CN115177738A - 一种促进核素排泄的乙二醇壳聚糖dtpa及其制备方法 - Google Patents

一种促进核素排泄的乙二醇壳聚糖dtpa及其制备方法 Download PDF

Info

Publication number
CN115177738A
CN115177738A CN202210977044.4A CN202210977044A CN115177738A CN 115177738 A CN115177738 A CN 115177738A CN 202210977044 A CN202210977044 A CN 202210977044A CN 115177738 A CN115177738 A CN 115177738A
Authority
CN
China
Prior art keywords
dtpa
group
formula
compound
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210977044.4A
Other languages
English (en)
Inventor
刘明华
曾峰
付维林
肖瑶
陈翔宇
曾浩
刘川川
蔡凌虎
张翼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Affiliated Hospital of Army Medical University
Original Assignee
First Affiliated Hospital of Army Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Army Medical University filed Critical First Affiliated Hospital of Army Medical University
Publication of CN115177738A publication Critical patent/CN115177738A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/04Chelating agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种促进核素排泄的乙二醇壳聚糖DTPA及其制备方法,该方法包括将乙二醇壳聚糖(GC)与二乙烯三胺五乙酸制得,由于在壳聚糖(CS)的C6上接枝乙二醇后,可改善壳聚糖的水溶性,同时,其结构上含有的酰胺基、胺基和羟基等易发生化学反应、易修饰的官能团,可使其具有良好的金属螯合性能,促进胃肠道放射性核素的排泄。

Description

一种促进核素排泄的乙二醇壳聚糖DTPA及其制备方法
技术领域
本发明属于药物化学领域,具体涉及一种促进消化道污染核素排泄的乙二醇壳聚糖DTPA及其制备方法。
背景技术
在核电站事故中,对受到内污染的人员进行检测,结果显示他们体内测出的放射性核素主要为131I、89Sr、90Sr、134Cs、137Cs、140Ba、144Ce、147Pm等。FDA已批准于用放射性核素污染治疗的药物有4种:碘化钾、二亚乙基三胺五乙酸锌三钠(Zn-DTPA)、二亚乙基三胺五乙酸钙三钠(Ca-DTPA)和普鲁士蓝(Fe4[Fe(CN)6]3,PB)。目前应用较广的乙烯二胺四乙酸钙钠盐(又称依地酸钙钠,EDTA-CaNa2)和二乙烯三胺五乙酸钙钠盐(又名促排灵,DTPA-CaNa3)。虽然DTPA(二乙烯三胺五乙酸)为FDA推荐使用的广谱螯合剂,但其对肾脏有损害作用,且可与钙离子及机体必须的微量元素如Zn、Mn等发生络合,引起血钙降低及某些微量元素缺失,引起手足抽搐等;DTPA-CaNa3还有胎儿致畸的影响。壳聚糖(CS)及改性后的壳聚糖对金属及放射性核素有良好的鳌合促排效果。乙二醇壳聚糖(GC)是壳聚糖(CS)在C6上接枝乙二醇后的衍生物,其可改善壳聚糖的水溶性,并具有壳聚糖(CS)的生物相容性、可降解性及低毒性等特点,且对辐射损伤有一定的防护作用。
发明内容
本发明的目的在于提供一种促进消化道污染核素排泄的乙二醇壳聚糖DTPA及其制备方法。本发明的乙二醇壳聚糖-二乙烯三胺五乙酸(以下简称为GC-DTPA)可以提高螯合促排能力、增加其使用途径、减少其副作用,方便伤员在核暴露现场使用,并实现“自救互救”。为此本发明为消化道核沾染的早期促排提供快速、高效、副作用小的的广谱螯合促排剂。
本发明的一种促进消化道核素排泄的化合物,具有如式I所示的结构式,
Figure BDA0003798692680000021
式I中,R为
Figure BDA0003798692680000022
由乙二醇、壳聚糖(GC)和DTPA构成。
本发明还提供了一种制备式I所示化合物的方法,包括将式II所示的化合物在EDC和NHS存在下与式III所示的化合物缩合反应,即得,
Figure BDA0003798692680000023
式中n表示聚合度。
优选的,上述本发明的方法,所述EDC和NHS与式II化合物上的-NH2的摩尔比为:(1-1.5):1,更优选为1.2:1,式II化合物与式III化合物的摩尔比为1:1,反应温度为25-35℃,更优选为30℃,反应时间为20-25小时,优选为24小时。
优选的,上述本发明的方法,进一步包括将反应溶液转移至透析袋中去离子水透析3天,冷冻干燥。
本发明还提供式I所示化合物或上述本发明的方法制备的式I化合物在制备促进胃肠道污染核素排泄的药物中的用途。优选的,所述核素为锶,即用于放射性锶污染胃肠道的促排作用。
术语:DTPA为二乙烯三胺五乙酸(式III化合物),GC代表乙二醇壳聚糖(式II化合物),GC-DTPA代表式I化合物,NHS为N-羟基琥珀酰亚胺,EDC为N-(3-二甲氨基丙基)-N’-乙基碳二亚胺盐酸盐。
本发明的GC-DTPA是一种具有广谱螯合促排放射性核素的材料,GC与DTPA通过N-酰化反应得到GC-DTPA,测得其接枝率为196.3%。GC-DTPA为淡黄色固体,易溶于水溶液中,可完全溶解,呈淡黄色澄清液体。GC-DTPA中的GC与DTPA产生明显的协同作用,且它们丰富的羧基及羟基具有螯合促排重金属及放射性核素的作用。本发明的GC-DTPA对放射性核素的促排效果至少或略优于PGC-DTPA(聚乙二醇壳聚糖DTPA),特别是对入血的核素如肝肾作用中的核素也具有良好的促排作用,并可改善DTPA对肾功能的副作用。
附图说明
图1为GC-DTPA的红外吸收光谱图,其中:a为GC,b为GC-DTPA;
图2为GC-DTPA的核磁氢谱图,其中,1为DTPA,2为GC,3为GC-DTPA;
图3为不同浓度GC-DTPA对ICE-6细胞活性的影响对比图;
图4为不同GC-DTPA剂量组大鼠各组时间点体重变化图;
图5为不同GC-DTPA剂量组大鼠各脏器变化情况图;
图6为给药14d不同GC-DTPA剂量组大鼠各脏器组织病理学结果图;
图7为CPM与DPM间的标准曲线图;
图8为放射性锶沾染后不同时间段骨骼中放射性含量图;
图9为各用药组在各时相点血液中β放射性计数结果图;
图10为各用药组锶沾染不同时间段粪便β放射性计数图;
图11为各用药组锶沾染不同时间段尿液放射性锶含量结果图;
图12为各用药组锶沾染48h大鼠小肠组织病理结果图。
具体实施方式
以下实施例仅是典型的和代表性的,用于进一步阐明和理解本发明的实质,但不以任何方式限制本发明的范围。
实施例1
材料及来源
Figure BDA0003798692680000031
Figure BDA0003798692680000041
主要仪器及设备
真空冷冻干燥机LGJ-15D型 北京四环科学仪器厂有限公司
傅里叶红外光谱仪 美国Thermo Scientific公司
核磁共振仪 德国Bruker(布鲁克)公司
制备式I化合物
称取乙二醇壳聚糖(GC,2.86mmol-NH2)1g于250ml烧瓶中,加入50ml去离子水,充分溶解;称取DTPA 1.12g(2.86mmol)于烧瓶中,称取摩尔比为氨基1.2倍的EDC 650mg,NHS380mg于烧瓶中进行催化缩合,30℃,反应24h。将溶液转移至透析袋中去离子水透析3天,冷冻干燥得726mg淡黄色固体。产率:60%。产物用FT-IR,1H NMR进行表征。
傅立叶变换红外光谱(FT-IR)测试
取适量样品与溴化钾(KBr)粉末以质量比1∶200混合,研细压成透明薄片后使用傅立叶变换红外光谱仪采集红外光谱;扫描范围4000cm-1~400cm-1,分辨率1cm-1,扫描128次。分别取GC、GC-DTPA进行测试。结果见图1。
在图1a处1602.74cm-1位置为GC上的-NH2基团,在图1b GC-DTPA上伯胺峰消失;在图1b 1639.38cm-1为GC-DTPA上的-COOH基团,1400cm-1~1200cm-1GC-DTPA上出现仲酰胺键特征峰增强。说明DTPA成功接枝在GC上。
核磁氢谱(1H NMR)表征GC-DTPA的核磁氢谱分析,结果图2。
实施例2GC-DTPA的细胞及常用剂量安全性研究
材料及来源
Figure BDA0003798692680000051
实验动物
健康SPF级雌性SD大鼠,6~8周龄,体质量180g~220g。饲养环境:室温20℃~25℃,相对湿度40%~70%,大鼠自由活动,自由饮水,喂以普通鼠食。
GC-DTPA的细胞毒性实验-CCK8法
取对数生长期大鼠ICE-6细胞,以5×103/孔均匀接种于96孔板,放入37℃、体积分数5%的CO2培养箱中孵育24h,待细胞贴壁生长,吸弃培养液,灭菌PBS轻轻洗涤96孔板中的细胞2次,实验组分别加入含有GC-DTPA(浓度为0.01,0.05,0.1,0.5mg/mL)的DMEM培养基,对照组中加入灭菌的去离子水和DMEM培养,每组设置6个复孔,置于37℃、体积分数5%的CO2培养箱孵育48h后弃去培养基,灭菌的PBS溶液洗涤细胞2次,然后每孔加入100ul CCK-8工作液(CCK-8:DMEM=1:10),置于37℃恒温培养箱中继续孵育1h后,用酶标仪测定450nm处吸光度值(A450 nm),并计算细胞存活率。
细胞存活率(%)=(实验孔-空白孔)/(对照孔-空白孔)×100%。
GC-DTPA常用剂量毒性评价
剂量设置:
1mol DTPA所含有的羧基为5mol;所用的GC(G7753,Sigma),其聚合度n=400,结合GC-DTPA结构式,1molGC-DTPA所含有的羧基为4×400mol,含有的羟基约为2×400mol,故1molGC-DTPA能螯合核素的基团数量为(4×400+2×400)mol,合2400mol,为DTPA的480倍。可推测理论上1mol的GC-DTPA的螯合能力约为DTPA的480倍。根据分子结构式GC-DTPA的分子量约为DTPA分子量的432倍,推测理论上相同质量的DTPA与GC-DTPA的结合能力相当。文献报道大鼠CS、DTPA分别的使用剂量多在30mg/kg~120mg/kg间,因此我们实验设置剂量选择为0~120mg/kg间。因是新合成的产物,本项研究设置60mg/kg、90mg/kg、120mg/kg 3个剂量观察大鼠是否会出现毒副反应。
大鼠日常指标评价
SPF级健康雌性SD大鼠80只,按照随机数字表法将实验动物均分为4组(对照组、60mg/kg组、90mg/kg组、120mg/kg组,n=20),各组GC-DTPA分别溶于1mL0.9%NS中;实验组给药方式均采用灌胃针经口灌胃给药。实验前12h大鼠禁食。对照组给与同等剂量生理盐水,饲养笼中继续饲养观察。于给药后0d、2d、7d、14d观察记录大鼠的日体重变化情况及是否出现如腹泻、便血等临床症状,并详细记录临床症状出现的时间、严重程度、持续时间、是否恢复等情况。
大鼠血常规评价
14d各组随机选取5只大鼠尾静脉采血,行常规血液学检测:白细胞计数(whiteblood cell count,WBC)、红细胞计数(red blood cell count,RBC)、血红蛋白(hemoglobin,HGB)、血小板计数(platelet count,PLT)。
大鼠血液生化检查
14d各组随机选取5只大鼠尾静脉采血,行血液生化学检查:钾离子(K+)、钙离子(Ca2+)、无机磷(P)、尿素氮(blood urea nitrogen,BUN)、肌酐(creatinine,CREA)、丙氨酸转移酶(alanine aminotransferase,ALT)、天冬氨酸转氨酶(aspartateaminotransferase,AST)、碱性磷酸酶(alkaline phosphatase,ALP)、谷氨酰转移酶(γ-glutamyltransferase,GGT)。
组织病理学检查
14d各组随机选取5只大鼠处死后解剖取心脏、肝脏、脾脏、肺、肾脏、卵巢及回盲部相同位置1cm组织取材,用冰PBS冲洗干净后在4%多聚甲醛溶液中充分固定,脱水、透明后用石蜡包埋,切片,常规H&E染色,中性树胶封片后显微镜进行观察。
结果数据统计分析
采用SPSS25.0统计软件进行分析。正态分布计量资料以均数±标准差
Figure BDA0003798692680000071
Figure BDA0003798692680000072
表示,多组间比较采用单因素方差分析,两两比较采用LSD检验。重复测量数据采用重复测量方差分析,当交互作用有统计学意义时进一步采用简单效应分析。以P<0.05表示差异有统计学意义。
实验结果
细胞毒性实验
与对照组相比,随着GC-DTPA浓度的增加对ICE-6细胞的增殖无明显影响(P>0.05),且其浓度达到0.5mg/mL时,细胞存活率均>90%(见图3)。
大鼠体重变化情况
各组大鼠经口灌胃给予不同处理后连续14d未观察到死亡情况,且各组大鼠无腹泻、便血等临床症状。各组大鼠体重在给药前,及给药后第2d、7d、14d称量体重发现,各组大鼠体重于第2d均稍有下降,各组之间无差异(P>0.05,表1,图4),后逐步恢复并稳步增长,且各组大鼠于0d、2d、7d、14d的体重变化无统计学差异(P>0.05,表1,图4)。
表1大鼠给药后各时间点质量(g)变化情况(n=20,
Figure BDA0003798692680000081
)
Figure BDA0003798692680000082
大鼠血液常规检查结果
各组大鼠给药14d血常规检查结果中WBC、RBC、HGB、PLT等指标均无统计学差异(P>0.05,表2)。
表2各组大鼠给药14d常规血液学结果(n=5,
Figure BDA0003798692680000083
)
Figure BDA0003798692680000084
大鼠血液生化检查结果
各组大鼠给药14d血液生化检查结果显示(表3),对照组BUN水平低于60mg/Kg组(P<0.05)、120mg/Kg组(P<0.001);60mg/Kg组、90mg/Kg组及120mg/Kg组CREA水平均高于空白对照组(P<0.001),且ALP水平均低于对照组(P<0.01);实验组ALT、AST、GGT、K+、Ca2+、P水平与对照组无统计学差异(P>0.05)。
表3各组大鼠给药14d血液生化结果(n=5,
Figure BDA0003798692680000091
)
Figure BDA0003798692680000092
大鼠大体解剖和检查结果
各组大鼠心脏、肝脏、脾脏、肺、肾脏及小肠均未见到出血、水肿情况,各器官脏器色泽、形状及大小无异常。见图5。
大鼠组织病理学检查结果
给药14d各组大鼠各脏器组织病理学结果显示(见图6),心脏心内膜、心肌及心外膜结构完整,心肌细胞未见肿胀及变性,间质未见炎症细胞浸润;肝小叶结构显示肝板排列整齐,无肝细胞水肿及其他损伤改变,汇管区结构正常,无纤维化及炎细胞浸润;脾脏结构完整正常,白髓、红髓未见异常;肾单位数量、形态、分布正常,未见明显损伤性改变;肺泡上皮完整,未见出血、水肿以及炎细胞浸润;小肠绒毛排列整齐,未见黏膜损伤及炎细胞浸润;卵巢组织结构清晰,各级卵泡清晰可见,间质血管较丰富,未见炎性细胞浸润。综上,各组大鼠心脏、肝脏、脾脏、肾脏、肺、小肠、卵巢病理均未见明显损伤。另外,各组剩余大鼠继续饲养,连续观察6个月,未出现大鼠死亡情况。图6为各组给药14d各器官组织病理结果(HE染色×100)。
讨论
上述研究表明,将不同剂量的GC-DTPA与ICE-6细胞共培养,细胞在1d~2d快速生长,细胞相对增殖率均在90%以上,表明其无明显的细胞毒性。给予大鼠不同剂量GC-DTPA后,各组大鼠日常活动及6个月的存活状态良好,14d内不同时间点测量大鼠体重发现各组大鼠不同时间点体重无差异,但体重于第2d均稍有下降,考虑可能与灌胃前麻醉及灌胃操作对大鼠食欲的影响有关。14d检测各组大鼠血常规无明显差异(P>0.05),肾功能实验组尿素氮及肌酐结果稍高于对照组,查阅大鼠尿素氮及肌酐正常值范围文献,发现实验组尿素氮及肌酐均在正常值参考范围内,正常值参考范围内BUN 10.4(7.02~13.8)mmol/L;CREA60.6(45.8~75.4)umol/L,无临床意义。且于给药后第14d行各脏器组织病理学检查,心脏、肝脏、脾、肺、肾、肠道及卵巢组织均未见到明显的病理损伤。动物实验表明在给药至120mg/kg时,GC-DTPA具有良好的安全性。研究结果显示,GC-DTPA具有良好的细胞相容性,且GC-DTPA聚合物在常规使用剂量范围内具有良好的安全性。
实施例3GC-DTPA大鼠体内放射性锶促排研究
材料及来源
Figure BDA0003798692680000101
Figure BDA0003798692680000111
实验动物造模及处理
采用89SrCl2溶液,48.8×104Bq/mL,1mL,灌胃针经口灌胃沾染大鼠消化道建模,建模成功后,大鼠随机均分为:生理盐水(NS)组、壳聚糖(CS)溶液组、DTPA溶液组、GC-DTPA溶液组(n=6)。30min后灌胃给药(60mg/kg,NS组给予同等体积NS),分别置于代谢笼中饲养。
放射性计数CPM与DPM标准曲线评价
用标准值为3.7×105Bq/mL的89SrCl2溶液配置浓度分别为3.7×105Bq/mL、3.7×102Bq/mL、7.4×102Bq/mL、1.48×103Bq/mL、2.96×103Bq/mL、5.92×103Bq/mL、1.18×104Bq/mL、2.37×104Bq/mL、4.47×104Bq/mL、9.47×104Bq/mL、1.89×105Bq/mL、3.78×105Bq/mL、7.57×105Bq/mL的放射性89SrCl2溶液,各取100uL行β能谱检测并绘制CPM与DPM的标准曲线。
标本的收集及放射性检测
沾染前、后2h、8h及24h时相点各组大鼠尾静脉采血100μL,加入硝酸中以备后续行放射性核素检测。为连续观察各组大鼠体内89SrCl2在骨骼的沉积情况,于24h时相点取掌骨后继续饲养至48h取股骨行放射性检测。沾染后24h时相点,1%戊巴比妥钠麻醉大鼠,无菌操作取掌骨,PBS清洗后用滤纸吸干,称量并编号保存在4℃冰箱;沾染后48h时相点,大鼠脱颈处死,取左侧股骨用PBS清洗后用滤纸吸干,称量并编号保存在4℃冰箱后续行放射性锶含量检测。收集沾染前24h、沾染后0h~24h、24h~48h各个时间段内24小时总的粪便和尿液,粪便去除食物残渣后称重并记录,尿液用移液枪吸出保存并记量,以测量每日尿液及粪便中放射性锶含量。
样本制备
将掌骨、股骨和粪便在750℃马弗炉中灰化2小时,溶于硝酸,用1mmol/L NaOH中和至PH 4~6。CPM由液体闪烁谱仪检测[33]
沾染前后血常规评价
各组大鼠大鼠尾静脉采血,行常规血液学检测:白细胞计数(white blood cellcount,WBC)、红细胞计数(red blood cell count,RBC)、血红蛋白(hemoglobin,HGB)、血小板计数(platelet count,PLT)。
沾染前后血液生化评价
各组大鼠沾染前,沾染后48h尾静脉采血,行血液生化学检查:钾离子(K+)、钙离子(Ca2+)、无机磷(P)、尿素氮(blood urea nitrogen,BUN)、肌酐(creatinine,CREA)、丙氨酸转移酶(alanine aminotransferase,ALT)、天冬氨酸转氨酶(aspartateaminotransferase,AST)。
小肠组织病理学检查
各大鼠取回盲部相同位置的1cm组织,用冰PBS冲洗干净后,经4%多聚甲醛固定后,石蜡包埋切片,HE染色后显微镜下观察。每组随机选取6张切片,由2名病理科医生按照Nadler标准独立评分。当意见不一致时由第三位病理科医生讨论确定评分。
统计学分析
应用SPSS 25.0统计软件进行数据处理。正态分布计量资料以均数±标准差
Figure BDA0003798692680000121
表示,多组间比较采用单因素方差分析,两两比较采用LSD检验。重复测量数据采用重复测量方差分析,当交互作用有统计学意义时进一步采用简单效应分析。以P<0.05表示差异有统计学意义。
实验结果
将所有样品测得的放射性计数CPM根据以下公式转换为DPM
计算公式
Figure BDA0003798692680000122
E:探测效率。
由图7可知,测得的CPM与DPM间有良好的线性关系,Y=0.02778X+0.0008744R2=1。
骨骼放射性锶含量结果见图8,图中为沾染后不同时间段骨骼中放射性含量(n=6)其中,A沾染24h时相点掌骨放射性锶含量,DPM/g×104;B沾染48h时相点,股骨放射性锶含量,DPM/g×104;*表示差异有统计学意义,P<0.05;**P<0.01;***P<0.001。
沾染24h,掌骨放射性锶含量GC-DTPA组低于NS组、CS组及DTPA组(P<0.001,图8A);沾染48h,股骨放射性锶含量GC-DTPA组低于NS组(P<0.01)、CS组(P<0.05)、DTPA组(P<0.05,图10B)。
血液不同时间点放射性锶含量结果,结果见表4和图9
表4各组不同时相点血液放射锶含量(DPM/mL×102
Figure BDA0003798692680000131
n=6)
Figure BDA0003798692680000132
各时相点血液中β放射性计数结果(n=6)表明,CS组、DTPA组、GC-DTPA组血液放射性锶含量于沾染前、沾染后2h、8h、24h等时相点的变化趋势与NS组相同,且在2h达到峰值,但于8h时相点GC-DTPA组血液中放射性锶含量低于NS组(P<0.05);其余时相点各组大鼠血液中放射性锶含量无明显差异(P>0.05)。
粪便放射性锶含量结果
结果见表5和图10,GC-DTPA组0h~24h粪便放射性锶含量显著高于NS组(P<0.001)、CS组(P<0.01)、DTPA组(P<0.01)。GC-DTPA组24h~48h粪便放射性锶含量低于DTPA及CS组(P<0.05),且NS组显著低于CS组、DTPA组(P<0.01)。
表5各组不同时间段粪便放射性锶含量(DPM×104
Figure BDA0003798692680000133
n=6)
Figure BDA0003798692680000134
Figure BDA0003798692680000141
图10为沾染不同时间段粪便β放射性计数(n=6),其中,(A,B)大鼠沾染后第1天(0h~24h)、第2天(24h~48h)总的粪便放射性锶含量(DPM×104);*表示与GC-DTPA组相比较差异有统计学意义,*P<0.05;***P<0.001;#表示与NS组相比较差异有统计学意义,##P<0.01。
尿液放射性锶含量结果
结果见表6和图11,0h~24h尿液放射性锶含量DTPA组均显著低于GC-DTPA组(P<0.05)、CS组(P<0.01);NS组明显低于CS组(P<0.01图11A,表6)。24h~48h尿液放射性锶含量DTPA组显著低于CS组、GC-DTPA组(P<0.001),且NS组低于CS组、GC-DTPA组(P<0.001),CS组低于GC-DTPA组(P<0.01,图11B,表6)。
表6各组不同时间段尿液放射性锶含量(DPM×104
Figure BDA0003798692680000142
n=6)
Figure BDA0003798692680000143
图11中,锶沾染不同时间段尿液放射性锶含量结果(n=6),其中,A,B分别代表大鼠沾染后第1天(0h~24h)、第2天(24h~48h)总的尿液放射性锶含量(DPM×104);*表示与GC-DTPA组相比较差异有统计学意义,*P<0.05;**P<0.01;***P<0.001;#表示与CS组相比较差异有统计学意义,#P<0.01;###P<0.001。
沾染前后血常规评价
各组大鼠给与处理后的血常规结果中WBC、RBC、HGB、PLT等指标均无统计学差异(P>0.05),见表7。
表7各组大鼠给药后不同时间点常规血液学结果(n=6,
Figure BDA0003798692680000151
)
Figure BDA0003798692680000152
沾染前后血液生化评价
各组大鼠的血液生化检查结果显示(表8),BUN水平CS组低于DTPA组(P<0.01);GC-DTPA组低于DTPA组(P<0.05);各组间K+、Ca2+、Mg2+、P、CREA、AST水平与对照组无统计学差异(P>0.05)。
表8各组大鼠给药48h后血液生化结果(n=6,
Figure BDA0003798692680000161
)
Figure BDA0003798692680000162
注:与DTPA组相比,*P<0.05;**P<0.01
肠道病理及评分结果见图12和表9,各组沾染48h大鼠小肠组织病理结果(HE染色×100)
表9小肠组织病理评分表(分,n=6,
Figure BDA0003798692680000163
)
Figure BDA0003798692680000164
注:*表示与正常对照组相比,*P<0.05,**P<0.01,***P<0.001;#表示与GC-DTPA组相比,#P<0.05;##P<0.01;###P<0.001。
图12和表9的结果表明,染毒48h肠道病理结果显示,各组肠道病理相较于正常对照组均出现不同程度的损伤,其中以NS组及DTPA组损伤最重,肠壁绒毛变性,伴有坏死、脱落,腺体排列紊乱,肌层变薄甚至穿孔。GC-DTPA组肠道病理损伤情况轻于NS组(P<0.001)、CS组(P<0.05)及DTPA组(P<0.001)。
讨论
从放射性核素锶为亲骨核素,其在骨骼放射性锶含量分析,24h时相点掌骨及48h时相点股骨中GC-DTPA组均低于NS、CS及DTPA组,显示出GC-DTPA对经消化道摄入的89SrCl2有良好的促排效果。为明确经消化道摄入的89SrCl2从机体排出的途径,本研究还测量了血液及大小便中放射性核素分布情况。
CS、DTPA、GC-DTPA各组中血液放射性锶含量变化趋势与NS组相同,在2小时达放射性锶含量达到峰值,与既往研究结果相同。但在8小时时相点GC-DTPA明显组低于NS组(P<0.05),这说明给与GC-DTPA后经消化道吸收入血的89SrCl2较少,其促进了经消化道途径摄入的89SrCl2在消化道的排出。查相关参考文献,在24h时相点血液中放射性水平接近于本地水平,且本底水平的变化会对测得的β放射性锶含量产生影响,测得的放射性水平高于本底水平5倍以上才有意义。如表4-1,测得的血液中放射性锶含量在24h时相点后与本底水平接近,各组间的差异不能进行统计学分析。8h时相点至24h时相点血液中放射性锶含量GC-DTPA组低于其他各组的原因可能为部分核素经尿液排出体外,另外各组血液中放射性锶含量在24h后测得的接近于本地水平,应该与锶的化学特性有关,锶为亲骨核素,吸收入血的放射性核素可很快的分布于骨骼中。
从粪便的排出情况可以看出,摄入放射性核素89SrCl2后第一天内GC-DTPA组大便总的放射性锶含量明显高于其他组,这表明经消化道沾染的89SrCl2在给与GC-DTPA处理后可快速的被排出体外。同时GC-DTPA上的羟基及羧基基团可与89SrCl2溶液中的锶离子发生螯合,故推测GC-DTPA可与放射性核素发生螯合并促进放射性核素从消化道排出,从而减少89SrCl2吸收入血造成机体的损伤。第二天粪便总的放射性锶含量GC-DTPA组低于DTPA及CS组,表明GC-DTPA发挥促进放射性核素的排出作用主要在摄入放射性核素的第一天。在胃肠道观察到磷酸锶与壳聚糖形成不溶性的化合物而被排出,从而降低全身的锶的残留量。测得第二天总的粪便放射性锶含量DTPA及CS组高于NS组,表明与DTPA及CS可螯合少部分89SrCl2,并促使其随粪便排出体外。
由各时间段的尿液排出情况可知,相较于NS组,吸收入血的89SrCl2在CS及GC-DTPA组可观察到较好的促排效果,现有文献报道,经消化道吸收入血的壳聚糖可在肾脏中检测出。结合GC-DTPA结构上含有壳聚糖这一特点,GC-DTPA组经消化道部分吸收入血的89SrCl2可经泌尿系统排出,且大鼠肾功能检测发现DTPA组尿素氮高于其他各组。表明DTPA影响肾功能,这与已有文献报道DTPA对肾功能有影响是一致的。实验结果表明DTPA接枝于GC后,GC-DTPA可改善DTPA对肾功能的副作用。同时也证明GC-DTPA可以被吸收入血,经肝肾代谢,代谢物GC部分经肾排泄随尿液排除,该代谢过程有利于将在肝肾可最近吸收入血的核素在体内排出,并改善DTPA对肾功能的副作用。
各组处理后肠道病理结果可知,GC-DTPA的肠道黏膜损伤明显轻于其他组,结合粪便放射性核素排出情况,GC-DTPA可螯合89SrCl2后在短时间内将大部分89SrCl2经消化道排出体外,减少89SrCl2停留在消化道的时间,从而减轻其在消化道可能造成的电离辐射损伤。
结论
放射性89SrCl2溶液经消化道沾染后给与GC-DTPA处理,大部分可经消化道螯合排出体外,少量吸收入血,吸收入血的89SrCl2可通过泌尿系统排出。结合骨组织、血液、大小便放射性锶含量及肾功能情况,GC-DTPA可螯合促排经消化道沾染的89SrCl2,降低DTPA的副作用,增加了DTPA在消化道的使用途径,且具有良好的促排效果。
放射性核素89锶所造成的小肠粘膜损伤为辐射损伤,GC-DTPA组肠道损伤明显轻于其他各组,可能与其螯合促排89SrCl2,减少了持续作用于肠道的时间有关。本发明的研究结果表明,GC与DTPA连接(GC-DTPA)产生了明显的协同作用,不但增强了消化道放射性核素的促排。而且GC-DTPA还可部分吸收入血,促进经肝肾吸收入血的射性核素的排除,同时,GC-DTPA还可改善DTPA对肾功能的副作用。

Claims (10)

1.一种促进消化道核素排泄的化合物,具有如式I所示的结构式:
Figure FDA0003798692670000011
式I中,R为
Figure FDA0003798692670000012
由乙二醇、壳聚糖和DTPA构成。
2.一种制备式I所示化合物的方法,包括将式II所示的化合物在EDC和NHS存在下与式III所示的化合物综合反应,即得,
Figure FDA0003798692670000013
3.如权利要求2所述的方法,所述EDC和NHS与式II化合物的NH2基的摩尔比为:(1-1.5):1。
4.如权利要求3所述的方法,所述EDC和NHS与式II化合物的NH2基的摩尔比为1.2:1。
5.如权利要求2所述的方法,式II化合物与式III化合物的摩尔比为1:1。
6.如权利要求2所述的方法,反应温度为25-35℃,优选为30℃。
7.如权利要求2所述的方法,反应时间为20-25小时,优选为24小时。
8.如权利要求2-7任一所述的方法,进一步包括将反应溶液转移至透析袋中去离子水透析3天,冷冻干燥。
9.式I所示化合物或权利要求2的方法制备的式I化合物在制备促进胃肠道核素和/或肝肾内核素排泄的药物中的用途。
10.如权利要求9所述的核素为放射性锶。
CN202210977044.4A 2022-05-07 2022-08-15 一种促进核素排泄的乙二醇壳聚糖dtpa及其制备方法 Pending CN115177738A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210492120 2022-05-07
CN2022104921202 2022-05-07

Publications (1)

Publication Number Publication Date
CN115177738A true CN115177738A (zh) 2022-10-14

Family

ID=83524152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210977044.4A Pending CN115177738A (zh) 2022-05-07 2022-08-15 一种促进核素排泄的乙二醇壳聚糖dtpa及其制备方法

Country Status (1)

Country Link
CN (1) CN115177738A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245431A (zh) * 1996-12-16 2000-02-23 诺维斯森思股份公司 药物组合物及其在制备局部防护制剂、紫外辐射吸收剂或抗病毒、抗真菌或抗炎制剂中的应用
WO2017026578A1 (ko) * 2015-08-07 2017-02-16 전북대학교 산학협력단 암 치료를 위한 키토산-킬레이터 하이드로겔 및 이의 제조방법, 및 이를 유효 성분으로 함유하는 약학적 조성물 및 색전 치료용 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245431A (zh) * 1996-12-16 2000-02-23 诺维斯森思股份公司 药物组合物及其在制备局部防护制剂、紫外辐射吸收剂或抗病毒、抗真菌或抗炎制剂中的应用
WO2017026578A1 (ko) * 2015-08-07 2017-02-16 전북대학교 산학협력단 암 치료를 위한 키토산-킬레이터 하이드로겔 및 이의 제조방법, 및 이를 유효 성분으로 함유하는 약학적 조성물 및 색전 치료용 조성물

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FENGMING LIN等: "Glycol Chitosan: A Water-Soluble Polymer for Cell Imaging and Drug Delivery", 《MOLECULES》, vol. 24, no. 23, 29 November 2019 (2019-11-29), pages 1 *
NAOJI KUBOTA等: "Permeability properties of glycol chitosan membrane modified with thiol groups", 《JOURNAL OF APPLIED POLYMER SCIENCE》, vol. 42, no. 2, 20 January 1991 (1991-01-20), pages 495 - 501 *
YAO XIAO等: "Effects of a Modified Chitosan Compound Combined with Lung Lavage after Inhalation of Depleted Uranium Dust", pages 3, Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028304/> *
曾峰: "GC-DTPA的合成及其对消化道核素沾染早期促排研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》, no. 02, 15 February 2023 (2023-02-15), pages 076 - 9 *
曾峰等: "乙二醇壳聚糖-二乙烯三胺五乙酸的合成及相对安全性研究", 《陆军军医大学学报》, vol. 44, no. 09, 15 May 2022 (2022-05-15), pages 967 - 974 *
肖瑶: "早期吸入CS-DTPA NPs联合全肺灌洗对贫铀致肺损伤治疗作用的研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》, no. 02, 15 February 2023 (2023-02-15), pages 063 - 138 *

Similar Documents

Publication Publication Date Title
US7935366B2 (en) Calcium Potassium Ferrocyanide, a prophylactic mixture comprising this compound and the use thereof for decorporation of Radiocesium in subjects affected by nuclear radiation
EP0699072B1 (en) Use of iron-binding polymers for the manufacture of a medicament for oral administration
US7728038B2 (en) Methods for chelation therapy
HU205212B (en) Method for obtaining macromolecular, paramagnetic combinations and therapeutic preparations containing said combinations, as well as diagnostic contrast materials containing said combinations
Yan et al. Melanin nanoparticles as an endogenous agent for efficient iron overload therapy
CN104169291B (zh) 新化学实体钙锰福地吡和其他混合金属配合物、制备方法、组合物以及治疗方法
CN105287607B (zh) 兽用复方盐酸多西环素氟苯尼考缓释微球混悬注射液
Durbin et al. Specific Sequestering Agents for the Actinides: 4. Removal of 238Pu (IV) from Mice by Sulfonated Tetrameric Catechoyl Amides
CN1227006C (zh) 用于铁螯合治疗的含有n,n′-双(2-羟基苄基)乙二胺-n,n′-二乙酸的药物
Zhao et al. Ascidian‐Inspired Temperature‐Switchable Hydrogels with Antioxidant Fullerenols for Protecting Radiation‐Induced Oral Mucositis and Maintaining the Homeostasis of Oral Microbiota
KR100219965B1 (ko) 연조직종양의 치료 및/또는 진단방법
CN115177738A (zh) 一种促进核素排泄的乙二醇壳聚糖dtpa及其制备方法
US5494660A (en) Method for inhibiting microbial binding to surfaces
Kennedy et al. Studies with tritiated mithramycin in C3H mice
CN102276507B (zh) 对叔丁基杯[6]芳烃衍生物及其制备方法与应用
Zhang et al. A Single‐Component Dual Donor Enables Ultrasound‐Triggered Co‐release of Carbon Monoxide and Hydrogen Sulfide
Dresow et al. Bioavailability of bismuth from 205 Bi-labelled pharmaceutical oral Bi-preparations in rats
CN110075120A (zh) 一种组合物及其在抗肿瘤药物中的应用
CN110585448B (zh) 一种用于急性肾损伤的纳米诊疗剂及其制备方法与应用
Maskoen et al. Iron chelation ability of granule Sappan wood (Caesalpinia sappan, L.) extract on iron-overloaded
CN107029240A (zh) 树枝状大分子聚酰胺‑胺在吴茱萸碱中的用途
Leung et al. Peroral subchronic, chronic toxicity, and pharmacokinetic studies of a 100-KiIodaIton polymer of ethylene oxide (Polyox N-10) in the Fischer 344 Rat
Greger et al. Tissue turnover of aluminum and Ga-67: effect of iron status
Zeng et al. Preparation of Polyethylene Glycol Monomethyl Ether Chitosan-diethylenetriamine Pentaacetic Acid and Its Effect on 89SrCl2 Excretion and Radiation Protection in the Digestive Tract of Rats
AU623901B2 (en) Paramagnetic compounds comprising chelating moiety, linker group macro molecule and paramagnetic metal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination