基乙基)胺分散于10mL甲醇,缓慢滴加至上述碘化亚铕的甲醇溶液中,室温搅拌反应过夜。减压抽去溶剂,用混合溶剂(二氯甲烷:正己烷=1:1)冲洗剩余固体,得黄色产物0.4564g。收率65%。元素分析计算值C12H36EuI2N8:C,20.64;N,16.05;H,5.20。实测值:C,20.85;N,15.92;H,5.14。
Eu2的合成:手套箱中取0.3118g(1mmol)溴化亚铕分散于30mL甲醇中,0.3mL(2mmol)三(2-氨基乙基)胺分散于10mL甲醇,缓慢滴加至上述溴化亚铕的甲醇溶液中,室温搅拌反应24h。将体系抽滤,四氢呋喃冲洗滤饼,收集滤饼得浅黄色产物0.3728g。收率62%。元素分析计算值:C12H36EuBr2N8:C,23.85;N,18.54;H,6.01。实测值:C,23.70;N,18.14;H,5.98。
Eu3的合成:手套箱中取0.2229g(1mmol)氯化亚铕分散于30mL甲醇中,0.3mL(2mmol)三(2-氨基乙基)胺分散于10mL甲醇,缓慢滴加至上述氯化亚铕的甲醇溶液中,室温搅拌反应24h。将体系抽滤,甲醇冲洗滤饼,收集滤饼得浅黄色产物0.4227g。收率82%。元素分析计算值:C12H36EuCl2N8:C,27.97;N,21.74;H,7.04。实测值:C,27.85;N,21.76;H,7.02。
Eu4的合成:手套箱中取0.4058g(1mmol)碘化亚铕分散于20mL四氢呋喃中,0.27mL(1mmol)三(2-二甲氨基乙基)胺分散于10mL四氢呋喃,缓慢滴加至上述碘化亚铕的四氢呋喃溶液中,室温搅拌反应过夜。减压抽去溶剂,二氯甲烷冲洗剩余固体,得白色产物0.5387g。收率85%。元素分析计算值:C12H30EuI2N4:C,22.66;N,8.81;H,4.75。实测值:C,22.85;N,8.38;H,4.70。
Eu5的合成:手套箱中取0.4058g(1mmol)碘化亚铕分散于20mL四氢呋喃中,0.23g(1mmol)配体分散于10mL四氢呋喃,缓慢滴加至上述碘化亚铕的四氢呋喃溶液中,室温搅拌反应过夜。减压抽去溶剂,二氯甲烷/正己烷混合溶剂冲洗剩余固体,得浅黄色产物0.260g。收率52%。元素分析计算值:C54H72Eu2I4N8:C,39.43;N,6.81;H,4.41。实测值:C,39.75;N,6.43;H,4.40。
Eu6的合成:手套箱中取0.4058g(1mmol)碘化亚铕分散于20mL四氢呋喃中,0.387g(1mmol)配体分散于10mL四氢呋喃,缓慢滴加至上述碘化亚铕的四氢呋喃溶液中,室温搅拌反应过夜。减压抽去溶剂,二氯甲烷/正己烷混合溶剂冲洗剩余固体,得白色产物0.342g。收率43%。元素分析计算值:C21H30EuI2N4O3:C,31.84;N,7.07;H,3.82。实测值:C,32.03;N,7.43;H,4.02。
Eu7的合成:手套箱中取0.4058g(1mmol)碘化亚铕分散于20mL四氢呋喃中,0.435g(1mmol)配体分散于10mL四氢呋喃,缓慢滴加至上述碘化亚铕的四氢呋喃溶液中,室温搅拌反应过夜。减压抽去溶剂,二氯甲烷/正己烷冲洗剩余固体,得白色产物0.323g。收率38%。元素分析计算值:C42H60Eu2I4N8S6:C,30.01;N,6.67;H,3.60。实测值:C,29.72;N,6.44;H,3.52。
Eu8的合成:手套箱中取0.4058g(1mmol)碘化亚铕分散于30mL四氢呋喃中,0.28mL(1mmol)三乙醇胺分散于10mL四氢呋喃,缓慢滴加至上述碘化亚铕的四氢呋喃溶液中,室温搅拌24h。将体系抽滤,甲醇冲洗滤饼,收集滤饼得浅黄色产物0.6527g。收率93%。元素分析计算值:C12H30EuI2N2O6:C,20.47;N,3.98;H,4.29。实测值:C,20.74;N,3.86;H,4.28。
Eu9的合成:手套箱中取0.4058g(1mmol)碘化亚铕分散于30mL四氢呋喃中,0.28mL(2mmol)三乙醇胺分散于10mL四氢呋喃,缓慢滴加至上述溴化亚铕的四氢呋喃悬浊液中,室温搅拌3d。将体系抽滤,四氢呋喃冲洗滤饼,收集滤饼得浅黄色产物0.5773g。收率95%。元素分析计算值:C18H42EuI2N2O6:C,27.43;N,3.55;H,5.37。实测值:C,27.14;N,3.40;H,4.82。
Eu10的合成:手套箱中取0.4058g(1mmol)碘化亚铕分散于30mL四氢呋喃中,0.383g(1mmol)三乙醇胺分散于10mL四氢呋喃,缓慢滴加至上述溴化亚铕的四氢呋喃悬浊液中,室温搅拌3d。将体系抽滤,四氢呋喃冲洗滤饼,收集滤饼得浅黄色产物0.5773g。收率95%。元素分析计算值:C18H42EuI2N2O6:C,27.43;N,3.55;H,5.37。实测值:C,27.39;N,3.50;H,5.43。
实施例2配合物的晶体结构
表1.配合物Eu1,2,3,5,6,7,8,10的晶体数据表
Figure BDA0003735882340000121
Figure BDA0003735882340000131
Figure BDA0003735882340000132
Figure BDA0003735882340000141
表2.配合物Eu1,2,3,5,6,7,8,10的Eu-N,Eu-O,Eu-I配位键长
Figure BDA0003735882340000142
通过单晶X射线衍射表征了配合物Eu1,2,3,5,6,7,8,10的晶体结构,其中Eu1-3,Eu8,Eu10配位结构类似,由于两个配体分别从上下较为完整的包裹中心Eu(II),卤素离子未参与配位,因此这类配合物为8配位结构。这五个配合物中的Eu-N键长分别为
Figure BDA0003735882340000151
Eu8、Eu10中的Eu-O键长分别为
Figure BDA0003735882340000152
Eu5、Eu7则为碘离子桥连的双核配合物,配体与Eu(II)的比例为1:1,由于位阻基团的引入限制了第二个配体的配位,最终配合物配位数为7。Eu6为配体和Eu(II)直接1:1配位的配合物,呋喃基团的引入增加了单个配体提供的配位点,使得配体得以与单个配体和两个碘离子形成八配位的结构。
实施例3配合物的光物理性质
由于这类配合物在溶液中发光极弱,因此只对其粉末光物理性质进行了表征。对于配合物Eu1、Eu2、Eu3,由于阴离子未直接配位且平均Eu-N键长较为接近,因此它们的发射光谱非常接近,发射峰位于550nm左右,具有明亮的黄绿光发射。其中Eu2、Eu3具有75%的量子产率,且在空气中放置3个月后,仍保持有50%以上的量子产率。而引入位阻基团之后得到的Eu4、Eu5、Eu7发射均有一定程度的蓝移,这可以归因于N上引入取代基后减弱了其配位能力,以及Eu(II)配位数的降低使得配体场减弱,d轨道分裂能降低,d-f跃迁能量增大。引入配位基团后的Eu6发射相比Eu1-3也有一定程度的蓝移,除了这类配体中的N本身配位能力变弱,还与I、O这些与Eu(II)配位较弱的原子代替了N参与配位有关。而对于Eu8、Eu9、Eu10而言,由于将配体骨架上的三个N原子替换成了配位能力较弱的O原子,其发射也均有一定程度的蓝移,其中Eu10的发射峰位于440nm,为蓝光发射。
这类配合物的激发态寿命均在100ns到500ns之间,该寿命比磷光配合物和TADF分子(微秒量级)更短。其中含O原子配位的配合物普遍具有相对更短的激发态寿命,这可以归因于O原子与Eu(II)较弱的配位能力,配合物整体刚性更差,激发态更易被猝灭,这与它们较低的量子产率(~20%)相一致。
为了表征材料对于紫外光的稳定性,对其中的配合物Eu2进行了紫外老化实验。紫外老化实验用的是UVA340型灯管,功率为40瓦,测试时辐照强度为25~30瓦/平米。如图2所示,Eu2配合物固体粉末在400h紫外老化实验后仍具有10%左右的量子产率,说明其对于紫外辐射具有较好的耐受性。
表3.配合物的光物理性质、空气稳定性和CIE色坐标
Figure BDA0003735882340000161
配合物的光物理性质、空气稳定性和CIE色坐标列于上述表3,配合物的室温发射光谱见附图3。从表3及图2可以看出:这些配合物中,Eu2、Eu3具有良好的空气稳定性,即使在空气中暴露放置超过三个月,固体粉末仍具有50%的较高量子产率。此外,通过在原配体上引入位阻及配位基团,得到了一系列具有新结构的Eu(II)配合物,其发光覆盖了蓝光到黄光的范围。以上结果表明,通过配体结构的设计可以得到高稳定性的Eu(II)配合物,并且可以通过配体场的改变实现光谱的调节。同时结合较短的激发态寿命和较高的PLQY,这类Eu(II)配合物具有成为高效稳定OLED发光材料的潜力。
实施例4电致发光研究
缩写对应的化合物全称:
CzSi 9-(4-叔丁基苯基)-3,6-双(三苯基硅基)-9H-咔唑
mCP 1,3-双(9H-咔唑-9-基)苯
TmPyPB 1,3,5-三[(3-吡啶基)-3-苯基]苯
TAPC 4,4′-环己基二[N,N-二(4-甲基苯基)苯胺]
TmPyPB 1,3,5-三[(3-吡啶基)-3-苯基]苯
TCTA 三(4-(9咔唑基)苯基)胺
oCBP 4,4-二(咔唑基)联苯
mCBP 3,3-二(咔唑基)联苯
PVK 聚乙烯基咔唑
PEDOT:PSS 聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐
PCZAC 9,9-二甲基-10-(9-苯基-9H-咔唑-2-基)-9,10-二氢吖啶
特别选取了同时具有较高光致发光量子产率以及较好溶解性的配合物Eu5进行了溶液法OLED器件的制备。为了研究配合物Eu5的电致发光性能,首先将其掺杂于多种具有较高三重态能级(ET>2.7eV)的主体材料,并使用滨松C9920-02光致发光量子产率测试系统测试了这些薄膜在270nm激发下的光致发光量子产率,如图4所示。当将Eu5以11wt%掺杂于PCZAC时薄膜的光致发光量子产率较高,可达到70%。
鉴于高光致发光效率是高电致发光效率的前提,本发明的发明人以PCZAC为主体材料,Eu5为发光材料制备了OLEDs器件,器件结构如下:
D1:ITO/PEDOT:PSS(40nm)/PVK(Approx.Mw 90000)(50nm)/PCZAC:Eu5(11wt%,60nm)/TmPyPB(40nm)/LiF(0.7nm)/Al
器件的主要性能参数列于表4中。
表4.电致发光器件D1的电致发光性能
Figure BDA0003735882340000181
图5、图6、图7分别展示了器件D1的电致发光发射光谱、电流密度-电压-亮度曲线和功率效率-亮度-EQE曲线。所得器件具有9.2%的最高EQE,而传统f-f跃迁Eu(III)配合物经过数十年的发展,目前文献报道的最高EQE仅为7.8%;同时相比传统Eu(III)配合物的f-f跃迁红光发射,d-f跃迁发光颜色更容易调节,但目前文献报道的蓝光Eu(II)配合物OLED性能较差,最大EQE仅有0.75%,亮度仅为23cd/m2。而该器件发射主峰位于485nm,EQE(9.2%)和亮度(1780cd/m2)均有较大提升,是实现全彩显示不可或缺的蓝光材料。此外该器件的空穴注入层,空穴传输层和发光层均为旋涂法制备,相比文献中传统f-f跃迁稀土配合物OLED常用的真空蒸镀法、旋涂法具有操作简单、成本低廉、对材料升华性能要求更低等优点。
实施例5:
稀土配合物Eu10分散在高分子PMMA中应用做发光膜
将稀土配合物Eu10以及高分子PMMA树脂以质量比1:100混合,并溶解在二氯甲烷溶液中。然后将得到的混合液通过旋涂的方式在清洁的石英玻璃表面形成均匀的高分子膜。
所得到的薄膜在紫外灯的照射下,肉眼可见能够发出明亮的蓝光。使用积分球测得光致发光的绝对量子产率可以达到80%,是一种高效的转光薄膜材料。这一结果表明,本发明实施例提供的配合物可以作为转光薄膜的发光材料应用。
实施例6:
稀土配合物Eu3的固体粉末本身具有高的光致发光效率,使用积分球测得其量子产率为70%,可以作为一种高效、明亮的有机荧光粉材料。将配合物的粉末以质量百分比1∶10分散在热固型硅酮封装胶中,并涂覆在商用的365nm紫外LED芯片表面,然后经120摄氏度加热固化1小时,得到了紫外芯片激发的黄绿光LED器件。
采用计算机控制的Keithley 2400测定仪与PR650谱仪的组合体系,可以测定该黄绿光LED器件的亮度随电压的变化情况(如图8所示)。该器件发光光谱测定结果表明得到了稀土铕离子的d-f黄绿光发射。在3.8V的驱动电压下,器件的最大亮度超过了1000cd m-2。与含稀土的无机荧光粉相比,d-f跃迁稀土配合物荧光粉具有更大的摩尔吸光系数(ε>1000Lmol-1cm-1),更易调节的发光范围。可以有效地减少所用稀土的种类和用量,从而大大降低成本。

Claims (9)

1.一种d-f跃迁稀土Eu(II)配合物,其特征在于,所述d-f跃迁稀土Eu(II)配合物具有如下任一种结构:
Figure FDA0003735882330000011
其中,R1,R2独立地选自氢、未取代的烷基、卤素取代的烷基、烷氧基、未取代的烯基、卤素取代的烯基、未取代的炔基、卤素取代的炔基、未取代的芳基、取代的芳基、未取代的苯基、取代的苯基、含O、N、S配位点的烷基或杂环中的任一种;
R3,R3’,R4,R4’独立地选自氢、未取代的烷基、卤素取代的烷基、烷氧基、未取代的烯基、卤素取代的烯基、未取代的炔基、卤素取代的炔基、未取代的芳基、取代的芳基、未取代的苯基、取代的苯基中的任一种;
X为负一价离子;优选的,X选自三氟甲磺酸根、卤素、拟卤素、四氟硼酸根、六氟磷酸根中的至少一种;
优选的,R1,R2独立地选自氢、未取代的C1-C18烷基、卤素取代的C1-C18烷基、C1-C18烷氧基、未取代的C2-C18烯基、卤素取代的C2-C18烯基、未取代的C2-C18炔基、卤素取代的C2-C18炔基、未取代的C6-C30芳基、取代的C6-C30芳基、未取代的苯基、取代的苯基、含O、N、S配位点的烷基或杂环中的任一种;
优选的,R3,R3’,R4,R4’独立地选自氢、未取代的C1-C18烷基、卤素取代的C1-C18烷基、C1-C18烷氧基、未取代的C2-C18烯基、卤素取代的C2-C18烯基、未取代的C2-C18炔基、卤素取代的C2-C18炔基、未取代的C6-C30芳基、取代的C6-C30芳基、未取代的苯基、取代的苯基中的任一种;
优选的,R1,R2独立地选自氢、未取代的C1-C18烷基、卤素取代的C1-C18烷基、未取代的C6-C30芳基、取代的C6-C30芳基、含O、N、S配位点的C1-C18烷基或杂环,R3,R4独立地选自氢、未取代的C1-C18的烷基;
进一步优选的,R1,R2独立地选自氢、甲基、亚甲基呋喃、亚甲基噻吩、苄基、亚甲基咔唑、亚甲基吡唑中的任一种,R3,R4独立地选自氢、甲基;
进一步优选的,R1为氢,R2选自甲基、亚甲基呋喃、亚甲基噻吩、苄基中的任一种,R3、R4为氢。
2.根据权利要求1所述的d-f跃迁稀土Eu(II)配合物,其特征在于,所述d-f跃迁稀土Eu(II)配合物的结构式为:
Figure FDA0003735882330000021
其中,R1、R2、R3、R3’、R4、R4’均为氢,X为I、Br或Cl。
3.根据权利要求1所述的d-f跃迁稀土Eu(II)配合物,其特征在于,所述d-f跃迁稀土Eu(II)配合物的结构式为:
Figure FDA0003735882330000031
其中,X为I,R1、R3、R3’、R4、R4’均为氢;
或者,X为I,R1、R3’、R4、R4’均为氢,R3为CH3
或者,X为I,R3、R3’、R4、R4’均为氢,R1为CH3
4.根据权利要求1所述的d-f跃迁稀土Eu(II)配合物,其特征在于,所述d-f跃迁稀土Eu(II)配合物的结构式为:
Figure FDA0003735882330000032
其中,X为I,R1、R2为CH3,R3、R3’、R4、R4’为氢;
或者,X为I,R1为H,R2为苯基,R3、R3’、R4、R4’为氢;
或者,X为I,R1为H,R2为噻吩基,R3、R3’、R4、R4’为氢。
5.根据权利要求1所述的d-f跃迁稀土Eu(II)配合物,其特征在于,所述d-f跃迁稀土Eu(II)配合物的结构式为:
Figure FDA0003735882330000041
其中,X为I,R1为H,R2为呋喃基,R3、R3’、R4、R4’为氢。
6.一种电致发光器件,其特征在于,所述包括电致发光器件阴极、阳极,以及位于所述阴极和所述阳极之间的发光层,其特征在于,所述发光层包括如权利要求1-5任一项所述的d-f跃迁稀土Eu(II)配合物;
优选的,所述发光层包括主体材料和掺杂材料,所述掺杂材料包括如权利要求1-5任一项所述的d-f跃迁稀土Eu(II)配合物;
优选的,所述主体材料的三重态能级ET>2.7eV;
优选的,所述d-f跃迁稀土Eu(II)配合物在所述主体材料中的掺杂浓度为5-15wt%,优选8-13wt%,优选10-12wt%,优选11wt%;
优选的,所述电致发光器件还进一步包括位于所述阳极和所述发光层之间的空穴传输层;
优选的,所述电致发光器件还进一步包括位于所述阴极和所述发光层之间的电子传输层;
优选的,所述电致发光器件的结构为:ITO/PEDOT:PSS(40nm)/PVK(Approx.Mw 90000)(50nm)/PCZAC:Eu5(11wt%,60nm)/TmPyPB(40nm)/LiF(0.7nm)/Al。
7.一种权利要求6所述的电致发光器件的制备方法,其特征在于,所述发光层和所述空穴传输层均采用旋涂法制备。
8.一种发光膜,其特征在于,所述发光膜包括高分子材料及如权利要求1-5任一项所述的d-f跃迁稀土Eu(II)配合物;
优选的,所述d-f跃迁稀土Eu(II)配合物与所述高分子材料的质量比为0.1-10:100,优选为0.5-2:100,进一步优选为0.8-1.2:100;
优选的,所述高分子材料为PMMA树脂,所述d-f跃迁稀土Eu(II)配合物与所述PMMA树脂的质量比为1:100。
9.一种LED器件,其特征在于,所述LED器件包括LED芯片及附着在所述LED芯片上的发光层,所述发光层包括高分子材料及如权利要求1-5任一项所述的d-f跃迁稀土Eu(II)配合物;
优选的,所述高分子材料为热固型树脂;
优选的,所述d-f跃迁稀土Eu(II)配合物与所述高分子材料的质量比为0.1-10:10,优选为0.5-2:10,进一步优选为0.8-1.2:10;
优选的,所述高分子材料为热固型硅酮封装胶;所述d-f跃迁稀土Eu(II)配合物与所述高分子材料的质量比为1:10。
CN202210804206.4A 2022-07-07 2022-07-07 d-f跃迁稀土Eu(II)配合物、其制备方法及应用 Pending CN115181029A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210804206.4A CN115181029A (zh) 2022-07-07 2022-07-07 d-f跃迁稀土Eu(II)配合物、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210804206.4A CN115181029A (zh) 2022-07-07 2022-07-07 d-f跃迁稀土Eu(II)配合物、其制备方法及应用

Publications (1)

Publication Number Publication Date
CN115181029A true CN115181029A (zh) 2022-10-14

Family

ID=83518323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210804206.4A Pending CN115181029A (zh) 2022-07-07 2022-07-07 d-f跃迁稀土Eu(II)配合物、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN115181029A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR105522A1 (es) * 2015-07-29 2017-10-11 Esteve Labor Dr Derivados de amida sustituida que tienen actividad multimodal contra el dolor
AR108535A1 (es) * 2016-05-20 2018-08-29 Esteve Labor Dr Derivados de tetrahidropirano y tiopirano que tienen actividad multimodal contra el dolor
CN113801150A (zh) * 2020-06-15 2021-12-17 北京大学 Eu(II)配合物及其作为电致发光材料的应用
CN114057780A (zh) * 2020-07-29 2022-02-18 北京大学 吡唑硼Ce(III)配合物及其作为电致发光材料的应用
CN114057779A (zh) * 2020-07-29 2022-02-18 北京大学 混配型Ce(III)配合物及其作为电致发光材料的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR105522A1 (es) * 2015-07-29 2017-10-11 Esteve Labor Dr Derivados de amida sustituida que tienen actividad multimodal contra el dolor
AR108535A1 (es) * 2016-05-20 2018-08-29 Esteve Labor Dr Derivados de tetrahidropirano y tiopirano que tienen actividad multimodal contra el dolor
CN113801150A (zh) * 2020-06-15 2021-12-17 北京大学 Eu(II)配合物及其作为电致发光材料的应用
CN114057780A (zh) * 2020-07-29 2022-02-18 北京大学 吡唑硼Ce(III)配合物及其作为电致发光材料的应用
CN114057779A (zh) * 2020-07-29 2022-02-18 北京大学 混配型Ce(III)配合物及其作为电致发光材料的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李海燕;赵永亮;魏晓燕;周永生;杜燕;李欢欢;: "掺杂卤代苯甲酸、含氮杂环铕配合物的合成、表征及荧光性能研究", 稀土, no. 04 *
郑玉山;李文先;陈丽娟;: "对甲苯基苯乙烯基亚砜稀土高氯酸盐体系中Tm~(3+)→Eu~(3+)的荧光增强效应", 稀土, no. 05 *

Similar Documents

Publication Publication Date Title
Zhang et al. Novel Heteroleptic CuI Complexes with Tunable Emission Color for Efficient Phosphorescent Light‐Emitting Diodes
Ding et al. Solution‐Processible Red Iridium Dendrimers based on Oligocarbazole Host Dendrons: Synthesis, Properties, and their Applications in Organic Light‐Emitting Diodes
Huang et al. New tetraphenylethene-based efficient blue luminophors: aggregation induced emission and partially controllable emitting color
Li et al. Dendritic europium complex as a single dopant for white-light electroluminescent devices
Kim et al. White‐Light‐Emitting Diodes Based on Iridium Complexes via Efficient Energy Transfer from a Conjugated Polymer
Ding et al. Highly efficient green‐emitting phosphorescent iridium dendrimers based on carbazole dendrons
CN106967060A (zh) 系列咔唑衍生物及应用
Ban et al. Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes
Chen et al. An oligocarbazole-encapsulated heteroleptic red iridium complex for solution-processed nondoped phosphorescent organic light-emitting diodes with over 10% external quantum efficiency
JP2008525608A (ja) 硬質アミン
CN110551157B (zh) 一种二价铂配合物及其制备方法和应用
Zhang et al. Photo-and electro-luminescence of four cuprous complexes with sterically demanding and hole transmitting diimine ligands
CN106220649A (zh) 一种基于二芳基酮的化合物及其在有机电致发光器件上的应用
He et al. Efficient solution-processed electrophosphorescent devices using ionic iridium complexes as the dopants
Biju et al. White OLEDs based on a novel Eu III-tetrakis-β-diketonate doped into 4, 4′-N, N′-dicarbazolebiphenyl as emitting material
Sun et al. Multi-substituted dibenzo [a, c] phenazine derivatives as solution-processable thermally activated delayed fluorescence materials for orange–red organic light-emitting diodes
Wang et al. Blue AIEgens bearing triphenylethylene peripheral: adjustable intramolecular conjugation and good device performance
Liu et al. Efficient and high colour-purity green-light polymer light-emitting diodes (PLEDs) based on a PVK-supported Tb 3+-containing metallopolymer
Zhou et al. Modulation of excited state property based on benzo [a, c] phenazine acceptor: three typical excited states and electroluminescence performance
Wei et al. High Performance Polymer Electrophosphorescent Devices with tert‐Butyl Group Modified Iridium Complexes as Emitters
Zhu et al. The counter anion effect of ion-type phosphorescent dye tris (4, 7-diphenyl-1, 10-phenanthroline) ruthenium (II) complexes as dopant for light-emitting diodes
Chen et al. Phosphonate substituted 4, 4′-bis (N-carbazolyl) biphenyl with dominant electron injection/transport ability for tuning the single-layer device performance of self-host phosphorescent dendrimer
Song et al. Panchromatic luminescent D–π–A benzothiazoles with different π-bridging modulation: Design, synthesis and application in WLED devices
CN115181029A (zh) d-f跃迁稀土Eu(II)配合物、其制备方法及应用
Zhao et al. Highly efficient white electroluminescence from dual-core star-shaped single polymer: performance improved by changing the non-emissive core

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination