CN115161333B - A reverse screening marker of Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof - Google Patents

A reverse screening marker of Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof Download PDF

Info

Publication number
CN115161333B
CN115161333B CN202210724417.7A CN202210724417A CN115161333B CN 115161333 B CN115161333 B CN 115161333B CN 202210724417 A CN202210724417 A CN 202210724417A CN 115161333 B CN115161333 B CN 115161333B
Authority
CN
China
Prior art keywords
streptococcus suis
gene
erm
mphes
phes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210724417.7A
Other languages
Chinese (zh)
Other versions
CN115161333A (en
Inventor
张跃灵
刘思国
李刚
陈平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Veterinary Research Institute of CAAS
Original Assignee
Harbin Veterinary Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Veterinary Research Institute of CAAS filed Critical Harbin Veterinary Research Institute of CAAS
Priority to CN202210724417.7A priority Critical patent/CN115161333B/en
Publication of CN115161333A publication Critical patent/CN115161333A/en
Application granted granted Critical
Publication of CN115161333B publication Critical patent/CN115161333B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y601/00Ligases forming carbon-oxygen bonds (6.1)
    • C12Y601/01Ligases forming aminoacyl-tRNA and related compounds (6.1.1)
    • C12Y601/0102Phenylalanine-tRNA ligase (6.1.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/46Streptococcus ; Enterococcus; Lactococcus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种猪链球菌的反向筛选标记、含有该反向筛选标记的猪链球菌及其应用。所述的反向筛选标记为突变后的编码猪链球菌苯丙氨酸tRNA合成酶α亚基的pheS基因,突变后的pheS基因导致了编码的猪链球菌苯丙氨酸tRNA合成酶α亚基发生了T261S和A315G双取代突变,PheS突变体通过与菌株自身的野生PheS蛋白竞争,翻译过程中将p‑Cl‑Phe错误地掺入到合成的蛋白质中,从而在p‑Cl‑Phe存在条件下,表达PheS突变体的菌株死亡,不表达PheS突变体的菌株生存。利用这一高效反向筛选标记,本发明还建立了高效的猪链球菌无痕基因操作方法,用于实现猪链球菌的无痕基因缺失、基因融合和基因突变等无痕基因操作,在研究猪链球菌生理和病理机制、制备疫苗株方面具有很好的应用前景。The invention discloses a reverse screening marker of Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof. The reverse screening is marked as the pheS gene encoding the α subunit of Streptococcus suis phenylalanine tRNA synthetase after mutation, and the mutated pheS gene leads to the α subunit of the encoded Streptococcus suis phenylalanine tRNA synthetase The T261S and A315G double substitution mutations occurred in the base, and the PheS mutant competed with the wild PheS protein of the strain itself, and misincorporated p-Cl-Phe into the synthesized protein during translation, so that p-Cl-Phe existed Under these conditions, the strain expressing the PheS mutant died, and the strain not expressing the PheS mutant survived. Utilizing this high-efficiency reverse screening marker, the present invention also establishes an efficient method for the traceless gene manipulation of Streptococcus suis, which is used to realize traceless gene manipulations such as deletion, gene fusion, and gene mutation of Streptococcus suis. The physiological and pathological mechanism of Streptococcus suis and the preparation of vaccine strains have good application prospects.

Description

一种猪链球菌的反向筛选标记、含有该反向筛选标记的猪链 球菌及其应用A reverse screening marker of Streptococcus suis, pig chain containing the reverse screening marker Bacillus and its application

技术领域technical field

本发明涉及一种猪链球菌的反向筛选标记,还涉及含有该反向筛选标记的猪链球菌及其应用。本发明属于生物技术领域。The invention relates to a reverse screening marker of Streptococcus suis, and also relates to Streptococcus suis containing the reverse screening marker and application thereof. The invention belongs to the field of biotechnology.

背景技术Background technique

猪链球菌是一种革兰氏阳性细菌,会导致猪脑膜炎、关节炎、败血症和死亡。另外,它能通过接触病猪传给人,导致人脑膜炎、链球菌中毒性休克样综合征和死亡。因此,猪链球菌是一种重要的人兽共患病病原菌,严重威胁养猪业和人类公共健康。在过去二十年中,猪链球菌受到了越来越多的重视,其生理和病理机制研究以及疫苗制备和生产方面都取得了一些重要进展。基因操作技术在这一过程中发挥着关键作用。但是,以往的基因操作技术或者引入了抗性基因标记,或者虽然采用了无抗基因操作,但是效率偏低,难以进行复杂的、多基因的操作。然而,无论是进一步进行深入、复杂和客观的生理和病理研究,还是开发制备不能携带抗性基因标记且需要多基因操作的疫苗菌株,都需要对相关基因进行高效的无痕缺失、融合或突变。因此,缺乏高效的无痕基因操作系统,已经成为限制猪链球菌研究和疫苗制备的瓶颈,而一种高效的反向筛选标记,是实现细菌高效无痕基因操作的关键。Streptococcus suis is a Gram-positive bacterium that causes meningitis, arthritis, sepsis and death in pigs. In addition, it can be transmitted to humans through contact with sick pigs, causing human meningitis, streptococcal toxic shock-like syndrome, and death. Therefore, Streptococcus suis is an important zoonotic pathogen, which seriously threatens the pig industry and human public health. In the past two decades, Streptococcus suis has received more and more attention, and some important progress has been made in the study of its physiological and pathological mechanisms, as well as in the preparation and production of vaccines. Genetic manipulation techniques play a key role in this process. However, the previous gene manipulation techniques either introduced resistance gene markers, or adopted non-resistance gene manipulation, but the efficiency was relatively low, and it was difficult to perform complex and multi-gene manipulations. However, whether it is to further conduct in-depth, complex and objective physiological and pathological research, or to develop and prepare vaccine strains that cannot carry resistance gene markers and require multi-gene manipulation, it is necessary to efficiently and seamlessly delete, fuse or mutate the relevant genes . Therefore, the lack of an efficient traceless gene operating system has become a bottleneck limiting the research and vaccine preparation of Streptococcus suis, and an efficient reverse screening marker is the key to realize efficient traceless gene operation of bacteria.

目前报道的用于建立猪链球菌的反向筛选标记有两个,分别为枯草杆菌蔗糖果聚糖酶SacB和副溶血性弧菌毒素YoeB。在SacB作为猪链球菌反向筛选标记的报道中,文中只是简单一句话介绍采用枯草芽孢杆菌天然sacB基因及其启动子作为反向筛选标记,并无具体方法,更未提及其效率。我们采用报道中使用的枯草芽孢杆菌天然sacB基因及其启动子,筛选了数百个耐受蔗糖的菌落,也没有筛选到目的克隆,说明其筛选效率低于1%。而采用YeoB作为反向筛选标记的报道中,由于诱导YeoB并不能完全抑制猪链球菌的生长,这从根本上限制了其筛选效率。因此,这一方法不仅需要通过多次传代并添加诱导物来富集目的克隆,而且即使这样,其筛选效率最高时也达不到100%,多数情况下只有50%左右。因此,目前报道的猪链球菌反向筛选标记的效率均偏低,需要开发更高效的反向筛选标记用于猪链球菌无痕基因操作。There are two reverse screening markers currently reported for the establishment of Streptococcus suis, namely Bacillus subtilis saccharanase SacB and Vibrio parahaemolyticus toxin YoeB. In the report of SacB as a reverse screening marker for Streptococcus suis, the article simply introduced the use of the natural sacB gene and its promoter of Bacillus subtilis as a reverse screening marker, without specific methods, let alone its efficiency. We used the natural sacB gene and its promoter of Bacillus subtilis used in the report to screen hundreds of sucrose-tolerant colonies, but no target clone was found, indicating that the screening efficiency was lower than 1%. In the report using YeoB as a reverse screening marker, the induction of YeoB cannot completely inhibit the growth of Streptococcus suis, which fundamentally limits its screening efficiency. Therefore, this method not only needs to enrich the target clone through multiple passages and adding inducers, but even so, its screening efficiency cannot reach 100% at the highest level, and in most cases it is only about 50%. Therefore, the efficiency of the currently reported reverse selection markers for Streptococcus suis is low, and it is necessary to develop more efficient reverse selection markers for the traceless gene manipulation of Streptococcus suis.

最近几年,人们发现编码苯丙氨酸tRNA合成酶α亚基的pheS基因的突变体可以用作细菌的反向筛选标记。A294G单氨基酸取代突变体(氨基酸位置参考大肠杆菌PheS蛋白)开发较早,在多种细菌中得到了应用。但是,这种单取代突变体筛选效率偏低,需要高浓度的p-Cl-phe(>5mM)并使用营养限制培养基。进一步研究发现T251S/A294G双取代突变体具有更高的p-Cl-phe掺入效率,因此推测其可能会产生更高的筛选效率,这一推测在枯草芽孢杆菌和变异链球菌中得到了证实,筛选效率达到了100%。In recent years, it has been found that mutants of the pheS gene encoding the α subunit of phenylalanine tRNA synthetase can be used as reverse selection markers in bacteria. A294G single amino acid substitution mutant (amino acid position refers to Escherichia coli PheS protein) was developed earlier and has been applied in various bacteria. However, the screening efficiency of such single substitution mutants is low, requiring high concentrations of p-Cl-phe (>5mM) and the use of nutrient-limited media. Further studies found that the T251S/A294G double substitution mutant has higher p-Cl-phe incorporation efficiency, so it is speculated that it may produce higher screening efficiency, which was confirmed in Bacillus subtilis and Streptococcus mutans , the screening efficiency reached 100%.

PheS突变体通过与菌株自身的野生PheS蛋白竞争,翻译过程中将苯丙氨酸类似物p-Cl-phe错误地掺入到合成的蛋白质中,从而在p-Cl-phe存在条件下,表达PheS突变体的菌株死亡,不表达PheS突变体的菌株生存。这一反向筛选原理决定了其它细菌中建立的PheS反向筛选标记不能用到猪链球菌中,而是需要:1)针对猪链球菌,鉴定其自身的pheS基因;2)鉴定T251和A294对应的氨基酸,进行取代突变;3)引入大量同义突变,在保持蛋白序列与野生PheS蛋白一致的前提下,尽量降低核酸序列的相似性,避免两者发生重组;4)筛选针对猪链球菌的强启动子驱动,提高突变PheS蛋白的表达量,从而与野生PheS蛋白进行竞争。The PheS mutant competes with the strain's own wild-type PheS protein and misincorporates the phenylalanine analogue p-Cl-phe into the synthesized protein during translation, thereby expressing in the presence of p-Cl-phe Strains that express the PheS mutant die, and strains that do not express the PheS mutant survive. This reverse screening principle determines that the PheS reverse screening marker established in other bacteria cannot be used in Streptococcus suis, but requires: 1) identification of its own pheS gene for Streptococcus suis; 2) identification of T251 and A294 Substituting mutations for the corresponding amino acids; 3) Introducing a large number of synonymous mutations, while keeping the protein sequence consistent with the wild PheS protein, minimizing the similarity of the nucleic acid sequence and avoiding recombination between the two; 4) Screening for Streptococcus suis Driven by a strong promoter, the expression of the mutant PheS protein is increased to compete with the wild PheS protein.

基于此,本发明着手于猪链球菌PheS蛋白及突变氨基酸的鉴定,通过引入双突变、同义突变和筛选启动子,开发一种高效的猪链球菌反向筛选标记,并确定其作用条件和效率。Based on this, the present invention sets out to the identification of Streptococcus suis PheS protein and mutated amino acid, develops a kind of high-efficiency Streptococcus suis reverse selection marker by introducing double mutation, synonymous mutation and screening promoter, and determines its action condition and efficiency.

发明内容Contents of the invention

本发明的目的之一在于提供一种猪链球菌的反向筛选标记。One of the objectives of the present invention is to provide a reverse screening marker for Streptococcus suis.

本发明的目的之二在于提供含有该反向筛选标记的猪链球菌及其在猪链球菌基因编辑中应用。The second object of the present invention is to provide Streptococcus suis containing the reverse selection marker and its application in gene editing of Streptococcus suis.

本发明的目的之三在于提供一种猪链球菌无痕基因编辑方法。The third object of the present invention is to provide a traceless gene editing method of Streptococcus suis.

为了达到上述目的,本发明采用了以下技术手段:In order to achieve the above object, the present invention adopts the following technical means:

首先,本发明提出了一种猪链球菌的反向筛选标记,所述的反向筛选标记为突变后的编码猪链球菌苯丙氨酸tRNA合成酶α亚基的pheS基因,突变后的pheS基因导致了编码的猪链球菌苯丙氨酸tRNA合成酶α亚基发生了T261S和A315G双取代突变,PheS突变体通过与菌株自身的野生PheS蛋白竞争,翻译过程中将苯丙氨酸类似物对-氯-苯丙氨酸(p-Cl-Phe)错误地掺入到合成的蛋白质中,从而在p-Cl-Phe存在条件下,表达PheS突变体的菌株死亡,不表达PheS突变体的菌株生存。First, the present invention proposes a reverse screening marker for Streptococcus suis, the reverse screening marker is the mutated pheS gene encoding the α subunit of Streptococcus suis phenylalanine tRNA synthetase, and the mutated pheS gene The T261S and A315G double substitution mutations in the encoded phenylalanine tRNA synthetase α subunit of Streptococcus suis caused the PheS mutant to compete with the wild PheS protein of the strain itself, and the phenylalanine analogues were translated into -Chloro-phenylalanine (p-Cl-Phe) is misincorporated into synthesized proteins so that in the presence of p-Cl-Phe, strains expressing PheS mutants die and strains that do not express PheS mutants Survive.

其中,优选的,所述的突变后的编码猪链球菌苯丙氨酸tRNA合成酶α亚基的pheS基因的核苷酸序列如SEQ ID NO.1所示。Wherein, preferably, the nucleotide sequence of the mutated pheS gene encoding the alpha subunit of phenylalanine tRNA synthetase of Streptococcus suis is shown in SEQ ID NO.1.

其中,优选的,所述的突变后的编码猪链球菌苯丙氨酸tRNA合成酶α亚基的pheS基因编码的PheS突变体的氨基酸序列如SEQ ID NO.2所示。Wherein, preferably, the amino acid sequence of the mutated PheS mutant encoded by the pheS gene encoding the alpha subunit of phenylalanine tRNA synthetase of Streptococcus suis is shown in SEQ ID NO.2.

其次,本发明还提出了一种含有所述的反向筛选标记的猪链球菌。Secondly, the present invention also proposes a Streptococcus suis containing the reverse selection marker.

其中,优选的,所述的反向筛选标记由启动子P0177、P0530、P1503、P1815或P1868驱动表达。Wherein, preferably, the expression of the reverse selection marker is driven by promoters P 0177 , P 0530 , P 1503 , P 1815 or P 1868 .

其中,优选的,所述的猪链球菌通过以下方法制备得到:Wherein, preferably, described Streptococcus suis is prepared by the following method:

(1)mPheS突变体基因的合成(1) Synthesis of mPheS mutant gene

合成SEQ ID NO.1所示的mPheS突变体基因序列;Synthesizing the mPheS mutant gene sequence shown in SEQ ID NO.1;

(2)mPheS与强启动子融合片段P-mPheS的构建(2) Construction of mPheS and strong promoter fusion fragment P-mPheS

1)mPheS与5个强启动子片段克隆:1) Cloning of mPheS and 5 strong promoter fragments:

设计PCR引物,核苷酸序列如下:Design PCR primers, the nucleotide sequence is as follows:

P0177-F:5’-CCGGCGGAAGAAGGAGTAATTGGTAAGAGAAATGTGAGTG-3’P 0177 -F:5'- CCGGCGGAAGAAGGAGTAA TTGGTAAGAGAAATGTGAGTG-3'

P0177-R:5’-GTTGTTGCTCGATGTTAGACATATCTTTATAAGACATGATATCCTC-3’P 0177 -R:5'- GTTGTTGCTCGATGTTAGACAT ATCTTTATAAGACATGATATCCTC-3'

P0530-F:5’-CCGGCGGAAGAAGGAGTAAGTAGGATAACTGAATGGAGAA-3’P 0530 -F:5'- CCGGCGGAAGAAGGAGTAA GTAGGATAACTGAATGGAGAA-3'

P0530-R:5’-GTTGTTGCTCGATGTTAGACATTTTGGTAAAAGCCTCCAATAA-3’P 0530 -R:5'- GTTGTTGCTCGATGTTAGACAT TTTGGTAAAAGCCTCCAATAA-3'

P1503-F:5’-CCGGCGGAAGAAGGAGTAATGTTTCGCCAGAGGCTT-3’P 1503 -F:5'- CCGGCGGAAGAAGGAGTAA TGTTTCGCCAGAGGCTT-3'

P1503-R:5’-GTTGTTGCTCGATGTTAGACATTATATTACTCTCCTTTGAGTTT-3’P 1503 -R:5'- GTTGTTGCTCGATGTTAGACAT TATATTACTCTCCTTTGAGTTT-3'

P1815-F:5’-CCGGCGGAAGAAGGAGTAACAGCGCCTCAAAAACTA-3’P 1815 -F:5'- CCGGCGGAAGAAGGAGTAA CAGCGCCTCAAAAACTA-3'

P1815-R:5’-GTTGTTGCTCGATGTTAGACATAAGTCCTCCATATAAGTACTTC-3’P 1815 -R:5'- GTTGTTGCTCGATGTTAGACAT AAGTCTCCATATAAGTACTTC-3'

P1868-F:5’-CCGGCGGAAGAAGGAGTAAAAAAACAGCAAGGATTGTAG-3’P 1868 -F:5'- CCGGCGGAAGAAGGAGTAAAAAAACAGCAAGGATTGTAG -3'

P1868-R:5’-GTTGTTGCTCGATGTTAGACATAAAACACCTCTGTTTTCTTT-3’P 1868 -R:5'- GTTGTTGCTCGATGTTAGACAT AAAACACCTCTGTTTTCTTT-3'

mPheS-F:5’-ATGTCTAACATCGAGCAAC-3’mPheS-F:5'-ATGTCTAACATCGAGCAAC-3'

mPheS-R:5’-TTAGAATTGTTCTGAGAAACGAAC-3’mPheS-R:5'-TTAGAATTGTTCTGAGAAACGAAC-3'

以步骤(1)合成的mPheS基因为模板,以mPheS-F/mPheS-R为引物得到mPheS基因的扩增产物;以猪链球菌05ZYH33菌株基因组DNA为模板,分别以P0177-F/P0177-R、P0530-F/P0530-R、P1503-F/P1503-R、P1815-F/P1815-R、P1868-F/P1868-R为引物得到5个启动子P0177、P0530、P1503、P1815、P1868的扩增产物;Use the mPheS gene synthesized in step (1) as a template, and use mPheS-F/mPheS- R as primers to obtain the amplification product of the mPheS gene; -R, P 0530 -F/P 0530 -R, P 1503 -F/P 1503 -R, P 1815 -F/P 1815 -R, P 1868 -F/P 1868 -R were used as primers to obtain 5 promoters P Amplification products of 0177 , P 0530 , P 1503 , P 1815 , P 1868 ;

3)融合片段P-mPheS的构建3) Construction of fusion fragment P-mPheS

分别以各启动子的扩增产物和mPheS的扩增产物混合为模板,通过重叠延伸PCR进行融合,获得产物即为mPheS与强启动子的融合片段P-mPheS,分别命名为P0177-mPheS、P0530-mPheS、P1503-mPheS、P1815-mPheS和P1868-mPheS;The amplified products of each promoter and the amplified product of mPheS were mixed as templates, and fusion was carried out by overlap extension PCR. P0530 -mPheS, P1503 -mPheS, P1815 -mPheS and P1868 -mPheS;

(3)通过红霉素抗性基因(erm)将P-mPheS融合片段整合到猪链球菌基因组(3) Integration of the P-mPheS fusion fragment into the genome of Streptococcus suis through the erythromycin resistance gene (erm)

1)猪链球菌ssu05_0630基因上游序列及含erm基因的下游序列扩增1) Amplification of the upstream sequence of Streptococcus suis ssu05_0630 gene and the downstream sequence containing erm gene

设计PCR引物,核苷酸序列如下:Design PCR primers, the nucleotide sequence is as follows:

UP0630-F:5’-TGCTAACGATGCTACAAATGC-3’UP 0630 -F:5'-TGCTAACGATGCTACAAATGC-3'

UP0630-R:5’-TTACTCCTTCTTCCGCCGG-3’UP 0630 -R:5'-TTACTCCTTCTTCCGCCGG-3'

Erm-DN0630-F:5’-CGTTCGTTTCTCAGAACAATTCTAAAGAAGGAGGGATTCGTCATG-3’Erm-DN 0630 -F:5'- CGTTCGTTTCTCAGAACAATTCTAA AGAAGGAGGGATTCGTCATG-3'

Erm-DN0630-R:5’-CAAAGATAGCGGTGGTCGT-3’Erm-DN 0630 -R:5'-CAAAGATAGCGGTGGTCGT-3'

分别以UP0630-F/UP0630-R和Erm-DN0630-F/Erm-DN0630-R为引物,以erm基因替代ssu05_0630基因的猪链球菌ssu05_0630基因缺失株(陈平,刘冉,黄萌萌,朱金鲁,谢芳,倪宏波,刘思国,张跃灵。猪链球菌2型05ZYH33菌株具有N-乙酰氨基葡萄糖苷酶活性蛋白的鉴定及功能研究。中国预防兽医学报,2019,41(05):462-467)的基因组DNA为模板,进行PCR扩增,得到ssu05_0630基因上游序列扩增产物UP0630和含erm基因的ssu05_0630基因下游序列扩增产物Erm-DN0630Using UP 0630 -F/UP 0630 -R and Erm-DN 0630 -F/Erm-DN 0630 -R as primers respectively, the ssu05_0630 gene deletion strain of Streptococcus suis substituted with erm gene for ssu05_0630 gene (Chen Ping, Liu Ran, Huang Mengmeng, Zhu Jinlu, Xie Fang, Ni Hongbo, Liu Siguo, Zhang Yueling. Identification and functional study of protein with N-acetylglucosaminidase activity in Streptococcus suis type 2 strain 05ZYH33. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(05): 462 The genomic DNA of -467) is template, carry out PCR amplification, obtain ssu05_0630 gene upstream sequence amplification product UP 0630 and the ssu05_0630 gene downstream sequence amplification product Erm-DN 0630 containing erm gene;

2)融合片段UP0630-P-mPheS-Erm-DN0630的构建2) Construction of fusion fragment UP 0630 -P-mPheS-Erm-DN 0630

将UP0630和Erm-DN0630片段与上述5个融合片段P-mPheS分别组合后作为模板,以UP0630-F/UP0630-R为引物,采取上述PCR反应条件,进行重叠延伸PCR,扩增获得5个对应的融合片段,分别命名为UP-P0177-mPheS-Erm-DN、UP-P0530-mPheS-Erm-DN、UP-P1503-mPheS-Erm-DN、UP-P1815-mPheS-Erm-DN和UP-P1868-mPheS-Erm-DN;Combine the UP 0630 and Erm-DN 0630 fragments with the above five fusion fragments P-mPheS respectively as templates, use UP 0630 -F/UP 0630 -R as primers, adopt the above PCR reaction conditions, and perform overlap extension PCR to amplify Five corresponding fusion fragments were obtained, named UP-P 0177 -mPheS-Erm-DN, UP-P 0530 -mPheS-Erm-DN, UP-P 1503 -mPheS-Erm-DN, UP-P 1815 -mPheS -Erm-DN and UP-P 1868 -mPheS-Erm-DN;

3)肽诱导转化和整合鉴定3) Peptide-induced transformation and integration identification

合成SEQ ID NO.3所示的多肽,纯度为95%,溶解于去离子水中至终浓度5mM,分装后在-20℃下储存备用;将猪链球菌05ZYH33菌株过夜培养后,以1:100接种于新鲜TSBS培养基,37℃、5%CO2条件下,静置培养1.5h、2h、2.5h和3h;每个时间点取50μl菌液,与2.5μl多肽和1μg步骤2)得到的5个UP-P-mPheS-Erm-DN的融合片段分别混合,混合物培养4小时后,涂布添加了红霉素的TSAS平板(TSAS-Erm);Synthesize the polypeptide shown in SEQ ID NO.3 with a purity of 95%, dissolve it in deionized water to a final concentration of 5mM, and store it at -20°C after aliquoting; 100 inoculated in fresh TSBS medium, under the conditions of 37°C and 5% CO 2 , cultured statically for 1.5h, 2h, 2.5h and 3h; at each time point, 50μl of bacterial liquid was taken, mixed with 2.5μl of polypeptide and 1μg of step 2) to obtain The five fusion fragments of UP-P-mPheS-Erm-DN were mixed separately, and after the mixture was incubated for 4 hours, the TSAS plate (TSAS-Erm) added with erythromycin was coated;

设计PCR引物,核苷酸序列如下:Design PCR primers, the nucleotide sequence is as follows:

SeqF:5’-GCGGAGCCCTTACCAG-3’SeqF: 5'-GCGGAGCCCTTACCAG-3'

SeqR:5’-AATACAGAAGTTAAACGATTTGT-3’SeqR: 5'-AATACAGAAGTTAAACGATTTGT-3'

挑取TSAS-Erm平板上的单菌落,培养后采用SeqF/SeqR引物进行PCR鉴定,经1%琼脂糖电泳检测大小分别为2004bp、1820bp、1717bp、1872bp和1777bp,确认各个UP-P-mPheS-Erm-DN片段整合到了目的位点,说明获得了基因组中整合了P-mPheS-Erm的片段,简称PPE;这些菌株分别命名为gP0177PE、gP0530PE、gP1503PE、gP1815PE和gP1868PE。Pick a single colony on the TSAS-Erm plate, and use SeqF/SeqR primers to carry out PCR identification after cultivation. The sizes detected by 1% agarose electrophoresis are 2004bp, 1820bp, 1717bp, 1872bp and 1777bp respectively, confirming that each UP-P-mPheS- The Erm-DN fragment was integrated into the target site, indicating that the fragment of P-mPheS-Erm integrated in the genome was obtained, referred to as PPE; these strains were named gP 0177 PE, gP 0530 PE, gP 1503 PE, gP 1815 PE and gP 1868 PE.

再次,本发明还提出了所述的猪链球菌在猪链球菌无痕基因编辑中的应用。Again, the present invention also proposes the application of the Streptococcus suis in the traceless gene editing of Streptococcus suis.

最后,本发明还提出了一种猪链球菌无痕基因编辑方法,其包括以下步骤:从猪链球菌WT菌株中扩增突变基因的上游UP1和下游序列DN1;从所述的猪链球菌菌株基因组DNA中扩增得到含有启动子、反向筛选标记以及红霉素抗性基因的片段PPE;通过重叠延伸PCR,扩增获得融合DNA片段UP1-PPE-DN1;片段转化猪链球菌WT菌株并在TSAS-Erm平板上筛选,菌落经PCR鉴定获得阳性菌落,获得含有反向筛选标记P-mPheS的中间菌株;Finally, the present invention also proposes a traceless gene editing method for Streptococcus suis, which includes the following steps: amplifying the upstream UP1 and downstream sequence DN1 of the mutant gene from the Streptococcus suis WT strain; The fragment PPE containing the promoter, reverse selection marker and erythromycin resistance gene was amplified from the DNA; the fusion DNA fragment UP1-PPE-DN1 was amplified by overlapping extension PCR; the fragment was transformed into Streptococcus suis WT strain and in Screened on the TSAS-Erm plate, the colonies were identified by PCR to obtain positive colonies, and an intermediate strain containing the reverse screening marker P-mPheS was obtained;

从猪链球菌WT菌株中扩增突变基因的上游UP2和下游序列DN2;突变基因的上游和下游序列或者直接融合在一起,或者与特定基因或片段融合,或者与突变基因融合,获得用于第二次转化的第二个片段;片段转化上述对p-Cl-phe敏感的中间菌株,并在含有0.05%p-Cl-phe的TSAS平板上进行反向筛选;随机挑取100个菌落,培养后用对其进行PCR鉴定,即获得目的突变。The upstream UP2 and downstream sequences DN2 of the mutant gene were amplified from the WT strain of Streptococcus suis; the upstream and downstream sequences of the mutant gene were either directly fused together, or fused with a specific gene or fragment, or fused with the mutant gene, and obtained for the first The second fragment of the secondary transformation; the fragment is transformed into the above-mentioned intermediate strain sensitive to p-Cl-phe, and reverse screening is carried out on the TSAS plate containing 0.05% p-Cl-phe; 100 colonies are randomly picked and cultured Afterwards, it is identified by PCR to obtain the target mutation.

相较于现有技术,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:

猪链球菌是一种重要的人兽共患病病原菌,严重威胁养猪业和人类公共健康。对猪链球菌的深入研究以及疫苗制备迫切需要一个有效的无痕基因操作系统,而反向筛选标记的效率直接决定了无痕基因操作的效率。目前在猪链球菌中已经开发出了基于SacB和YeoB的两种反向筛选标记,但是它们的效率不够高,而且操作相对复杂。在本发明中,我们在猪链球菌的遗传背景下,通过鉴定猪链球菌的pheS基因,引入突变,筛选启动子,并通过基因组整合途径,在猪链球菌中摸索合适的氯代苯丙氨酸(p-Cl-phe)作用浓度,鉴定筛选效率,开发了基于pheS突变基因的猪链球菌高效反向筛选标记,筛选效率达到100%,是目前猪链球菌中最高效的反向筛选标记。利用这一高效反向筛选标记,建立了高效的猪链球菌无痕基因操作策略,用于实现猪链球菌高效的无痕基因缺失、基因融合和基因突变,以及其它无痕基因操作,在研究猪链球菌生理和病理机制、制备疫苗株方面具有很好的应用前景。Streptococcus suis is an important zoonotic pathogen, which seriously threatens the pig industry and human public health. The in-depth study of Streptococcus suis and the preparation of vaccines urgently need an effective traceless gene operating system, and the efficiency of the reverse screening marker directly determines the efficiency of the traceless gene operation. At present, two reverse selection markers based on SacB and YeoB have been developed in Streptococcus suis, but their efficiency is not high enough, and the operation is relatively complicated. In the present invention, under the genetic background of Streptococcus suis, we identified the pheS gene of Streptococcus suis, introduced mutations, screened the promoter, and explored suitable chlorinated amphetamine in Streptococcus suis through the genome integration pathway Acid (p-Cl-phe) action concentration, identification and screening efficiency, developed a high-efficiency reverse screening marker for Streptococcus suis based on the pheS mutant gene, and the screening efficiency reached 100%, which is currently the most efficient reverse screening marker for Streptococcus suis . Using this high-efficiency reverse screening marker, an efficient traceless gene manipulation strategy of Streptococcus suis was established, which is used to achieve efficient traceless gene deletion, gene fusion, gene mutation, and other traceless gene manipulations of Streptococcus suis. The physiological and pathological mechanism of Streptococcus suis and the preparation of vaccine strains have good application prospects.

附图说明Description of drawings

图1为wtPheS和mPheS相关序列比较;Figure 1 is a comparison of wtPheS and mPheS related sequences;

图2为不同P-mPheS基因组整合菌株的构建及对p-Cl-phe敏感性的检测;Figure 2 is the construction of different P-mPheS genome integrated strains and the detection of sensitivity to p-Cl-phe;

图3为P1503-mPheS作为反向筛选标记构建ireB基因缺失菌株;Fig. 3 is P 1503 -mPheS used as a reverse selection marker to construct ireB gene deletion strains;

图4为基于P1503-mPheS反向筛选标记的高效猪链球菌无痕基因操作策略示意图。Fig. 4 is a schematic diagram of a highly efficient traceless gene manipulation strategy for Streptococcus suis based on the P 1503 -mPheS reverse selection marker.

具体实施方式Detailed ways

下面通过实验并结合实施例对本发明做进一步说明,应该理解的是,这些实施例仅用于例证的目的,决不限制本发明的保护范围。The present invention will be further described through experiments and examples below. It should be understood that these examples are only for the purpose of illustration, and in no way limit the protection scope of the present invention.

实施例1mPheS突变体基因的设计与合成Design and synthesis of embodiment 1 mPheS mutant gene

利用变异链球菌的pheS进行BLAST,从猪链球菌05ZYH33(GenBank:CP000407)的基因组中鉴定到野生型pheS基因(wtPheS)。通过ClustalW比较大肠杆菌、变形链球菌、单核细胞增生李斯特菌、嗜酸杆菌和猪链球菌的PheS蛋白,鉴定到大肠杆菌PheS蛋白T251和A294对应的氨基酸T261和A315(图1A)。分别将其密码子ACT和GCC改变为TCA和GGT,实现T261S和A315G双取代突变(图1B,虚线矩形所示)。然后通过密码子适应软件Jcat以及手动突变,最终引入275个同义突变,得到的mPheS基因(SEQ ID NO.1所示)与wtPheS基因的相似度为73.7%,它们之间最长的连续相同序列不超过8bp(图1B)。它们对应的mPheS(SEQ ID NO.2所示)和wtPheS蛋白除了T261S/A315G双取代外,氨基酸序列完全一致(图1C)。mPheS基因由华大基因公司合成。Using pheS of Streptococcus mutans to perform BLAST, the wild-type pheS gene (wtPheS) was identified from the genome of Streptococcus suis 05ZYH33 (GenBank: CP000407). Comparing the PheS proteins of E. coli, S. mutans, L. monocytogenes, acidophilus, and S. suis by ClustalW, amino acids T261 and A315 corresponding to T251 and A294 of E. coli PheS proteins were identified (Fig. 1A). The codons ACT and GCC were changed to TCA and GGT, respectively, to realize the T261S and A315G double substitution mutations (Fig. 1B, shown by the dotted rectangle). Then through the codon adaptation software Jcat and manual mutation, 275 synonymous mutations were finally introduced, and the similarity between the obtained mPheS gene (shown in SEQ ID NO.1) and the wtPheS gene was 73.7%, and the longest continuous identity between them was Sequences do not exceed 8 bp (Fig. 1B). Their corresponding mPheS (shown in SEQ ID NO.2) and wtPheS proteins have completely identical amino acid sequences except for the T261S/A315G double substitution ( FIG. 1C ). The mPheS gene was synthesized by BGI.

实施例2mPheS与强启动子融合片段P-mPheS的构建Example 2 Construction of mPheS and strong promoter fusion fragment P-mPheS

(1)mPheS与5个潜在强启动子片段克隆:(1) Cloning of mPheS and 5 potential strong promoter fragments:

设计PCR引物,核苷酸序列如下:Design PCR primers, the nucleotide sequence is as follows:

P0177-F:5’-CCGGCGGAAGAAGGAGTAATTGGTAAGAGAAATGTGAGTG-3’P 0177 -F:5'- CCGGCGGAAGAAGGAGTAA TTGGTAAGAGAAATGTGAGTG-3'

P0177-R:5’-GTTGTTGCTCGATGTTAGACATATCTTTATAAGACATGATATCCTC-3’P 0177 -R:5'- GTTGTTGCTCGATGTTAGACAT ATCTTTATAAGACATGATATCCTC-3'

P0530-F:5’-CCGGCGGAAGAAGGAGTAAGTAGGATAACTGAATGGAGAA-3’P 0530 -F:5'- CCGGCGGAAGAAGGAGTAA GTAGGATAACTGAATGGAGAA-3'

P0530-R:5’-GTTGTTGCTCGATGTTAGACATTTTGGTAAAAGCCTCCAATAA-3’P 0530 -R:5'- GTTGTTGCTCGATGTTAGACAT TTTGGTAAAAGCCTCCAATAA-3'

P1503-F:5’-CCGGCGGAAGAAGGAGTAATGTTTCGCCAGAGGCTT-3’P 1503 -F:5'- CCGGCGGAAGAAGGAGTAA TGTTTCGCCAGAGGCTT-3'

P1503-R:5’-GTTGTTGCTCGATGTTAGACATTATATTACTCTCCTTTGAGTTT-3’P 1503 -R:5'- GTTGTTGCTCGATGTTAGACAT TATATTACTCTCCTTTGAGTTT-3'

P1815-F:5’-CCGGCGGAAGAAGGAGTAACAGCGCCTCAAAAACTA-3’P 1815 -F:5'- CCGGCGGAAGAAGGAGTAA CAGCGCCTCAAAAACTA-3'

P1815-R:5’-GTTGTTGCTCGATGTTAGACATAAGTCCTCCATATAAGTACTTC-3’P 1815 -R:5'- GTTGTTGCTCGATGTTAGACAT AAGTCTCCATATAAGTACTTC-3'

P1868-F:5’-CCGGCGGAAGAAGGAGTAAAAAAACAGCAAGGATTGTAG-3’P 1868 -F:5'- CCGGCGGAAGAAGGAGTAAAAAAACAGCAAGGATTGTAG -3'

P1868-R:5’-GTTGTTGCTCGATGTTAGACATAAAACACCTCTGTTTTCTTT-3’P 1868 -R:5'- GTTGTTGCTCGATGTTAGACAT AAAACACCTCTGTTTTCTTT-3'

mPheS-F:5’-ATGTCTAACATCGAGCAAC-3’mPheS-F:5'-ATGTCTAACATCGAGCAAC-3'

mPheS-R:5’-TTAGAATTGTTCTGAGAAACGAAC-3’mPheS-R:5'-TTAGAATTGTTCTGAGAAACGAAC-3'

PCR反应体系为:The PCR reaction system is:

PCR反应条件为:98℃变性10s,55℃退火5s,72℃延伸5-10s/kb,32个循环。除mPheS扩增采用实施例1中合成的mPheS基因为模板外,其余均采用猪链球菌05ZYH33菌株基因组DNA为模板。The PCR reaction conditions were: denaturation at 98°C for 10s, annealing at 55°C for 5s, extension at 72°C for 5-10s/kb, 32 cycles. Except that the mPheS gene synthesized in Example 1 was used as a template for mPheS amplification, all others used the genomic DNA of Streptococcus suis 05ZYH33 strain as a template.

P0177-F/P0177-R、P0530-F/P0530-R、P1503-F/P1503-R、P1815-F/P1815-R、P1868-F/P1868-R和mPheS-F/mPheS-R六对引物扩增所得PCR产物分别为5个启动子P0177、P0530、P1503、P1815、P1868和mPheS基因,经1%琼脂糖电泳检测大小分别为484bp、300bp、197bp、352bp、257bp和1044bp(图2A)。P 0177 -F/P 0177 -R, P 0530 -F/P 0530 -R, P 1503 -F/P 1503-R, P 1815 - F/P 1815 -R, P 1868 -F/P 1868 -R and mPheS-F/mPheS-R PCR products amplified by six pairs of primers are 5 promoters P 0177 , P 0530 , P 1503 , P 1815 , P 1868 and mPheS genes respectively, and the sizes detected by 1% agarose electrophoresis are 484bp , 300bp, 197bp, 352bp, 257bp and 1044bp (Figure 2A).

(2)融合片段P-mPheS的构建:根据表1所示的模板和引物组合,以各启动子片段和mPheS片段混合为模板,通过重叠延伸PCR进行融合。(2) Construction of the fusion fragment P-mPheS: according to the template and primer combinations shown in Table 1, each promoter fragment and the mPheS fragment were mixed as a template, and fusion was carried out by overlap extension PCR.

PCR反应条件同上,获得产物即为mPheS与强启动子融合片段P-mPheS,分别命名为P0177-mPheS、P0530-mPheS、P1503-mPheS、P1815-mPheS和P1868-mPheS,经1%琼脂糖电泳检测大小分别为1528bp、1344bp、1241bp、1396bp和1301bp(图2B)。The PCR reaction conditions were the same as above, and the obtained product was the fusion fragment P-mPheS of mPheS and strong promoter, which were named as P 0177 -mPheS, P 0530 -mPheS, P 1503 -mPheS, P 1815 -mPheS and P 1868 -mPheS, after 1 The sizes detected by % agarose electrophoresis were 1528bp, 1344bp, 1241bp, 1396bp and 1301bp respectively (Fig. 2B).

实施例3通过红霉素抗性基因(erm)将P-mPheS融合片段整合到猪链球菌基因组Embodiment 3 integrates the P-mPheS fusion fragment into the Streptococcus suis genome by the erythromycin resistance gene (erm)

(1)猪链球菌ssu05_0630基因上游序列及含erm基因的ssu05_0630基因下游序列扩增(1) Amplification of the upstream sequence of Streptococcus suis ssu05_0630 gene and the downstream sequence of ssu05_0630 gene containing erm gene

设计PCR引物,核苷酸序列如下:Design PCR primers, the nucleotide sequence is as follows:

UP0630-F:5’-TGCTAACGATGCTACAAATGC-3’UP 0630 -F:5'-TGCTAACGATGCTACAAATGC-3'

UP0630-R:5’-TTACTCCTTCTTCCGCCGG-3’UP 0630 -R:5'-TTACTCCTTCTTCCGCCGG-3'

Erm-DN0630-F:5’-CGTTCGTTTCTCAGAACAATTCTAAAGAAGGAGGGATTCGTCATG-3’Erm-DN 0630 -F:5'- CGTTCGTTTCTCAGAACAATTCTAA AGAAGGAGGGATTCGTCATG-3'

Erm-DN0630-R:5’-CAAAGATAGCGGTGGTCGT-3’Erm-DN 0630 -R:5'-CAAAGATAGCGGTGGTCGT-3'

分别以UP0630-F/UP0630-R和Erm-DN0630-F/Erm-DN0630-R为引物,以erm基因替代ssu05_0630基因的猪链球菌ssu05_0630基因缺失株(陈平,刘冉,黄萌萌,朱金鲁,谢芳,倪宏波,刘思国,张跃灵。猪链球菌2型05ZYH33菌株具有N-乙酰氨基葡萄糖苷酶活性蛋白的鉴定及功能研究。中国预防兽医学报,2019,41(05):462-467)的基因组DNA为模板,进行PCR扩增,得到ssu05_0630基因上游序列扩增产物UP0630和含erm基因的ssu05_0630基因下游序列扩增产物Erm-DN0630。产物UP0630和Erm-DN0630经检测大小分别为1024bp和2413bp(图2B)。Using UP 0630 -F/UP 0630 -R and Erm-DN 0630 -F/Erm-DN 0630 -R as primers respectively, the ssu05_0630 gene deletion strain of Streptococcus suis substituted with erm gene for ssu05_0630 gene (Chen Ping, Liu Ran, Huang Mengmeng, Zhu Jinlu, Xie Fang, Ni Hongbo, Liu Siguo, Zhang Yueling. Identification and functional study of protein with N-acetylglucosaminidase activity in Streptococcus suis type 2 strain 05ZYH33. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(05): 462 -467) genomic DNA was used as a template for PCR amplification to obtain the amplification product UP 0630 of the upstream sequence of the ssu05_0630 gene and the amplification product Erm-DN 0630 of the downstream sequence of the ssu05_0630 gene containing the erm gene. The detected sizes of the products UP 0630 and Erm-DN 0630 were 1024bp and 2413bp, respectively (Fig. 2B).

(2)融合片段UP0630-P-mPheS-Erm-DN0630的构建(2) Construction of fusion fragment UP 0630 -P-mPheS-Erm-DN 0630

如表2所示,UP0630和Erm-DN0630片段与上述5个P-mPheS片段一一组合,混合物作为模板,以UP0630-F/UP0630-R为引物,采取上述PCR反应条件,进行重叠延伸PCR,扩增获得5个对应的融合片段UP-P0177-mPheS-Erm-DN、UP-P0530-mPheS-Erm-DN、UP-P1503-mPheS-Erm-DN、UP-P1815-mPheS-Erm-DN和UP-P1868-mPheS-Erm-DN。经1%琼脂糖电泳检测大小分别为4983bp、4799bp、4696bp、4851bp和4756bp(图2C)。As shown in Table 2, the UP 0630 and Erm-DN 0630 fragments were combined with the above five P-mPheS fragments one by one, the mixture was used as a template, and UP 0630 -F/UP 0630 -R was used as a primer, and the above PCR reaction conditions were adopted to carry out Overlap extension PCR, amplified to obtain 5 corresponding fusion fragments UP-P 0177 -mPheS-Erm-DN, UP-P 0530 -mPheS-Erm-DN, UP-P 1503 -mPheS-Erm-DN, UP-P 1815 -mPheS-Erm-DN and UP-P 1868 -mPheS-Erm-DN. The sizes detected by 1% agarose electrophoresis were 4983bp, 4799bp, 4696bp, 4851bp and 4756bp respectively (Fig. 2C).

表2重叠延伸PCR模板和引物组合Table 2 Overlap extension PCR template and primer combinations

(3)肽诱导转化和整合鉴定(3) Peptide-induced transformation and integration identification

肽诱导转化参考文献进行(Zaccaria等人,2014年)。多肽(SEQ ID NO.3所示,GNWGTWVEE)由GenScript(中国)合成,纯度为95%。溶解于去离子水中至终浓度5mM,分装后在-20℃下储存备用。将猪链球菌05ZYH33菌株过夜培养后,以1:100接种于新鲜TSBS培养基,37℃、5%CO2条件下,静置培养1.5h、2h、2.5h和3h。每个时间点取50μl菌液,与2.5μl多肽和1μg步骤(2)得到的5个UP-P-mPheS-Erm-DN的融合片段分别混合。混合物培养4小时后,涂布添加了红霉素的TSAS平板(TSAS-Erm)。Peptide-induced transformations were performed with reference to (Zaccaria et al., 2014). The polypeptide (shown in SEQ ID NO.3, GNWGTWVEE) was synthesized by GenScript (China) with a purity of 95%. Dissolve in deionized water to a final concentration of 5mM, and store at -20°C after aliquoting. Streptococcus suis 05ZYH33 strain was cultured overnight, inoculated in fresh TSBS medium at a ratio of 1:100, and cultured statically for 1.5h, 2h, 2.5h and 3h at 37°C and 5% CO 2 . Take 50 μl of bacterial liquid at each time point and mix with 2.5 μl of polypeptide and 1 μg of 5 fusion fragments of UP-P-mPheS-Erm-DN obtained in step (2). After the mixture was incubated for 4 hours, erythromycin-supplemented TSAS plates (TSAS-Erm) were plated.

设计PCR引物,核苷酸序列如下:Design PCR primers, the nucleotide sequence is as follows:

SeqF:5’-GCGGAGCCCTTACCAG-3’SeqF: 5'-GCGGAGCCCTTACCAG-3'

SeqR:5’-AATACAGAAGTTAAACGATTTGT-3’SeqR: 5'-AATACAGAAGTTAAACGATTTGT-3'

挑取TSAS-Erm平板上的单菌落,培养后采用SeqF/SeqR引物进行PCR鉴定,经1%琼脂糖电泳检测大小分别为2004bp、1820bp、1717bp、1872bp和1777bp(图2D),确认各个UP-P-mPheS-Erm-DN片段整合到了目的位点,说明获得了基因组中整合了P-mPheS-Erm的片段,简称PPE。这些菌株分别命名为gP0177PE、gP0530PE、gP1503PE、gP1815PE和gP1868PE(g代表基因组整合)(图2E)。Pick a single colony on the TSAS-Erm plate, and use SeqF/SeqR primers to carry out PCR identification after cultivation. The sizes detected by 1% agarose electrophoresis are 2004bp, 1820bp, 1717bp, 1872bp and 1777bp respectively (Figure 2D), confirm that each UP- The P-mPheS-Erm-DN fragment was integrated into the target site, indicating that the fragment integrated with P-mPheS-Erm in the genome, referred to as PPE, was obtained. These strains were named gP 0177 PE, gP 0530 PE, gP 1503 PE, gP 1815 PE and gP 1868 PE (g stands for genome integration) respectively (Fig. 2E).

实施例4不同gPPE菌株对p-Cl-phe的敏感性检测Example 4 Sensitivity detection of different gPPE bacterial strains to p-Cl-phe

猪链球菌菌株过夜培养后,转接至新鲜培养基生长至OD600nm 0.6后,取5μl滴于含有指定浓度p-Cl-phe的TSAS平板上。在37℃、5%CO2条件下静置培养24h后,观察并拍照记录菌株的生长情况。p-Cl-phe对每个菌株的最小抑制浓度(MIC)定义为抑制该菌株生长的最低浓度。p-Cl-phe对gP0177PE、gP0530PE、gP1503PE、gP1815PE和gP1868PE菌株的MIC分别为0.02%、0.01%、0.01%、0.08%和0.06%(图2F),而野生菌株(WT)对0.15%以下浓度的p-Cl-phe不敏感。说明5个P-mPheS均能赋予菌株对p-Cl-phe的敏感性,而其中gP0530PE和gP1503PE的MIC最低,说明P0530-mPheS和P1503-mPheS赋予的敏感性最强,最适合作为猪链球菌的反向筛选标记。After the Streptococcus suis strain was cultured overnight, it was transferred to fresh medium and grown to OD 600nm 0.6, and 5 μl was dropped on the TSAS plate containing the specified concentration of p-Cl-phe. After static culture at 37°C and 5% CO 2 for 24 hours, observe and take pictures to record the growth of the strain. The minimum inhibitory concentration (MIC) of p-Cl-phe to each strain was defined as the lowest concentration that inhibited the growth of the strain. The MICs of p-Cl-phe to gP 0177 PE, gP 0530 PE, gP 1503 PE, gP 1815 PE and gP 1868 PE strains were 0.02%, 0.01%, 0.01%, 0.08% and 0.06%, respectively (Fig. 2F), while The wild strain (WT) was not sensitive to p-Cl-phe below 0.15%. It shows that all five P-mPheS can endow the strain with sensitivity to p-Cl-phe, and the MIC of gP 0530 PE and gP 1503 PE is the lowest, indicating that the sensitivity endowed by P 0530 -mPheS and P 1503 -mPheS is the strongest, It is most suitable as a reverse screening marker for Streptococcus suis.

实施例5P1503-mPheS作为反向筛选标记的筛选效率Example 5P 1503 -mPheS is used as the screening efficiency of reverse screening marker

为了检测P1503-mPheS作为猪链球菌反向筛选标记的效率,将其用于ireB基因的无痕缺失。设计PCR引物,核苷酸序列如下:To test the efficiency of P 1503 -mPheS as a reverse selection marker for S. suis, it was used for scarless deletion of ireB gene. Design PCR primers, the nucleotide sequence is as follows:

UP1-F:5’-GAAGAAGCTCCTGTTGTTGC-3’UP1-F:5'-GAAGAAGCTCCTGTTGTTGC-3'

UP1-R:5’-CTTCGGTAAATCCCATACTTAC-3’UP1-R:5'-CTTCGGTAAATCCCATACTTAC-3'

PPE-F:5’-GTAAGTATGGGATTTACCGAAGTGTTTCGCCAGAGGCTT-3’PPE-F: 5'- GTAAGTATGGGATTTACCGAAG TGTTTCGCCAGAGGCTT-3'

PPE-R:5’-GTCAATCCCATTCCCTTTCCCAAATTCCCCGTAGGC-3’PPE-R: 5'- GTCAATCCCATTCCCTTTC CCAAATTCCCCGTAGGC-3'

DN1-F:5’-GAAAGGGAATGGGATTGAC-3’DN1-F: 5'-GAAAGGGAATGGGATTGAC-3'

DN1-R:5’-GCGTCTTCTGGGATAGGTT-3’DN1-R:5'-GCGTCTTCTGGGATAGGTT-3'

UP2-F:5’-ACAACGCCTGGTGGACG-3’UP2-F:5'-ACAACGCCTGGTGGACG-3'

UP2-R:5’-ACTTACACCTTCTTTCCCT-3’UP2-R: 5'-ACTTACACCTTTCTTTCCCT-3'

DN2-F:5’-AGGGAAAGAAGGTGTAAGTTGAGAATAATGGGATTAGACGT-3’DN2-F: 5'- AGGGAAAGAAGGTGTAAGT TGAGAATAATGGGATTAGACGT-3'

DN2-R:5’-TGATAGGCTGGATAGTTTTGATA-3’DN2-R:5'-TGATAGGCTGGATAGTTTTGATA-3'

ireB-F:5’-GAAACGACTTCAAGTGGGC-3’ireB-F:5'-GAAACGACTTCAAGTGGGC-3'

ireB-R:5’-GTTCGGTCAAACGCTCCA-3’ireB-R:5'-GTTCGGTCAAACGCTCCA-3'

分别采用UP1-F/UP1-R和DN1-F/DN1-R引物,从猪链球菌WT菌株中扩增ireB基因的上游UP1和下游序列DN1;采用PPE-F/PPE-R引物,从gP1503PE菌株基因组DNA中扩增P1503PE序列(简称PPE)(图3A)。通过重叠延伸PCR,扩增获得融合DNA片段UP1-PPE-DN1(图3B)。片段转化猪链球菌WT菌株并在TSAS-Erm平板上筛选,菌落经PCR鉴定获得阳性菌落(图3C)。阳性菌落接种添加0.05%p-Cl-phe的TSAS平板确认其对p-Cl-phe的敏感性,获得含有反向筛选标记P1503-mPheS的中间菌株(图3D)。UP1-F/UP1-R and DN1-F/DN1-R primers were used to amplify the upstream UP1 and downstream sequence DN1 of ireB gene from Streptococcus suis WT strain; The P 1503 PE sequence (PPE for short) was amplified in the genomic DNA of the 1503 PE strain ( FIG. 3A ). The fusion DNA fragment UP1-PPE-DN1 was amplified by overlap extension PCR ( FIG. 3B ). The fragment was transformed into a Streptococcus suis WT strain and screened on a TSAS-Erm plate, and the colonies were identified by PCR to obtain positive colonies (Fig. 3C). Positive colonies were inoculated on TSAS plates supplemented with 0.05% p-Cl-phe to confirm their sensitivity to p-Cl-phe, and an intermediate strain containing the reverse selection marker P 1503 -mPheS was obtained ( FIG. 3D ).

分别采用UP2-F/UP2-R和DN2-F/DN2-R引物,从猪链球菌WT菌株中扩增ireB基因的上游序列UP2和下游序列DN2(图3E)。通过重叠延伸PCR,扩增获得融合DNA片段UP2-DN2(图3F)。片段转化上述对p-Cl-phe敏感的中间菌株,并在含有0.05%p-Cl-phe的TSAS平板上进行反向筛选。随机挑取100个菌落,培养后用引物ireB-F/ireB-R对其进行PCR鉴定,挑取的所有耐受0.05%p-Cl-phe的菌落中,全部含有目标ireB基因无痕缺失(图3G),说明P1503-mPheS作为反向筛选标记,其筛选效率为100%。三次重复试验进一步证实了这一点。Using UP2-F/UP2-R and DN2-F/DN2-R primers, respectively, the upstream sequence UP2 and downstream sequence DN2 of the ireB gene were amplified from the Streptococcus suis WT strain ( FIG. 3E ). The fusion DNA fragment UP2-DN2 was amplified by overlap extension PCR ( FIG. 3F ). The fragment was transformed into the above-mentioned intermediate strain sensitive to p-Cl-phe, and reverse selection was carried out on the TSAS plate containing 0.05% p-Cl-phe. 100 colonies were randomly selected, and after cultivation, they were identified by PCR with primers ireB-F/ireB-R. Among all the colonies picked to tolerate 0.05% p-Cl-phe, all of them contained the target ireB gene traceless deletion ( FIG. 3G ), illustrating that P 1503 -mPheS was used as a reverse selection marker, and its selection efficiency was 100%. This was further confirmed by three replicate experiments.

实施例6以P1503-mPheS为反向筛选标记的猪链球菌无痕基因操作策略Example 6 Streptococcus suis traceless gene manipulation strategy using P 1503 -mPheS as reverse screening marker

P1503-mPheS的100%筛选效率使进行猪链球菌高效无痕基因操作成为可能。通过插入和去除P1503-mPheS两步,以p-Cl-phe为抑制剂,形成了一种只需两步的猪链球菌高效无痕基因操作策略。如图4所示,该策略只需要两个融合片段和两次转化。首先,将突变位点的上游和下游序列与含有P1503-mPheS标记P1503PE片段融合,获得用于第一次转化的UP-P1503PE-DN片段,该片段由其携带的阳性选择标记erm进行选择,获得含有P1503PE的中间菌株。然后,突变位点的上游和下游序列或者直接融合在一起(用于基因缺失),或者与特定基因或片段融合(例如用于基因融合的荧光蛋白基因或FLAG标签),或者与突变基因融合(用于基因突变),获得用于第二次转化的第二个片段,转化中间菌株后由p-Cl-phe进行反向选择,即获得目的突变。The 100% screening efficiency of P 1503 -mPheS makes it possible to carry out efficient and traceless genetic manipulation of Streptococcus suis. Through the two steps of inserting and removing P 1503 -mPheS, and using p-Cl-phe as an inhibitor, a two-step high-efficiency and traceless gene manipulation strategy of Streptococcus suis was formed. As shown in Figure 4, this strategy requires only two fusion fragments and two transformations. First, the upstream and downstream sequences of the mutation site were fused with the P 1503 PE fragment containing the P 1503 -mPheS marker to obtain the UP-P 1503 PE-DN fragment for the first transformation, which was carried by the positive selection marker erm for selection to obtain intermediate strains containing P 1503 PE. Then, the upstream and downstream sequences of the mutation site are either directly fused together (for gene deletion), or to a specific gene or fragment (such as a fluorescent protein gene or FLAG tag for gene fusion), or to the mutant gene ( used for gene mutation), to obtain the second fragment for the second transformation, and to perform reverse selection by p-Cl-phe after transforming the intermediate strain, that is, to obtain the target mutation.

序列表sequence listing

<110> 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心)<110> Harbin Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences (Harbin Branch Center of China Center for Animal Health and Epidemiology)

<120> 一种猪链球菌的反向筛选标记、含有该反向筛选标记的猪链球菌及其应用<120> A reverse screening marker for Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof

<141> 2022-06-23<141> 2022-06-23

<160> 3<160> 3

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1044<211> 1044

<212> DNA<212>DNA

<213> artificial sequence<213> artificial sequence

<400> 1<400> 1

atgtctaaca tcgagcaaca acttgcagaa ctttcacaaa ctactttgga aaaacttaag 60atgtctaaca tcgagcaaca acttgcagaa ctttcacaaa ctactttgga aaaacttaag 60

gaaattcaac accaaggtga aaaggaattg caagatcttc gtgtagctgt acttggcaaa 120gaaattcaac accaaggtga aaaggaattg caagatcttc gtgtagctgt acttggcaaa 120

aaaggttcac ttactgattt gcttaaaggt cttaaggatt tgtcaaacga tatgaagcct 180aaaggttcac ttactgattt gcttaaaggt cttaaggatt tgtcaaacga tatgaagcct 180

attgtaggca aacaagtaaa cgaagttcgt gacgttttga ctacagcttt cgaagagaca 240attgtaggca aacaagtaaa cgaagttcgt gacgttttga ctacagcttt cgaagagaca 240

gcacaaaaag ttgctgctgc taaaatccaa caacaattgg catcagaaac tatcgacgtt 300gcacaaaaag ttgctgctgc taaaatccaa caacaattgg catcagaaac tatcgacgtt 300

actcttcctg gacgtcaagt aaaagttggt aaacgtcacg ttcttactca aacatcagaa 360actcttcctg gacgtcaagt aaaagttggt aaacgtcacg ttcttactca aacatcagaa 360

gaaatcgaag acatcttcct tggtatgggt ttccaaattg tagatggttt cgaagttgaa 420gaaatcgaag acatcttcct tggtatgggt ttccaaattg tagatggttt cgaagttgaa 420

aaagattatt ataacttcga acgtatgaac cttccaaaag accaccctgc tcgtgacatg 480aaagattatt ataacttcga acgtatgaac cttccaaaag accacccctgc tcgtgacatg 480

caagacactt tctacattac tgaagagatc ttgatgcgta ctcacacttc accagtacaa 540caagacactt tctacattac tgaagagatc ttgatgcgta ctcacacttc accagtacaa 540

gctcgtacta tggatcaaca cgacttctct aagggcgcac ttaaaatgat ctcaccaggc 600gctcgtacta tggatcaaca cgacttctct aagggcgcac ttaaaatgat ctcaccaggc 600

cgtgtattcc gccgcgacac tgacgacgct actcactcac accaattcca ccaaatcgaa 660cgtgtattcc gccgcgacac tgacgacgct actcactcac accaattcca ccaaatcgaa 660

ggtcttgtag ttggcgaaaa cgtttcaatg ggtgacttga aaggcacttt ggaaatgatc 720ggtcttgtag ttggcgaaaa cgtttcaatg ggtgacttga aaggcacttt ggaaatgatc 720

attaaaaaaa tgttcggtga agaacgtcaa atccgtcttc gcccttctta tttccctttc 780attaaaaaaa tgttcggtga agaacgtcaa atccgtcttc gcccttctta tttccctttc 780

tcagaaccat cagtagaagt tgacgtatca tgtttcaaat gtggaggtga tggctgtaac 840tcagaaccat cagtagaagt tgacgtatca tgtttcaaat gtggaggtga tggctgtaac 840

gtttgtaaaa aaactggttg gatcgaaatc ttgggtgctg gtatggttca cccacaagtt 900gtttgtaaaa aaactggttg gatcgaaatc ttgggtgctg gtatggttca cccacaagtt 900

cttgaaatgt caggtatcga ttctactaaa tactcaggtt tcggtttcgg cttgggacaa 960cttgaaatgt caggtatcga ttctactaaa tactcaggtt tcggtttcgg cttgggacaa 960

gagcgtatcg ctatgttgcg ctacggaatt aacgatattc gtggcttcta ccaaggcgac 1020gagcgtatcg ctatgttgcg ctacggaatt aacgatattc gtggcttcta ccaaggcgac 1020

gttcgtttct cagaacaatt ctaa 1044gttcgtttct cagaacaatt ctaa 1044

<210> 2<210> 2

<211> 347<211> 347

<212> PRT<212> PRT

<213> artificial sequence<213> artificial sequence

<400> 2<400> 2

Met Ser Asn Ile Glu Gln Gln Leu Ala Glu Leu Ser Gln Thr Thr LeuMet Ser Asn Ile Glu Gln Gln Leu Ala Glu Leu Ser Gln Thr Thr Leu

1 5 10 151 5 10 15

Glu Lys Leu Lys Glu Ile Gln His Gln Gly Glu Lys Glu Leu Gln AspGlu Lys Leu Lys Glu Ile Gln His Gln Gly Glu Lys Glu Leu Gln Asp

20 25 30 20 25 30

Leu Arg Val Ala Val Leu Gly Lys Lys Gly Ser Leu Thr Asp Leu LeuLeu Arg Val Ala Val Leu Gly Lys Lys Gly Ser Leu Thr Asp Leu Leu

35 40 45 35 40 45

Lys Gly Leu Lys Asp Leu Ser Asn Asp Met Lys Pro Ile Val Gly LysLys Gly Leu Lys Asp Leu Ser Asn Asp Met Lys Pro Ile Val Gly Lys

50 55 60 50 55 60

Gln Val Asn Glu Val Arg Asp Val Leu Thr Thr Ala Phe Glu Glu ThrGln Val Asn Glu Val Arg Asp Val Leu Thr Thr Ala Phe Glu Glu Thr

65 70 75 8065 70 75 80

Ala Gln Lys Val Ala Ala Ala Lys Ile Gln Gln Gln Leu Ala Ser GluAla Gln Lys Val Ala Ala Ala Lys Ile Gln Gln Gln Leu Ala Ser Glu

85 90 95 85 90 95

Thr Ile Asp Val Thr Leu Pro Gly Arg Gln Val Lys Val Gly Lys ArgThr Ile Asp Val Thr Leu Pro Gly Arg Gln Val Lys Val Gly Lys Arg

100 105 110 100 105 110

His Val Leu Thr Gln Thr Ser Glu Glu Ile Glu Asp Ile Phe Leu GlyHis Val Leu Thr Gln Thr Ser Glu Glu Ile Glu Asp Ile Phe Leu Gly

115 120 125 115 120 125

Met Gly Phe Gln Ile Val Asp Gly Phe Glu Val Glu Lys Asp Tyr TyrMet Gly Phe Gln Ile Val Asp Gly Phe Glu Val Glu Lys Asp Tyr Tyr

130 135 140 130 135 140

Asn Phe Glu Arg Met Asn Leu Pro Lys Asp His Pro Ala Arg Asp MetAsn Phe Glu Arg Met Asn Leu Pro Lys Asp His Pro Ala Arg Asp Met

145 150 155 160145 150 155 160

Gln Asp Thr Phe Tyr Ile Thr Glu Glu Ile Leu Met Arg Thr His ThrGln Asp Thr Phe Tyr Ile Thr Glu Glu Ile Leu Met Arg Thr His Thr

165 170 175 165 170 175

Ser Pro Val Gln Ala Arg Thr Met Asp Gln His Asp Phe Ser Lys GlySer Pro Val Gln Ala Arg Thr Met Asp Gln His Asp Phe Ser Lys Gly

180 185 190 180 185 190

Ala Leu Lys Met Ile Ser Pro Gly Arg Val Phe Arg Arg Asp Thr AspAla Leu Lys Met Ile Ser Pro Gly Arg Val Phe Arg Arg Asp Thr Asp

195 200 205 195 200 205

Asp Ala Thr His Ser His Gln Phe His Gln Ile Glu Gly Leu Val ValAsp Ala Thr His Ser His Gln Phe His Gln Ile Glu Gly Leu Val Val

210 215 220 210 215 220

Gly Glu Asn Val Ser Met Gly Asp Leu Lys Gly Thr Leu Glu Met IleGly Glu Asn Val Ser Met Gly Asp Leu Lys Gly Thr Leu Glu Met Ile

225 230 235 240225 230 235 240

Ile Lys Lys Met Phe Gly Glu Glu Arg Gln Ile Arg Leu Arg Pro SerIle Lys Lys Met Phe Gly Glu Glu Arg Gln Ile Arg Leu Arg Pro Ser

245 250 255 245 250 255

Tyr Phe Pro Phe Ser Glu Pro Ser Val Glu Val Asp Val Ser Cys PheTyr Phe Pro Phe Ser Glu Pro Ser Val Glu Val Asp Val Ser Cys Phe

260 265 270 260 265 270

Lys Cys Gly Gly Asp Gly Cys Asn Val Cys Lys Lys Thr Gly Trp IleLys Cys Gly Gly Asp Gly Cys Asn Val Cys Lys Lys Thr Gly Trp Ile

275 280 285 275 280 285

Glu Ile Leu Gly Ala Gly Met Val His Pro Gln Val Leu Glu Met SerGlu Ile Leu Gly Ala Gly Met Val His Pro Gln Val Leu Glu Met Ser

290 295 300 290 295 300

Gly Ile Asp Ser Thr Lys Tyr Ser Gly Phe Gly Phe Gly Leu Gly GlnGly Ile Asp Ser Thr Lys Tyr Ser Gly Phe Gly Phe Gly Leu Gly Gln

305 310 315 320305 310 315 320

Glu Arg Ile Ala Met Leu Arg Tyr Gly Ile Asn Asp Ile Arg Gly PheGlu Arg Ile Ala Met Leu Arg Tyr Gly Ile Asn Asp Ile Arg Gly Phe

325 330 335 325 330 335

Tyr Gln Gly Asp Val Arg Phe Ser Glu Gln PheTyr Gln Gly Asp Val Arg Phe Ser Glu Gln Phe

340 345 340 345

<210> 3<210> 3

<211> 9<211> 9

<212> PRT<212> PRT

<213> artificial sequence<213> artificial sequence

<400> 3<400> 3

Gly Asn Trp Gly Thr Trp Val Glu GluGly Asn Trp Gly Thr Trp Val Glu Glu

1 51 5

Claims (7)

1. A reverse selectable marker for streptococcus suis, wherein the reverse selectable marker is a mutated pheS gene encoding a phenylalanine tRNA synthetase α subunit of streptococcus suis, wherein the mutated pheS gene results in T261S and a315G double substitution mutations of the encoded phenylalanine tRNA synthetase α subunit of streptococcus suis, wherein the pheS mutant comprises a phenylalanine analog p-chloro-phenylalanine (p-Cl-Phe) incorporated erroneously into a synthetic protein during translation by competing with a wild pheS protein of the strain, such that in the presence of p-Cl-Phe, the strain expressing the pheS mutant dies and the strain not expressing the pheS mutant survives, and wherein the mutated pheS gene encoding the phenylalanine tRNA synthetase α subunit of streptococcus suis has a nucleotide sequence as set forth in SEQ ID No. 1.
2. The inverted selection marker of streptococcus suis according to claim 1, wherein the amino acid sequence of the pheS mutant encoded by the pheS gene encoding the alpha subunit of phenylalanine tRNA synthetase of streptococcus suis after mutation is shown as SEQ ID No. 2.
3. A streptococcus suis comprising the reverse screening marker of claim 1 or 2.
4. A streptococcus suis as claimed in claim 3, wherein the reverse selectable marker consists of promoter P 0177 、P 0530 、P 1503 、P 1815 Or P 1868 Driving the expression.
5. The streptococcus suis of claim 3, wherein said streptococcus suis is prepared by the process of:
(1) Synthesis of the mPES mutant Gene
Synthesizing an mPES mutant gene sequence shown in SEQ ID NO. 1;
(2) Construction of fusion fragment P-mPES of mPES and strong promoter
1) Cloning of the mphs with 5 strong promoter fragments:
PCR primers were designed and the nucleotide sequences were as follows:
P 0177 -F:
5’-CCGGCGGAAGAAGGAGTAATTGGTAAGAGAAATGTGAGTG-3’
P 0177 -R:
5’-GTTGTTGCTCGATGTTAGACATATCTTTATAAGACATGATATCCTC-3’
P 0530 -F:
5’-CCGGCGGAAGAAGGAGTAAGTAGGATAACTGAATGGAGAA-3’
P 0530 -R:
5’-GTTGTTGCTCGATGTTAGACATTTTGGTAAAAGCCTCCAATAA-3’
P 1503 -F:
5’-CCGGCGGAAGAAGGAGTAATGTTTCGCCAGAGGCTT-3’
P 1503 -R:
5’-GTTGTTGCTCGATGTTAGACATTATATTACTCTCCTTTGAGTTT-3’
P 1815 -F:
5’-CCGGCGGAAGAAGGAGTAACAGCGCCTCAAAAACTA-3’
P 1815 -R:
5’-GTTGTTGCTCGATGTTAGACATAAGTCCTCCATATAAGTACTTC-3’
P 1868 -F:
5’-CCGGCGGAAGAAGGAGTAAAAAAACAGCAAGGATTGTAG-3’
P 1868 -R:
5’-GTTGTTGCTCGATGTTAGACATAAAACACCTCTGTTTTCTTT-3’
mPheS-F:5’-ATGTCTAACATCGAGCAAC-3’
mPheS-R:5’-TTAGAATTGTTCTGAGAAACGAAC-3’
taking the mPIS gene synthesized in the step (1) as a template and taking the mPIS-F/mPIS-R as a primer to obtain an amplification product of the mPIS gene; the genome DNA of streptococcus suis 05ZYH33 strain is used as a template, and P is respectively used as a template 0177 -F/P 0177 -R、P 0530 -F/P 0530 -R、P 1503 -F/P 1503 -R、P 1815 -F/P 1815 -R、P 1868 -F/P 1868 R is primer to obtain 5 promoters P 0177 、P 0530 、P 1503 、P 1815 、P 1868 Is a product of amplification of (a);
2) Construction of fusion fragment P-mPHS
The amplified products of the promoters and the amplified products of the mPES are respectively mixed as templates, and fusion is carried out by overlapping extension PCR, so as to obtain products, namely fusion fragments P-mPES of the mPES and the strong promoters, which are respectively named P 0177 -mPheS、P 0530 -mPheS、P 1503 -mPheS、P 1815 -mPES and P 1868 -mPheS;
(3) Integration of P-mPES fusion fragments into Streptococcus suis genome by erythromycin resistance Gene (erm)
1) Streptococcus suis ssu05_0630 gene upstream sequence and erm gene-containing ssu05_0630 gene downstream sequence amplification
PCR primers were designed and the nucleotide sequences were as follows:
UP 0630 -F:5’-TGCTAACGATGCTACAAATGC-3’
UP 0630 -R:5’-TTACTCCTTCTTCCGCCGG-3’
Erm-DN 0630 -F:
5’-CGTTCGTTTCTCAGAACAATTCTAAAGAAGGAGGGATTCGTCATG-3’
Erm-DN 0630 -R:5’-CAAAGATAGCGGTGGTCGT-3’
respectively with UP 0630 -F/UP 0630 -R and Erm-DN 0630 -F/Erm-DN 0630 R is a primer, and the erm gene is used for replacing the genome DNA of a streptococcus suis ssu05_0630 gene deletion strain of the ssu05_0630 gene as a template, and PCR amplification is carried out to obtain an amplified product UP of an upstream sequence of the ssu05_0630 gene 0630 And the downstream sequence amplification product Erm-DN of the ssm-05_0630 gene 0630
2) Fusion fragment UP 0630 -P-mPheS-Erm-DN 0630 Construction of (3)
UP is taken into account 0630 And Erm-DN 0630 Fragments and upperThe 5 fusion fragments P-mPES are respectively combined to be used as templates, and UP is used 0630 -F/UP 0630 R is a primer, overlap extension PCR is carried out by adopting the PCR reaction conditions, 5 corresponding fusion fragments are obtained by amplification, and the fusion fragments are respectively named as UP-P 0177 -mPheS-Erm-DN、UP-P 0530 -mPheS-Erm-DN、UP-P 1503 -mPheS-Erm-DN、UP-P 1815 -mPES-Erm-DN and UP-P 1868 -mPheS-Erm-DN;
3) Peptide-induced transformation and integration identification
Synthesizing polypeptide shown in SEQ ID NO.3 with purity of 95%, dissolving in deionized water to a final concentration of 5mM, subpackaging, and storing at-20deg.C for use; after overnight incubation of Streptococcus suis 05ZYH33 strain, it was inoculated at 1:100 into fresh TSBS medium, 37℃and 5% CO 2 Under the condition, standing and culturing for 1.5h, 2h, 2.5h and 3h; 50 μl of bacterial liquid is taken at each time point, and is respectively mixed with 2.5 μl of polypeptide and 1 μg of fusion fragments of 5 UP-P-mPhs-Erm-DN obtained in the step 2), and after the mixture is cultured for 4 hours, a TSAS plate added with erythromycin is coated;
PCR primers were designed and the nucleotide sequences were as follows:
SeqF:5’-GCGGAGCCCTTACCAG-3’
SeqR:5’-AATACAGAAGTTAAACGATTTGT-3’
selecting single colony on a TSAS-Erm plate, culturing, carrying out PCR identification by adopting SeqF/SeqR primers, detecting the sizes of 2004bp, 1820bp, 1717bp, 1872bp and 1777bp respectively by 1% agarose electrophoresis, and confirming that each UP-P-mPES-Erm-DN fragment is integrated into a target site, which means that a fragment with P-mPES-Erm integrated in a genome, namely PPE for short is obtained; these strains were designated as gP respectively 0177 PE、gP 0530 PE、gP 1503 PE、gP 1815 PE and gP 1868 PE。
6. Use of streptococcus suis according to any one of claims 3-5 for the traceless gene editing of streptococcus suis.
7. A method for editing a streptococcus suis traceless gene, which is characterized by comprising the following steps: amplifying upstream UP1 and downstream DN1 sequences of mutant genes from a Streptococcus suis WT strain; amplifying from the genomic DNA of a Streptococcus suis strain of any one of claims 3-5 a fragment PPE comprising a promoter, a reverse selectable marker and an erythromycin resistance gene; amplifying to obtain a fusion DNA fragment UP1-PPE-DN1 by overlap extension PCR; fragment transformation of streptococcus suis WT strain and screening on TSAS-Erm plate, colony obtaining positive colony by PCR identification, obtaining intermediate strain containing reverse screening mark P-mPHS;
amplifying upstream UP2 and downstream DN2 sequences of mutant genes from a Streptococcus suis WT strain; the upstream and downstream sequences of the mutant gene are either fused directly together, fused to a specific gene or fragment, or fused to the mutant gene to obtain a second fragment for a second transformation; fragments were transformed with the above p-Cl-phe-sensitive intermediate strain and reverse screened on TSAS plates containing 0.05% p-Cl-phe; randomly picking colonies, culturing, and carrying out PCR identification on the colonies to obtain the target mutation.
CN202210724417.7A 2022-06-23 2022-06-23 A reverse screening marker of Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof Active CN115161333B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210724417.7A CN115161333B (en) 2022-06-23 2022-06-23 A reverse screening marker of Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210724417.7A CN115161333B (en) 2022-06-23 2022-06-23 A reverse screening marker of Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof

Publications (2)

Publication Number Publication Date
CN115161333A CN115161333A (en) 2022-10-11
CN115161333B true CN115161333B (en) 2023-08-25

Family

ID=83487082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210724417.7A Active CN115161333B (en) 2022-06-23 2022-06-23 A reverse screening marker of Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof

Country Status (1)

Country Link
CN (1) CN115161333B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104780935A (en) * 2012-06-27 2015-07-15 梅里亚有限公司 Attenuated streptococcus suis vaccines and methods of making and use thereof
JP2016032440A (en) * 2014-07-31 2016-03-10 国立研究開発法人産業技術総合研究所 New counter selection marker
CN105820252A (en) * 2010-05-03 2016-08-03 Atyr 医药公司 Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases
CN112300973A (en) * 2019-08-02 2021-02-02 南京理工大学 Rhodococcus gene editing method using phenylalanyl-tRNA synthetase gene mutant as reverse screening marker
CN112980982A (en) * 2021-05-18 2021-06-18 至善时代智能科技(北京)有限公司 Primers and detection kit for identifying multiple staphylococci based on pheS gene and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105820252A (en) * 2010-05-03 2016-08-03 Atyr 医药公司 Innovative discovery of therapeutic, diagnostic, and antibody compositions related to protein fragments of phenylalanyl-alpha-trna synthetases
CN104780935A (en) * 2012-06-27 2015-07-15 梅里亚有限公司 Attenuated streptococcus suis vaccines and methods of making and use thereof
JP2016032440A (en) * 2014-07-31 2016-03-10 国立研究開発法人産業技術総合研究所 New counter selection marker
CN112300973A (en) * 2019-08-02 2021-02-02 南京理工大学 Rhodococcus gene editing method using phenylalanyl-tRNA synthetase gene mutant as reverse screening marker
CN112980982A (en) * 2021-05-18 2021-06-18 至善时代智能科技(北京)有限公司 Primers and detection kit for identifying multiple staphylococci based on pheS gene and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
利用信息肽诱导和Cre/LoxP系统构建猪链球菌基因缺失株;刘冉 等;《中国预防兽医学报》;第41卷(第02期);125-130 *

Also Published As

Publication number Publication date
CN115161333A (en) 2022-10-11

Similar Documents

Publication Publication Date Title
CN114835783B (en) NCgl2747 gene mutant and application thereof in preparation of L-lysine
CN102181420A (en) Expression method of lactococcus lactis of porcine streptococcus phage catenase
CN114107266B (en) Protease mutant with improved heat resistance, encoding gene and application thereof
CN115161333B (en) A reverse screening marker of Streptococcus suis, Streptococcus suis containing the reverse screening marker and application thereof
CN114149954B (en) Method for producing spider-like silk and elastin by using corynebacterium glutamicum high-efficiency secretion and rapid purification
CN110904174A (en) Application of bacillus licheniformis with deletion of leucine dehydrogenase gene in production of heterologous protein
CN111635914A (en) Plasmid for knocking out aerolysin gene of aeromonas hydrophila and construction method thereof
CN110591996A (en) Construction method and application of a high-yield L-lysine Bacillus subtilis engineering bacterium
JPH10337185A (en) New protein having aspartase activity and genetic dna encoding the same
TWI310404B (en) Thermotolerant ribonuclease h
CN116790564A (en) Heat-resistant protease mutant and encoding gene and application thereof
CN114605509B (en) YH 66-01475 protein and application of encoding gene thereof in regulating and controlling bacterial arginine yield
CN113755517B (en) Construction method and application of SLCG _5407 gene modified streptomyces lincolnensis
CN114317583B (en) Method for constructing recombinant microorganism producing L-valine and nucleic acid molecule used in method
CN114349831B (en) aspA gene mutants, recombinant bacteria and methods for preparing L-valine
CN110846333A (en) A kind of recombinant strain of deoB gene modification and its construction method and application
CN114409751B (en) YH 66-04470 gene mutant recombinant bacterium and application thereof in preparation of arginine
CN116003542A (en) Microorganism producing citric acid and its construction method and application
CN106119978A (en) Fenneropenaeus chinensis Anti-LPS factor LBD structure domain mutant library and construction method thereof and application
JP2024525749A (en) A novel system for producing recombinant proteins
CN114540262B (en) Method for constructing recombinant microorganism producing L-valine and nucleic acid molecules and biological materials used therein
CN115073569B (en) YH 66-09125 gene mutant recombinant bacterium and application thereof in preparation of arginine
CN114560918B (en) Application of YH66_14275 protein or its mutant in the preparation of L-arginine
CN118516389B (en) Preparation method and application of Zophobas atratus defensin high-efficiency signal peptide screening strain
CN114806986B (en) Genetically engineered bacterium with high yield of roxithromycin and its construction method and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant