CN115165295A - 微量气动载荷测量装置及其应用方法 - Google Patents

微量气动载荷测量装置及其应用方法 Download PDF

Info

Publication number
CN115165295A
CN115165295A CN202210820526.9A CN202210820526A CN115165295A CN 115165295 A CN115165295 A CN 115165295A CN 202210820526 A CN202210820526 A CN 202210820526A CN 115165295 A CN115165295 A CN 115165295A
Authority
CN
China
Prior art keywords
swing arm
micro
measuring device
unit
matched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210820526.9A
Other languages
English (en)
Inventor
皮兴才
贺建武
方明
吴俊林
彭傲平
杨彦广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mechanics of CAS
Ultra High Speed Aerodynamics Institute China Aerodynamics Research and Development Center
Original Assignee
Institute of Mechanics of CAS
Ultra High Speed Aerodynamics Institute China Aerodynamics Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mechanics of CAS, Ultra High Speed Aerodynamics Institute China Aerodynamics Research and Development Center filed Critical Institute of Mechanics of CAS
Priority to CN202210820526.9A priority Critical patent/CN115165295A/zh
Publication of CN115165295A publication Critical patent/CN115165295A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/062Wind tunnel balances; Holding devices combined with measuring arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明公开了一种微量气动载荷测量装置及其应用方法,涉及机械设计领域,包括:隔震基座;隔离式支撑单元;位移平台,所述位移平台与隔离式支撑单元之间通过相配合的磁力式补偿单元以及平行四边形结构的摆臂单元进行连接;其中,所述磁力式补偿单元被配置为包括:与摆臂单元中短摆臂连接的电磁力产生机构、电磁阻尼机构;与电磁力产生机构通信连接,并与短摆臂的位移方向相配合的位移测量机构。本发明提供一种微量气动载荷测量装置及其应用方法,对摆臂单元的姿态通过磁力式补偿单元进行闭环补偿,可以有效消除侧向气动载荷对微量轴向力测量精度的影响,保证其测量效果满足使用需要。

Description

微量气动载荷测量装置及其应用方法
技术领域
本发明涉及特殊应用场景下的机械设计领域。更具体地说,本发明涉及一种应用于高超声速稀薄气体动力学研究的微量气动载荷测量装置及其应用方法。
背景技术
进行高超声速稀薄气体动力学试验时,试验模型将承受气动载荷,由于气体极度稀薄,模型承受的气动载荷量值约为1mN,而现有的设备无法满足1mN级载荷下的高精度测量。
另外,在实际使用过程中,因存在模型自重大、风洞设备振动、气流扰动等不利因素,对于1mN级载荷下的高精度测量,现有的应变测量的基本思路立足于降低测力传感器的弹性变形梁的几何尺寸,以此提高应变输出。为了保证弹性变形梁能支撑其承载的部件重量,并保证较高的线性变形特性,其几何尺寸不能无限制降低,因此,无法满足1mN级载荷的精确测量需求,故经常会出现测量效果不能满足测量需要的情况。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
为了实现本发明的这些目的和其它优点,提供了一种微量气动载荷测量装置,包括:
与高超声速稀薄气动力试验设备的安装面相配合的隔震基座;
用于对待测模型进行支撑的隔离式支撑单元;
设置在隔震基座上方,且具有多个自由度调节功能的位移平台,所述位移平台与隔离式支撑单元之间通过相配合的磁力式补偿单元以及平行四边形结构的摆臂单元进行连接;
其中,所述磁力式补偿单元被配置为包括:
与摆臂单元中短摆臂连接的电磁力产生机构、电磁阻尼机构;
与电磁力产生机构通信连接,并与短摆臂的位移方向相配合的位移测量机构。
优选的是,所述隔震基座被配置为包括相对设置的两个安装板,以及设置在两个安装板之间的多个阻尼弹簧减振器。
优选的是,所述隔离式支撑单元被配置为包括:
对待测模型进行支撑限定的支撑组件;
将支撑组件的各部件与外部高速气流进行隔离处理的隔离组件;
其中,所述支撑组件被配置为包括:
在空间上呈垂直布置,且一端与摆臂单元连接的支撑臂;
在空间上呈水平布置,且一端与待测模型连接,另一端与支撑臂连接的尾支撑杆;
所述隔离组件被配置为包括:
设置在隔震基座上方,以将位移平台、摆臂单元、磁力式补偿单元与外部环境进行隔离的外壳;
设置在外壳上方,以将支撑臂整体与外部环境进行隔离的垂直隔离罩;
设置在垂直隔离罩上方,以将尾支撑杆与外部环境进行隔离的尾隔离罩;
所述垂直隔离罩、尾隔离罩与支撑臂、尾支撑杆之间具有预定的间隙。
优选的是,所述位移平台包括两个呈相对设置的调节机构;
其中,各调节机构通过相配合的法兰分别与电磁力产生机构、电磁阻尼机构连接。
优选的是,所述摆臂单元被配置为包括:
与隔震基座固定连接的支撑座;
设置在支撑座上,且呈工字状的旋转座,所述旋转座在空间上与短摆臂呈相对布局;
设置在旋转座两侧,并在空间上与短摆臂、旋转座构成平行四边形结构的两根长摆臂;
其中,所述旋转座的四个自由端上分别设置有突出的第一连接耳;
各长摆臂在与旋转座相配合的一侧,设置有多个与各第一连接耳相配合的第二连接耳,各长摆臂在短摆臂相配合一侧设置有U形连接端;
所述短摆臂被配置为呈“干”字形结构,且短摆臂平行设置的两根连接件上设置有相配合的第三连接耳,短摆臂垂直布局的固定件被配置为与电磁力产生机构、电磁阻尼机构连接;
所述第一连接耳与第二连接耳,U形连接端与第三连接耳分别通过相配合的铰链连接。
优选的是,所述各长摆臂上分别设置有至少一个减重孔。
优选的是,所述旋转座在与长摆臂伸出方向相配合的位置上设置有对长摆臂摆动区间进行限位的限位机构;
各长摆臂在与短摆臂相背离的一端设置有延长端,且各延长端上分别设置相配合的配重机构;
其中,配重机构均被配置为包括多个重量不一的配重块,以及将各配置块连接成一体结构的螺杆;
延长端上设置有与螺杆相配合的至少一个螺孔。
一种应用微量气动载荷测量装置的方法,包括:
步骤一,将设定好的微量气动载荷测量装置固定在高超声速稀薄气动力试验设备的安装面上;
步骤二,将待测模型固定在隔离式支撑单元的尾支撑杆上;
步骤三,在流场内进行载荷测量时,通过磁力式补偿单元对摆臂单元姿态进行闭环式控制;
其中,在步骤三中,所述闭环式控制的流程被配置为包括:
S30,通过分析天平对电磁力产生机构进行标定,在获得恒定电压条件下,基于输入电磁力产生机构的电流与产生的补偿载荷的线性关系,计算比例系数;
S31,通过位移测量机构检测摆臂单元的位移值;
S32,将S31中获取的位移值作为输入数据,采用PID控制方法控制输入电磁力产生机构的电流,以产生使摆臂单元扭转姿态精确归零的补偿载荷,并将所述补偿载荷作为气动载荷测量值。
优选的是,在步骤一中,所述微量气动载荷测量装置的设定被配置为包括:
对配重块与摆臂单元质心位置的设定,所述设定流程包括:
S10,在进行重心设计及调整时,基于摆臂单元中各个运动部件的理论重量及装配关系,借助CAE软件对配重块的质量特性进行设计;
S11,在实物装配时,借助隔震基座将平行四边形的摆臂单元分别在长摆臂及短摆臂两个方向上倾斜预定角度;
S12,通过位移机构获取倾斜时测点的位移量,并在长摆臂的延长端螺孔内对配重块进行质心位置微调。
优选的是,在S10中,将各个运动部件及配重块设定为一个质量系统,将旋转座两侧共四个铰链安装点构成的长方形设定为质心调节区域,所述质量特性设计需要满足质量系统的理论质心在质心调节区域的中心位置
本发明至少包括以下有益效果:本发明对摆臂单元的姿态,通过磁力式补偿单元进行闭环补偿,可以有效消除侧向气动载荷对微量轴向力测量精度的影响,保证其测量效果满足使用需要。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为本发明微量载荷测量装置总体布局示意图;
图2为本发明微量载荷测量装置的外部结构示意图;
图3为本发明微量载荷测量装置的内部结构示意图;
图4为本发明微量载荷测量装置中隔震基座的侧视结构示意图;
图5为本发明微量载荷测量装置中隔震基座的轴侧结构示意图;
图6为本发明微量载荷测量装置中摆臂单元的结构示意图;
图7为本发明微量载荷测量装置中长摆臂膀的结构示意图;
图8为本发明微量载荷测量装置中短摆臂的结构示意图;
图9为本发明微量载荷测量装置中旋转座的结构示意图;
图10为本发明微量载荷测量装置中摆臂单元配合的部分结构示意图;
图11为本发明微量载荷测量装置中限位机构的结构示意图;
图12为本发明微量载荷测量装置中位移平台的结构示意图;
图13为本发明微量载荷测量装置中磁力式补偿单元的结构示意图;
图14为本发明微量载荷测量装置隔离式支撑单元的轴侧结构示意图;
图15为本发明微量载荷测量装置中隔离式支撑单元的剖视结构示意图;
图16为本发明微量载荷测量装置中其中一块垂直隔离罩的结构示意图;
图17为本发明微量载荷测量装置中尾隔离罩的结构示意图;
其中,1为隔震基座,2为摆臂单元,3为位移平台,4为磁力式补偿单元,5为隔离式支撑单元,11为上安装板,12为下安装板,13为阻尼弹簧减振器,21为支撑座22为旋转座,23为长摆臂,24为短摆臂,25为配重块,26限位机构,41为电磁力产生机构,42为电磁阻尼机构,43为位移测量机构,51为支撑臂,52为尾支撑杆,53为外壳,54为垂直隔离罩,55为尾隔离罩。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
需要说明的是,在本发明的描述中,术语指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,并不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“设置有”、“套设/接”、“连接”等,应做广义理解,例如“连接”,可以是固定连接,也可以是可拆卸连接,或一体地连接,可以是机械连接,也可以是电连接,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通,对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1-图3所示,本发明的微量载荷测量装置包括:隔震基座1、平行四边形结构的摆臂单元2、多自由度调节的位移平台3、磁力式补偿单元4、模型支撑用的隔离式支撑单元5,通过各种结构的连接、组合,使得本方案的装置可以提供高超声速稀薄气动力试验模型受到的微量轴向力精确测量功能。
下面对各单元部件的具体结构、连接关系进行书展开说明:
如图4-5,隔震基座1包含:呈相对设置的上安装板11、下安装板12,以及设置在两个安装板之间的多个及弹簧/阻尼组件(也称为阻尼弹簧减振器)13三个部分组成。其中,上安装板11用于安装在空间上呈平行四边形结构布局的摆臂单元2、多自由度的位移调节平台3、磁力式补偿单元(也称为高精度位移测量及电磁力闭环补偿单元)4、模型支撑及气流隔离用的隔离式支撑单元5;下安装板12用于将微量载荷测量装置安装于高超声速稀薄气动力试验设备中,即完成装置与安装面的配合,其配合方式可以根据需要选择焊接或螺栓连接;弹簧/阻尼组件13用于连接上安装板11及下安装板12并提供减震及阻尼作用。
如图6-图11,平行四边形结构的摆臂单元2(也称为扭臂单元)包含:摆臂的支撑座21、摆臂的旋转座22、长摆臂23、短摆臂24、配重块25、机械限位用的限位机构装置26。
其中,支撑座21用于连接隔震基座1的上安装板11与旋转座22;旋转座22安装于支撑座21之上,并通过高线性度的旋转铰连接两条长摆臂23;长摆臂23通过高线性度的旋转铰链接摆臂旋转座22以及短摆臂24,构成平行四边形结构;配重块25安装于长摆臂23一端,实现重心调整;机械式的限位机构26安装于旋转座22上,实现对长摆臂23的摆动限位,而为了保证限位机构与长摆臂的配合度,限位机构上设置有可供长摆臂伸入的限定槽260,在实际的应用中,为了保证结构件之间的配合度,以及不与其它设备的工作产生干涉性,限位机构在空间上呈L形布局,限定槽也由设置有限位机构的L形辅助件261构成。
在这种方案中,设计扭臂单元2的长摆臂23及短摆臂24时,对平行四边形的关节点采用双铰链安装点的支撑方式,即用双铰链安装点构成的旋转轴替代平面平行四边形关节点的单点连接模式。具体来说,旋转座的四个自由端上分别设置有突出的第一连接耳220;
各长摆臂在与旋转座相配合的一侧,设置有多个与各第一连接耳相配合的第二连接耳230,各长摆臂在短摆臂相配合一侧设置有U形连接端231;
所述短摆臂被配置为呈“干”字形结构,且短摆臂平行设置的两根连接件240上设置有相配合的第三连接耳241,短摆臂垂直布局的固定件242被配置为与电磁力产生机构、电磁阻尼机构连接;
所述第一连接耳与第二连接耳,U形连接端与第三连接耳分别通过相配合的铰链连接,在这种方案中,平行四边形的任意一个关节点均通过上下布局的两个铰链进行连接,提升平行四边形抗侧向扭转能力。
各长摆臂在与短摆臂相背离的一端设置有延长端232,且各配重机构通螺杆、螺孔232安装在延长端233上,且各长摆臂上分别设置有至少一个减重孔234。以此,提升摆臂单元2抵抗干扰载荷的能力。通过在结构设计中优化长摆臂23及短摆臂24的几何尺寸,采用Y形结构形式降低重量,提升动态响应能力。
如图12,多自由度和位移平台3安装于隔震基座1的上安装板11之上,并通过法兰30连接磁力式补偿单元4,实现位移测量及电磁力闭环补偿系统的姿态精细调整。
如图13,磁力式补偿单元4安装于多自由度的位移平台3之上,包含:电磁力产生机构41、电磁阻尼机构42、高精度的位移测量机构43。其中,电磁力产生机构41通过电磁线圈与永磁铁的相互作用,向平行四边形摆臂结构2的短摆臂24施加高线性度微量载荷;电磁阻尼机构42通过电磁线圈与永磁铁的相互作用,向平行四边形的摆臂单元2的短摆臂24施加运动阻尼;高精度的位移测量机构43用于测量平行四边形摆臂结构2的短摆臂24的位移,并为电磁力产生机构41提供输入反馈,即通过位移测量机构采集的位移值作为输入参数,用于计算磁力产生机构的补偿载荷。在本方案中,通过采用电磁阻尼装置,可以有效消除气动力噪声、环境设备水平振动对微量轴向力测量精度的影响。
如图14-图17,所述隔离式支撑单元5包括:垂直布置的支撑臂51、水平布置的尾支撑杆52、装置隔离用外壳53、垂直隔离罩54、尾隔离罩55。其中,垂直支撑臂51下端安装于平行四边形摆臂结构2的短摆臂24之上,上端安装水平尾支撑杆52;水平尾支撑杆52安装于垂直支撑臂51上端,并将试验模型支撑在流场中;装置外壳53安装于隔震基1的上安装板11;垂直隔离罩54安装于装置外壳53的顶面,将垂直支撑臂罩51于其内,并保持一定间隙;尾隔离罩55安装于垂直隔离罩54上端,将水平尾支撑杆52置于其内,并保持一定间隙。在这个方案中,通过设置外壳、尾隔离罩、垂直隔离罩,可以有效消除模型支撑臂被气流影响导致的微量轴向力测量干扰。
一种应用微量气动载荷测量装置的方法,包括:
步骤一,将设定好的微量气动载荷测量装置固定在高超声速稀薄气动力试验设备的安装面上;
步骤二,将待测模型固定在隔离式支撑单元的尾支撑杆上;
步骤三,在流场内进行载荷测量时,通过磁力式补偿单元对摆臂单元姿态进行闭环式控制;
其中,在步骤三中,所述闭环式控制的流程被配置为包括:
在载荷测量过程中,需要开展平行四边形扭臂结构2扭转姿态精细控制。首先,采用分析天平对电磁力产生机构41进行标定,获得恒定电压条件下,输入电磁力产生机构41的电流与其产生的补偿载荷的线性关系,计算比例系数;其次,利用高精度数据采集系统,获取高精度的位移测量机构43的位移测量值,并以此为输入,采用PID控制方法控制输入电磁力产生机构41的电流,产生指定的补偿载荷,使得平行四边形扭臂结构2扭转姿态精确归零。并且,以此时的电磁力产生机构41的电流对应的补偿载荷为气动载荷测量值。本方案通过不断修正支撑单元的姿态,以使待测模型的位姿态在测量时的变化较小,以保证其测量精度,当姿态修正归0时,气动载荷测量值等于电磁力产生机构输出的补偿载荷值,故采用扭摆姿态闭环补偿策略,可以有效消除侧向气动载荷对微量轴向力测量精度的影响。
更进一步地,在实施重心设计及调整时,首先根据各个运动部件的理论重量及装配关系,借助CAE软件进行配重块25的质量特性设计,确保各个运动部件及配重块25构成的质量系统的理论质心在摆臂旋转座22的两侧共四个铰链安装点构成的长方形的中心位置;其次,在实物装配时,借助隔震基座1将平行四边形的扭臂单元2分别在长摆臂23及短摆臂24两个方向倾斜微小角度,通过高精度的位移测量机构43获取测点的位移量,并在位移的负方向侧的长摆臂23螺孔内固定质量块进行质心位置微调。在本方案中,采用水平平行的四边形布局的摆臂单元,并通过精细调整摆臂单元中运动部件的重心,可以有效消除气动力试验模型的重力、环境设备纵向振动对微量轴向力测量精度的影响,并通过优化后水平平行四边形摆臂单元,消除气动力附加力矩等对微量轴向力测量精度的影响。
以上方案只是一种较佳实例的说明,但并不局限于此。在实施本发明时,可以根据使用者需求进行适当的替换和/或修改。
这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明的应用、修改和变化对本领域的技术人员来说是显而易见的。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (10)

1.一种微量气动载荷测量装置,其特征在于,包括:
与高超声速稀薄气动力试验设备的安装面相配合的隔震基座;
用于对待测模型进行支撑的隔离式支撑单元;
设置在隔震基座上方,且具有多个自由度调节功能的位移平台,所述位移平台与隔离式支撑单元之间通过相配合的磁力式补偿单元以及平行四边形结构的摆臂单元进行连接;
其中,所述磁力式补偿单元被配置为包括:
与摆臂单元中短摆臂连接的电磁力产生机构、电磁阻尼机构;
与电磁力产生机构通信连接,并与短摆臂的位移方向相配合的位移测量机构。
2.如权利要求1所述的微量气动载荷测量装置,其特征在于,所述隔震基座被配置为包括相对设置的两个安装板,以及设置在两个安装板之间的多个阻尼弹簧减振器。
3.如权利要求1所述的微量气动载荷测量装置,其特征在于,所述隔离式支撑单元被配置为包括:
对待测模型进行支撑限定的支撑组件;
将支撑组件的各部件与外部高速气流进行隔离处理的隔离组件;
其中,所述支撑组件被配置为包括:
在空间上呈垂直布置,且一端与摆臂单元连接的支撑臂;
在空间上呈水平布置,且一端与待测模型连接,另一端与支撑臂连接的尾支撑杆;
所述隔离组件被配置为包括:
设置在隔震基座上方,以将位移平台、摆臂单元、磁力式补偿单元与外部环境进行隔离的外壳;
设置在外壳上方,以将支撑臂整体与外部环境进行隔离的垂直隔离罩;
设置在垂直隔离罩上方,以将尾支撑杆与外部环境进行隔离的尾隔离罩;
所述垂直隔离罩、尾隔离罩与支撑臂、尾支撑杆之间具有预定的间隙。
4.如权利要求1所述的微量气动载荷测量装置,其特征在于,所述位移平台包括两个呈相对设置的调节机构;
其中,各调节机构通过相配合的法兰分别与电磁力产生机构、电磁阻尼机构连接。
5.如权利要求1所述的微量气动载荷测量装置,其特征在于,所述摆臂单元被配置为包括:
与隔震基座固定连接的支撑座;
设置在支撑座上,且呈工字状的旋转座,所述旋转座在空间上与短摆臂呈相对布局;
设置在旋转座两侧,并在空间上与短摆臂、旋转座构成平行四边形结构的两根长摆臂;
其中,所述旋转座的四个自由端上分别设置有突出的第一连接耳;
各长摆臂在与旋转座相配合的一侧,设置有多个与各第一连接耳相配合的第二连接耳,各长摆臂在短摆臂相配合一侧设置有U形连接端;
所述短摆臂被配置为呈“干”字形结构,且短摆臂平行设置的两根连接件上设置有相配合的第三连接耳,短摆臂垂直布局的固定件被配置为与电磁力产生机构、电磁阻尼机构连接;
所述第一连接耳与第二连接耳,U形连接端与第三连接耳分别通过相配合的铰链连接。
6.如权利要求5所述的微量气动载荷测量装置,其特征在于,所述各长摆臂上分别设置有至少一个减重孔。
7.如权利要求5所述的微量气动载荷测量装置,其特征在于,所述旋转座在与长摆臂伸出方向相配合的位置上设置有对长摆臂摆动区间进行限位的限位机构;
各长摆臂在与短摆臂相背离的一端设置有延长端,且各延长端上分别设置相配合的配重机构;
其中,配重机构均被配置为包括多个重量不一的配重块,以及将各配置块连接成一体结构的螺杆;
延长端上设置有与螺杆相配合的至少一个螺孔。
8.一种应用如权利要求1-7任一项所述微量气动载荷测量装置的方法,其特征在于,包括:
步骤一,将设定好的微量气动载荷测量装置固定在高超声速稀薄气动力试验设备的安装面上;
步骤二,将待测模型固定在隔离式支撑单元的尾支撑杆上;
步骤三,在流场内进行载荷测量时,通过磁力式补偿单元对摆臂单元姿态进行闭环式控制;
其中,在步骤三中,所述闭环式控制的流程被配置为包括:
S30,通过分析天平对电磁力产生机构进行标定,在获得恒定电压条件下,基于输入电磁力产生机构的电流与产生的补偿载荷的线性关系,计算比例系数;
S31,通过位移测量机构检测摆臂单元的的位移值;
S32,将S31中获取的位移值作为输入数据,采用PID控制方法控制输入电磁力产生机构的电流,以产生使摆臂单元扭转姿态精确归零的补偿载荷,并将所述补偿载荷作为气动载荷测量值。
9.如权利要求8所述的微量气动载荷测量装置,其特征在于,在步骤一中,所述微量气动载荷测量装置的设定被配置为包括:
对配重块与摆臂单元质心位置的设定,所述设定流程包括:
S10,在进行重心设计及调整时,基于摆臂单元中各个运动部件的理论重量及装配关系,借助CAE软件对配重块的质量特性进行设计;
S11,在实物装配时,借助隔震基座将平行四边形的摆臂单元分别在长摆臂及短摆臂两个方向上倾斜预定角度;
S12,通过位移机构获取倾斜时测点的位移量,并在长摆臂的延长端螺孔内对配重块进行质心位置微调。
10.如权利要求9所述的微量气动载荷测量装置,其特征在于,在S10中,将各个运动部件及配重块设定为一个质量系统,将旋转座两侧共四个铰链安装点构成的长方形设定为质心调节区域,所述质量特性设计需要满足质量系统的理论质心在质心调节区域的中心位置。
CN202210820526.9A 2022-07-13 2022-07-13 微量气动载荷测量装置及其应用方法 Pending CN115165295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210820526.9A CN115165295A (zh) 2022-07-13 2022-07-13 微量气动载荷测量装置及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210820526.9A CN115165295A (zh) 2022-07-13 2022-07-13 微量气动载荷测量装置及其应用方法

Publications (1)

Publication Number Publication Date
CN115165295A true CN115165295A (zh) 2022-10-11

Family

ID=83492564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210820526.9A Pending CN115165295A (zh) 2022-07-13 2022-07-13 微量气动载荷测量装置及其应用方法

Country Status (1)

Country Link
CN (1) CN115165295A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116124344A (zh) * 2023-01-04 2023-05-16 中国科学院力学研究所 一种基于Roberval平衡结构的微推力测量装置
CN117268611A (zh) * 2023-10-13 2023-12-22 中科星动力(北京)科技有限公司 一种竖直扭摆高精度微推力测量装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116124344A (zh) * 2023-01-04 2023-05-16 中国科学院力学研究所 一种基于Roberval平衡结构的微推力测量装置
CN116124344B (zh) * 2023-01-04 2024-04-09 中国科学院力学研究所 一种基于Roberval平衡结构的微推力测量装置
CN117268611A (zh) * 2023-10-13 2023-12-22 中科星动力(北京)科技有限公司 一种竖直扭摆高精度微推力测量装置

Similar Documents

Publication Publication Date Title
CN115165295A (zh) 微量气动载荷测量装置及其应用方法
US6196514B1 (en) Large airborne stabilization/vibration isolation system
US9038456B2 (en) Gravity gradiometer
CN106092399B (zh) 基于扭秤的航天微推力器冲量测量台
CN110895186A (zh) 包含多个振动台的振动系统及振动试验方法
JP6588086B2 (ja) 浮遊秤量パンを有する秤
CN116124344B (zh) 一种基于Roberval平衡结构的微推力测量装置
CN112340071A (zh) 大型重载气浮悬挂展开试验装置与测试方法
CN113740929B (zh) 一种空间惯性传感器的地面测试装置及方法
CN112525449B (zh) 一种全竖置作动器的正交构型六自由度振动模拟系统及方法
CN106394945B (zh) 太阳翼挠性模拟器
CN113701934B (zh) 一种扭摆式微小推力测量装置及方法
CN209910943U (zh) 风洞天平终端姿态测量装置
US4836035A (en) Skin friction balance
CN113942666B (zh) 一种用于零重力环境模拟的近零刚度支承装置
CN113942667B (zh) 一种微低重力环境模拟方法及装置
CN111638721B (zh) 一种航天器三超控制全链路扰动传递验证系统及验证方法
CN106179933B (zh) 一种微幅角振动激励器
CN210198637U (zh) 用于弱力测试的悬挂标定装置
CN115248120A (zh) 微推力测量装置及方法
CN114593870A (zh) 新型大承载柔性静平衡仪
CN113928605A (zh) 一种用于变质量负载的微低重力环境模拟装置与方法
CN111650816B (zh) 柔性连接装置、测量系统及光刻机
Matichard et al. Dynamics enhancements of advanced ligo multi-stage active vibration isolators and related control performance improvement
CN213933923U (zh) 电机测试架

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination