CN115180948B - 一种激光照明用高光效复相荧光陶瓷及其制备方法 - Google Patents

一种激光照明用高光效复相荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN115180948B
CN115180948B CN202210813509.2A CN202210813509A CN115180948B CN 115180948 B CN115180948 B CN 115180948B CN 202210813509 A CN202210813509 A CN 202210813509A CN 115180948 B CN115180948 B CN 115180948B
Authority
CN
China
Prior art keywords
light
phase
complex
fluorescent ceramic
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210813509.2A
Other languages
English (en)
Other versions
CN115180948A (zh
Inventor
张乐
张曦月
李延彬
杨聪聪
黄国灿
王忠英
邵岑
康健
周春鸣
李明
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202210813509.2A priority Critical patent/CN115180948B/zh
Publication of CN115180948A publication Critical patent/CN115180948A/zh
Application granted granted Critical
Publication of CN115180948B publication Critical patent/CN115180948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/77744Aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种激光照明用高光效复相荧光陶瓷及其制备方法,以Y2O3、Al2O3、CeO2、MgO和SiO2作为原料粉体,通过控制烧结温度制备出的以Y3MgAl3SiO12相作为主相,(Y/Mg)4(Al/Si)2O9为二相的复相荧光陶瓷,二相作为散射中心,增强了光散射效应,显著提高了其光提取率。本发明制得的复相陶瓷在波长为455nm蓝光LD芯片激发下,可承受激发功率密度为35Wmm‑2~45Wmm‑2,发射205lm/W~265lm/W的超高光效黄橙光,且制备方法简单,用时短,烧结温度相对较低,可应用于LD器件工业化生产。

Description

一种激光照明用高光效复相荧光陶瓷及其制备方法
技术领域
本发明涉及荧光陶瓷材料技术领域,具体涉及一种激光照明用高光效复相荧光陶瓷及其制备方法。
背景技术
钇铝石榴石简称YAG(Yttrium Aluminum Garnet),其化学式为Y3A15O12,是氧化物Y2O3和Al2O3反应生成的一种复合产物,属于立方晶系,具有良好的化学稳定性和高量子效率,且离子格位十分丰富。Ce:YAG荧光陶瓷由于在LED照明方面的成功应用,使它被认为是一种极具潜力的激光照明用荧光陶瓷材料。然而在超高功率密度LD激发下,由于Ce:YAG透明荧光陶瓷缺乏光散射中心,会使得未经散射和转换的蓝光光斑直接穿透透明荧光陶瓷,造成“黄环”现象,严重影响了出光一致性。因此,激光照明需要更有效的散射中心来增加光的吸收,使蓝色激光束均匀化,增强光提取率。
为了解决光提取率低的问题,在采用YAG作为基质材料制备复相陶瓷方面,CN109133940A公开了一种黄色荧光复相陶瓷及其制备方法与应用,通过将Ce:YAG与AlN混合制备复相荧光陶瓷,该荧光复相陶瓷Ce:YAG的化学式[Y(1-x)Cex]Al5O12,x=0.05-3%。但是AlN作为复相需要在氢气或氮气气氛下烧结,混合制备难度高,陶瓷质量难以保证,烧结温度相对较高,限制了其在高功率LD器件中的应用。
发明内容
本发明的目的之一是提供一种激光照明用高光效复相荧光陶瓷。
本发明的目的之二是提供上述激光照明用高光效复相荧光陶瓷的制备方法,方法简单,烧结温度相对较低。
为实现上述目的,本发明采用的技术方案如下:
第一方面,本发明提供一种激光照明用高光效复相荧光陶瓷,所述复相荧光陶瓷包括作为主相的Y3MgAl3SiO12相,以及均匀分布在主相中的第二相(Y/Mg)4(Al/Si)2O9,其中发光离子为Ce3+
所述复相陶瓷在波长为455nm蓝光LD芯片激发下,可承受激发功率密度为35Wmm-2~45Wmm-2,发射205lm/W~265lm/W的超高光效黄橙光。
第二方面,本发明还提供上述激光照明用高光效复相荧光陶瓷的制备方法,包括以下步骤:
(1)以Y2O3、Al2O3、CeO2、MgO和SiO2作为原料粉体,按分子式(Y1-xCex)3(MgyAl5-2ySiy)O12中对应元素的化学计量比称取各原料,其中x为Ce3+掺杂Y3+位的摩尔百分数,y为Mg2+-Si4 +掺杂Al3+位的摩尔百分数,0.001≤x≤0.005,1≤y≤1.4;
(2)将称量的原料粉体、分散剂聚醚酰亚胺共混后加入无水乙醇,球磨充分混合,将得到的混合浆料烘干,得到混合粉体;
(3)将混合粉体置于管式炉中,在700~900℃下烧结3~6h得到第一次烧结产物,将第一次烧结产物过200目筛后干压制成素坯;
(4)将素坯置于真空烧结炉中,在1450~1500℃下烧结8~10h,真空烧结炉的真空度为10-3pa,得到第二次烧结产物;
(5)将第二次烧结产物在空气中退火,再进行双面抛光得到呈片状的Y3MgAl3SiO12基复相荧光陶瓷,即具有强散射效应的高光效复相荧光陶瓷。
优选的,步骤(2)中所述分散剂聚醚酰亚胺的加入量为所述原料粉总质量的0.8~1wt.%,所述原料粉体总质量与无水乙醇的质量比为1:1~2。
优选的,步骤(2)中所述的球磨转速为180~250rpm,球磨时间为15~30h。
优选的,步骤(2)中所述混合浆料烘干的温度为70~90℃,烘干时间为10~15h。
优选的,步骤(5)中所述的退火温度为1200~1400℃,退火温度为30~40h。
在本发明中,通过控制烧结温度制备出的以Y3MgAl3SiO12相作为主相,(Y/Mg)4(Al/Si)2O9为二相的复相荧光陶瓷,具有强散射效应,极大地提升了光提取效率。
与现有技术相比,本发明具有如下有益效果:
(1)本发明制备的复相陶瓷在波长为455nm蓝光LD芯片激发下,可承受激发功率密度为35Wmm-2~45Wmm-2,发射205lm/W~265lm/W的超高光效黄橙光。
(2)本发明中MgO和SiO2既作为复相陶瓷的原料,又作为烧结助剂,与Ce:YAG反应生成的二相(Y/Mg)4(Al/Si)2O9作为散射中心,增强了光散射效应,显著提高了其光提取率。
(3)本发明制备的复相荧光陶瓷兼具高亮度和高热稳定性的特点,极大地提升了器件的应用价值。
(4)本发明具有强散射效应的高光效复相荧光陶瓷,制备方法简单,用时短,绿色环保,可应用于LD器件工业化生产。
附图说明
图1是本发明实施例1制备样品的SEM图,图中虚线圆圈标注的为第二相;
图2是本发明中实施例1制备样品的XRD图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中所使用的原料均为市售的粉体商品。
实施例1:制备(Y0.997Ce0.003)3(Mg1.2Al2.6Si1.2)O12
根据化学式(Y0.997Ce0.003)3(Mg1.2Al2.6Si1.2)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.129g、Al2O3 13.396g、CeO2 0.157g、MgO 4.888g和SiO27.287g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为180rpm,球磨20h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为1:1,球磨后的混合料浆在80℃的烘箱中干燥13h得到混合粉体,混合粉体在800℃下煅烧5h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1475℃下烧结9h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1300℃的空气中退火35h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度45Wmm-2,发射出265lm/W的超高光效黄橙光。
图1是本发明实施例1制备样品的SEM图,图中虚线圆圈标注的为第二相;
图2是本发明中实施例1制备样品的XRD图,使用Jade软件进行XRD物相分析,可知除Y3MgAl3SiO12相外,第二相为(Y/Mg)4(Al/Si)2O9
实施例2:制备(Y0.997Ce0.003)3(MgAl3Si)O12
根据化学式(Y0.997Ce0.003)3(MgAl3Si)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.129g、Al2O3 15.457g、CeO2 0.157g、MgO 4.073g和SiO2 6.072g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为180rpm,球磨20h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为1:1,球磨后的混合料浆在80℃的烘箱中干燥13h得到混合粉体,混合粉体在800℃下煅烧5h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1475℃下烧结9h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1300℃的空气中退火35h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度42Wmm-2,发射出247lm/W的超高光效黄橙光。
实施例3:制备(Y0.997Ce0.003)3(Mg1.4Al2.2Si1.4)O12
根据化学式(Y0.997Ce0.003)3(Mg1.4Al2.2Si1.4)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.129g、Al2O3 11.335g、CeO2 0.157g、MgO 5.703g和SiO28.501g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为180rpm,球磨20h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为1:1,球磨后的混合料浆在80℃的烘箱中干燥13h得到混合粉体,混合粉体在800℃下煅烧5h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1475℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1300℃的空气中退火9h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度35Wmm-2,发射出260lm/W的超高光效黄橙光。
实施例4:制备(Y0.999Ce0.001)3(Mg1.2Al2.6Si1.2)O12
根据化学式(Y0.997Ce0.003)3(Mg1.2Al2.6Si1.2)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.197g、Al2O3 13.396g、CeO2 0.052g、MgO 4.888g和SiO27.287g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为200rpm,球磨30h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为1:1,球磨后的混合料浆在80℃的烘箱中干燥13h得到混合粉体,混合粉体在800℃下煅烧5h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1475℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1300℃的空气中退火10h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度39Wmm-2,发射出237lm/W的超高光效黄橙光。
实施例5:制备(Y0.995Ce0.005)3(Mg1.2Al2.6Si1.2)O12
根据化学式(Y0.995Ce0.005)3(Mg1.2Al2.6Si1.2)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.061g、Al2O3 13.396g、CeO2 0.261g、MgO 4.888g和SiO27.287g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为200rpm,球磨时间为25h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为1:1,球磨后的混合料浆在80℃的烘箱中干燥13h得到混合粉体,混合粉体在800℃下煅烧5h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1475℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1300℃的空气中退火35h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度36Wmm-2,发射出217lm/W的超高光效黄橙光。
实施例6:制备(Y0.997Ce0.003)3(Mg1.2Al2.6Si1.2)O12
根据化学式(Y0.997Ce0.003)3(Mg1.2Al2.6Si1.2)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.129g、Al2O3 13.396g、CeO2 0.157g、MgO 4.888g和SiO27.287g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为200rpm,球磨时间为18h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为2:1,球磨后的混合料浆在70℃的烘箱中干燥15h得到混合粉体,混合粉体在700℃下煅烧3h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1450℃下烧结8h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1200℃的空气中退火30h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度38Wmm-2,发射出233lm/W的超高光效黄橙光。
实施例7:制备(Y0.997Ce0.003)3(Mg1.2Al2.6Si1.2)O12
根据化学式(Y0.997Ce0.003)3(Mg1.2Al2.6Si1.2)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.129g、Al2O3 13.396g、CeO2 0.157g、MgO 4.888g和SiO27.287g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为250rpm,球磨时间为15h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为2:1,球磨后的混合料浆在80℃的烘箱中干燥10h得到混合粉体,混合粉体在800℃下煅烧5h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1500℃下烧结9h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1400℃的空气中退火40h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度38Wmm-2,发射出236lm/W的超高光效黄橙光。
实施例8:制备(Y0.999Ce0.001)3(Mg1.2Al2.6Si1.2)O12
根据化学式(Y0.999Ce0.001)3(Mg1.2Al2.6Si1.2)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.197g、Al2O3 13.396g、CeO2 0.052g、MgO 4.888g和SiO27.287g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为250rpm,球磨时间为25h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为1:1,球磨后的混合料浆在80℃的烘箱中干燥13h得到混合粉体,混合粉体在800℃下煅烧5h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1500℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1300℃的空气中退火35h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度39Wmm-2,发射出239lm/W的超高光效黄橙光。
实施例9:制备(Y0.995Ce0.005)3(Mg1.2Al2.6Si1.2)O12
根据化学式(Y0.995Ce0.005)3(Mg1.2Al2.6Si1.2)O12中对应原料的化学计量比,分别称取纯度均为99.99%的Y2O3 34.061g、Al2O3 13.396g、CeO2 0.261g、MgO 4.888g和SiO27.287g,与分散剂聚醚酰亚胺400μL共混后加入无水乙醇,采用行星球磨进行充分混合,球磨转速为180rpm,球磨时间为30h,无水乙醇与原料Y2O3、Al2O3、CeO2、MgO和SiO2粉体总质量的比为1:1,球磨后的混合料浆在80℃的烘箱中干燥15h得到混合粉体,混合粉体在900℃下煅烧6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1450℃下烧结8h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1300℃的空气中退火35h,再进行双面抛光得到呈片状的Ce3+激活的黄橙色荧光陶瓷。
在波长为455nm蓝光LD芯片激发下,可承受激发功率密度36Wmm-2,发射出210lm/W的超高光效黄橙光。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种激光照明用高光效复相荧光陶瓷,其特征在于,所述复相荧光陶瓷包括作为主相的Y3MgAl3SiO12相,以及均匀分布在主相中的第二相(Y/Mg)4(Al/Si)2O9,其中发光离子为Ce3+
通过以下步骤制备得到:
(1)以Y2O3、Al2O3、CeO2、MgO和SiO2作为原料粉体,按分子式(Y1-x Ce x )3(Mg y Al5-2y Si y )O12中对应元素的化学计量比称取各原料,其中x为Ce3+掺杂Y3+位的摩尔百分数,y为Mg2+-Si4+掺杂Al3+位的摩尔百分数,0.001≤x≤0.005,1≤y≤1.4;
(2)将称量的原料粉体、分散剂聚醚酰亚胺共混后加入无水乙醇,球磨充分混合,将得到的混合浆料烘干,得到混合粉体;
(3)将混合粉体置于管式炉中,在700~900℃下烧结3~6h得到第一次烧结产物,将第一次烧结产物过200目筛后干压制成素坯;
(4)将素坯置于真空烧结炉中,在1450~1500℃下烧结8~10h,真空烧结炉的真空度为10-3pa,得到第二次烧结产物;
(5)将第二次烧结产物在空气中退火,再进行双面抛光得到呈片状的Y3MgAl3SiO12基高光效复相荧光陶瓷。
2.根据权利要求1所述的激光照明用高光效复相荧光陶瓷,其特征在于,步骤(2)中所述分散剂聚醚酰亚胺的加入量为所述原料粉体总质量的0.8~1wt.%,所述原料粉体总质量与无水乙醇的质量比为1:1~2。
3.根据权利要求1所述的激光照明用高光效复相荧光陶瓷,其特征在于,步骤(2)中所述的球磨转速为180~250rpm,球磨时间为15~30h。
4.根据权利要求1所述的激光照明用高光效复相荧光陶瓷,其特征在于,步骤(2)中所述混合浆料烘干的温度为70~90℃,烘干时间为10~15h。
5.根据权利要求1所述的激光照明用高光效复相荧光陶瓷,其特征在于,步骤(5)中所述的退火温度为1200~1400℃,退火温度为30~40h。
CN202210813509.2A 2022-07-12 2022-07-12 一种激光照明用高光效复相荧光陶瓷及其制备方法 Active CN115180948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210813509.2A CN115180948B (zh) 2022-07-12 2022-07-12 一种激光照明用高光效复相荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210813509.2A CN115180948B (zh) 2022-07-12 2022-07-12 一种激光照明用高光效复相荧光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN115180948A CN115180948A (zh) 2022-10-14
CN115180948B true CN115180948B (zh) 2023-08-18

Family

ID=83517118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210813509.2A Active CN115180948B (zh) 2022-07-12 2022-07-12 一种激光照明用高光效复相荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115180948B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495424A (zh) * 2006-07-26 2009-07-29 皇家飞利浦电子股份有限公司 包括至少一种多位元素的yag基陶瓷石榴石材料
CN102924073A (zh) * 2012-11-16 2013-02-13 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
WO2018045782A1 (zh) * 2016-09-09 2018-03-15 深圳市绎立锐光科技开发有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
CN108997014A (zh) * 2018-09-28 2018-12-14 成都东骏激光股份有限公司 一种高显色荧光陶瓷及其制备方法与应用
WO2019047822A1 (zh) * 2017-09-07 2019-03-14 中国科学院上海硅酸盐研究所 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN111056840A (zh) * 2019-12-31 2020-04-24 江苏师范大学 一种led/ld照明用高显指、高光效复相荧光陶瓷及其制备方法
WO2021037226A1 (zh) * 2019-08-29 2021-03-04 深圳市中光工业技术研究院 荧光陶瓷及其制备方法、光源装置
CN113396487A (zh) * 2019-02-04 2021-09-14 松下知识产权经营株式会社 发光装置以及使用了该发光装置的医疗装置
CN113402269A (zh) * 2021-06-29 2021-09-17 南通大学 一种可调节不同程度白光的三色透明荧光陶瓷制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697367B (zh) * 2009-09-30 2014-04-02 烁光特晶科技有限公司 一种利用透明陶瓷制备led的方法
US8283843B2 (en) * 2010-02-04 2012-10-09 Nitto Denko Corporation Light emissive ceramic laminate and method of making same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495424A (zh) * 2006-07-26 2009-07-29 皇家飞利浦电子股份有限公司 包括至少一种多位元素的yag基陶瓷石榴石材料
CN102924073A (zh) * 2012-11-16 2013-02-13 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
WO2018045782A1 (zh) * 2016-09-09 2018-03-15 深圳市绎立锐光科技开发有限公司 陶瓷复合材料的制备方法及陶瓷复合材料、光源装置
WO2019047822A1 (zh) * 2017-09-07 2019-03-14 中国科学院上海硅酸盐研究所 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN108997014A (zh) * 2018-09-28 2018-12-14 成都东骏激光股份有限公司 一种高显色荧光陶瓷及其制备方法与应用
CN113396487A (zh) * 2019-02-04 2021-09-14 松下知识产权经营株式会社 发光装置以及使用了该发光装置的医疗装置
WO2021037226A1 (zh) * 2019-08-29 2021-03-04 深圳市中光工业技术研究院 荧光陶瓷及其制备方法、光源装置
CN111056840A (zh) * 2019-12-31 2020-04-24 江苏师范大学 一种led/ld照明用高显指、高光效复相荧光陶瓷及其制备方法
CN113402269A (zh) * 2021-06-29 2021-09-17 南通大学 一种可调节不同程度白光的三色透明荧光陶瓷制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ce∶YAG透明陶瓷的制备和光学性能;宋立业;张振东;屈晓莉;姚冰双;陈华;韩彩芹;徐晓东;章健;;人工晶体学报(第11期);全文 *

Also Published As

Publication number Publication date
CN115180948A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
WO2019047822A1 (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
JP2019094500A (ja) 酸窒化物蛍光粉及びその調製方法、酸窒化物発光体並びに発光デバイス
CN109971477B (zh) 一种钐掺杂硼磷酸盐橙红色荧光粉及其制备方法和应用
CN113249125B (zh) Ce3+掺杂的硅酸盐基绿色荧光粉及其制备方法和应用
CN112159220B (zh) 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN114988862B (zh) 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN113201342A (zh) Ce3+激活的硅酸盐宽带绿色荧光粉及制备方法和应用
CN113897197B (zh) 高热稳定性的蓝光发射荧光材料及其制备方法和应用
CN112266239B (zh) 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN115180948B (zh) 一种激光照明用高光效复相荧光陶瓷及其制备方法
CN115305088B (zh) 基于石榴石结构衍生的荧光粉材料及其制备方法和应用
CN106544024A (zh) 一种镓铝酸盐荧光粉及其制备方法
CN113683407B (zh) 一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法
CN111995398B (zh) 一种用于高显指激光照明的荧光陶瓷及其制备方法
CN110283588B (zh) 一种照明显示用白光led用荧光粉及其制备和应用
CN113087527B (zh) 一种Eu3+激活的红色透明荧光陶瓷及其制备方法
CN112239352A (zh) 一种复相荧光陶瓷材料及其制备方法
CN111072384A (zh) 一种紫外激发荧光陶瓷及其制备方法
CN115650725B (zh) 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN114196402B (zh) 一种Eu掺杂超高显色硼磷酸盐及其制备方法与应用
CN116589271A (zh) 一种激光照明用高热导、高显指复相荧光陶瓷及其制备方法
CN108441213A (zh) 一种红色荧光粉及其制备方法
CN114478008B (zh) 一种固态照明用高显色指数高热稳定性的荧光陶瓷及其制备方法
CN115340366B (zh) 一种高显色指数全光谱荧光材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant