CN115171642A - 一种基于改进的循环神经网络的主动降噪方法及系统 - Google Patents
一种基于改进的循环神经网络的主动降噪方法及系统 Download PDFInfo
- Publication number
- CN115171642A CN115171642A CN202210795721.0A CN202210795721A CN115171642A CN 115171642 A CN115171642 A CN 115171642A CN 202210795721 A CN202210795721 A CN 202210795721A CN 115171642 A CN115171642 A CN 115171642A
- Authority
- CN
- China
- Prior art keywords
- signal
- noise
- neural network
- recurrent neural
- noise reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 230000009467 reduction Effects 0.000 title claims abstract description 52
- 230000000306 recurrent effect Effects 0.000 title claims abstract description 50
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 37
- 238000003062 neural network model Methods 0.000 claims abstract description 27
- 230000006870 function Effects 0.000 claims abstract description 25
- 230000008569 process Effects 0.000 claims abstract description 19
- 238000012549 training Methods 0.000 claims abstract description 15
- 238000001914 filtration Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 13
- 230000001066 destructive effect Effects 0.000 claims abstract description 11
- 238000010276 construction Methods 0.000 claims abstract description 7
- 238000004590 computer program Methods 0.000 claims description 14
- 125000004122 cyclic group Chemical group 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 7
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims description 2
- 238000003379 elimination reaction Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 7
- 241000288105 Grus Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 201000005917 gastric ulcer Diseases 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000003860 sleep quality Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
- G10K11/1785—Methods, e.g. algorithms; Devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K2210/00—Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
- G10K2210/30—Means
- G10K2210/301—Computational
- G10K2210/3038—Neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210795721.0A CN115171642A (zh) | 2022-07-07 | 2022-07-07 | 一种基于改进的循环神经网络的主动降噪方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210795721.0A CN115171642A (zh) | 2022-07-07 | 2022-07-07 | 一种基于改进的循环神经网络的主动降噪方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115171642A true CN115171642A (zh) | 2022-10-11 |
Family
ID=83490336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210795721.0A Pending CN115171642A (zh) | 2022-07-07 | 2022-07-07 | 一种基于改进的循环神经网络的主动降噪方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115171642A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230282193A1 (en) * | 2022-03-03 | 2023-09-07 | University Of Manitoba | Method and apparatus for active noise cancellation using deep learning |
WO2024131014A1 (zh) * | 2022-12-23 | 2024-06-27 | 恒玄科技(上海)股份有限公司 | 一种用于耳机的anc系统、降噪方法及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107452389A (zh) * | 2017-07-20 | 2017-12-08 | 大象声科(深圳)科技有限公司 | 一种通用的单声道实时降噪方法 |
CN109273021A (zh) * | 2018-08-09 | 2019-01-25 | 厦门亿联网络技术股份有限公司 | 一种基于rnn的实时会议降噪方法及装置 |
CN109712628A (zh) * | 2019-03-15 | 2019-05-03 | 哈尔滨理工大学 | 一种基于rnn的语音降噪方法及语音识别方法 |
CN111603191A (zh) * | 2020-05-29 | 2020-09-01 | 上海联影医疗科技有限公司 | 医学扫描中的语音降噪方法、装置和计算机设备 |
CN111883091A (zh) * | 2020-07-09 | 2020-11-03 | 腾讯音乐娱乐科技(深圳)有限公司 | 音频降噪方法和音频降噪模型的训练方法 |
CN113191321A (zh) * | 2021-05-21 | 2021-07-30 | 电子科技大学 | 基于生成对抗网络的光纤分布式地震波信号降噪方法 |
-
2022
- 2022-07-07 CN CN202210795721.0A patent/CN115171642A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107452389A (zh) * | 2017-07-20 | 2017-12-08 | 大象声科(深圳)科技有限公司 | 一种通用的单声道实时降噪方法 |
CN109273021A (zh) * | 2018-08-09 | 2019-01-25 | 厦门亿联网络技术股份有限公司 | 一种基于rnn的实时会议降噪方法及装置 |
CN109712628A (zh) * | 2019-03-15 | 2019-05-03 | 哈尔滨理工大学 | 一种基于rnn的语音降噪方法及语音识别方法 |
CN111603191A (zh) * | 2020-05-29 | 2020-09-01 | 上海联影医疗科技有限公司 | 医学扫描中的语音降噪方法、装置和计算机设备 |
CN111883091A (zh) * | 2020-07-09 | 2020-11-03 | 腾讯音乐娱乐科技(深圳)有限公司 | 音频降噪方法和音频降噪模型的训练方法 |
CN113191321A (zh) * | 2021-05-21 | 2021-07-30 | 电子科技大学 | 基于生成对抗网络的光纤分布式地震波信号降噪方法 |
Non-Patent Citations (1)
Title |
---|
YUAN XIA: "Robust noise control method based on deep learning optimization", 《2023 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND SIGNAL PROCESSING (ICSP)》, 15 August 2023 (2023-08-15) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230282193A1 (en) * | 2022-03-03 | 2023-09-07 | University Of Manitoba | Method and apparatus for active noise cancellation using deep learning |
US12087265B2 (en) * | 2022-03-03 | 2024-09-10 | University Of Manitoba | Method and apparatus for active noise cancellation using deep learning |
WO2024131014A1 (zh) * | 2022-12-23 | 2024-06-27 | 恒玄科技(上海)股份有限公司 | 一种用于耳机的anc系统、降噪方法及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115171642A (zh) | 一种基于改进的循环神经网络的主动降噪方法及系统 | |
Zhang et al. | Active noise control over space: A wave domain approach | |
Kajikawa et al. | Recent advances on active noise control: open issues and innovative applications | |
Zhang et al. | A normalized frequency-domain block filtered-x LMS algorithm for active vehicle interior noise control | |
KR101797268B1 (ko) | 소음 제어 디바이스, 시스템 및 방법 | |
CN112382265B (zh) | 基于深度循环神经网络的主动降噪方法、存储介质及系统 | |
CN111564160B (zh) | 一种基于aewgan的语音降噪的方法 | |
CN103475336B (zh) | 一种基于逆控制技术的电力变压器噪声控制方法 | |
CN111860273A (zh) | 基于卷积神经网络的磁共振地下水探测噪声抑制方法 | |
CN109379652B (zh) | 一种耳机有源噪声控制的次级通道离线辨识方法 | |
Kajikawa et al. | Recent applications and challenges on active noise control | |
Chen et al. | A secondary path-decoupled active noise control algorithm based on deep learning | |
CN117496936A (zh) | 一种变压器噪声主动降噪控制方法、系统、设备及介质 | |
Zhang et al. | A deep recurrent neural network controller for nonlinear active noise control systems | |
CN114627847A (zh) | 一种基于频谱映射的主动降噪方法及系统 | |
CN115565515A (zh) | 一种分步虚拟传感降噪方法 | |
Singh et al. | Attention based Convolutional Neural Network for Active Noise Control | |
Wesselink et al. | Fast affine projections and the regularized modified filtered-error algorithm in multichannel active noise control | |
Wang et al. | An adaptive algorithm for nonstationary active sound-profiling | |
Takkar et al. | A review on evolution of acoustic noise reduction in MRI | |
Tokhi et al. | Active noise control using multi-layered perceptron neural networks | |
AlMeer | MRI Acoustic Noise cancellation using CNN | |
CN117974736B (zh) | 一种基于机器学习的水下传感器输出信号降噪方法及系统 | |
Ren et al. | Active noise control without secondary path modeling: Algorithm and implementation | |
CN116266254A (zh) | 一种基于非参数估计的有源消声系统次级通道辨识方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 250014 No. 19, ASTRI Road, Lixia District, Shandong, Ji'nan Applicant after: SHANDONG COMPUTER SCIENCE CENTER(NATIONAL SUPERCOMPUTER CENTER IN JINAN) Applicant after: Qilu University of Technology (Shandong Academy of Sciences) Address before: 250014 No. 19, ASTRI Road, Lixia District, Shandong, Ji'nan Applicant before: SHANDONG COMPUTER SCIENCE CENTER(NATIONAL SUPERCOMPUTER CENTER IN JINAN) Country or region before: China Applicant before: Qilu University of Technology |