CN115149540A - 一种基于分区自治的多区域虚拟电厂协同优化运行方法 - Google Patents

一种基于分区自治的多区域虚拟电厂协同优化运行方法 Download PDF

Info

Publication number
CN115149540A
CN115149540A CN202210955194.5A CN202210955194A CN115149540A CN 115149540 A CN115149540 A CN 115149540A CN 202210955194 A CN202210955194 A CN 202210955194A CN 115149540 A CN115149540 A CN 115149540A
Authority
CN
China
Prior art keywords
distribution network
power plant
virtual power
power
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210955194.5A
Other languages
English (en)
Inventor
丁建勇
高赐威
宋梦
严兴煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202210955194.5A priority Critical patent/CN115149540A/zh
Publication of CN115149540A publication Critical patent/CN115149540A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Game Theory and Decision Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开一种基于分区自治的多区域虚拟电厂协同优化运行方法,属于电力系统运行技术领域;运行方法包括:先对末端可调资源进行调节潜力分析;然后再基于配网区域内末端可调资源构建配网虚拟电厂集控中心;由配网虚拟电厂集控中心向上对接主网调度中心并接收调度指令,对下接收末端可调资源的运行信息并下发控制指令;之后主网调度中心依据虚拟电厂的可调潜力和常规机组发电能力进行机组出力组合,确定虚拟电厂的出力并对其下发调度指令;以较快的求解速度优化调用配网区域内的可调资源,针对性解决配网运行问题,实现基于分区自治的多区域虚拟电厂协调运行。

Description

一种基于分区自治的多区域虚拟电厂协同优化运行方法
技术领域
本发明属于电力系统运行技术领域,具体涉及一种基于分区自治的多区域虚拟电厂协同优化运行方法。
背景技术
近年来,随着经济发展电力负荷特性恶化,负荷峰谷差增大、部分热点区域负荷密度过高易造成线路过载,使得电力设备投资加大;同时分布式光伏的发展,使得电网电源结构改变,配电网运行方式随之发生变化,部分节点易出现电压问题。
随着虚拟电厂(VPP)技术的发展,用户侧可调资源可通过聚合构建虚拟电厂参与配电网运行,然而虚拟电厂资源为末端资源,如采用传统集中式求解方法将会带来通信负担重、求解速度慢等问题。为此,如何针对实际供电分区不同的配网运行问题调用虚拟电厂实现分区自治并进行快速求解尚未得到很好的解决
发明内容
针对现有技术的不足,本发明的目的在于提供一种基于分区自治的多区域虚拟电厂协同优化运行方法,以较快的求解速度优化调用配网区域内的可调资源,针对性解决配网运行问题,实现基于分区自治的多区域虚拟电厂协调运行。
本发明的目的可以通过以下技术方案实现:
一种基于分区自治的多区域虚拟电厂协同优化运行方法,所述虚拟电厂的系统运行架构包括:末端可调资源、配网虚拟电厂集控中心和主网调度中心;运行方法包括以下步骤:
S1,对末端可调资源进行调节潜力分析;
S2,基于配网区域内末端可调资源构建配网虚拟电厂集控中心;由配网虚拟电厂集控中心向上对接主网调度中心并接收调度指令,对下接收末端可调资源的运行信息并下发控制指令;
S3,主网调度中心依据虚拟电厂的可调潜力和常规机组发电能力进行机组出力组合,确定虚拟电厂的出力并对其下发调度指令。
进一步地,所述末端可调资源包括:空调负荷、电动公交充电站、电储能和分布式光伏。
进一步地,所述末端可调资源的调节潜力如下:
1)空调负荷:
Pt AC,DR=Pt AC,base-Pt AC
式中,Pt AC为空调的电功率;Pt AC,DR为空调的调节潜力;Pt AC,base为最佳舒适状态时的空调电功率;
2)电动公交车充电站:
Figure BDA0003791004550000021
式中,Pt EV,DR为充电站的调节潜力;
Figure BDA0003791004550000022
为公交车的充电功率;
Figure BDA0003791004550000023
为不参与虚拟电厂调节时的充电功率:
3)电储能:
Figure BDA0003791004550000024
式中,Pt ES,DR为储能的调节潜力;
Figure BDA0003791004550000025
Figure BDA0003791004550000026
分别为储能的充电和放电功率;
Figure BDA0003791004550000027
Figure BDA0003791004550000028
分别为不参与虚拟电厂调节时的电储能的充电和放电功率;
4)分布式光伏:
Figure BDA0003791004550000031
式中,
Figure BDA0003791004550000032
为分布式光伏的可调潜力;Ppv,t和Qpv,t分别为分布式光伏的有功和无功出力;
Figure BDA0003791004550000033
Figure BDA0003791004550000034
分别为分布式光伏不参与虚拟电厂调节时的有功和无功出力。
进一步地,配网区域虚拟电厂的出力为:
Figure BDA0003791004550000035
式中,
Figure BDA0003791004550000036
为配网区域虚拟电厂出力的视在功率,
Figure BDA0003791004550000037
Figure BDA0003791004550000038
分别为配网区域虚拟电厂出力的有功功率和无功功率。
进一步地,所述配网虚拟电厂集控中心其运行的目标函数包括为:
minFj=μ1Fvpp,j2Fp-v,j3Fpf,j4FV,j
μ1234=1
系统运行成本最小、负荷波动方差最小、潮流不均衡度最小和电压偏差最小四种目标函数分别为:
Figure BDA0003791004550000039
Figure BDA00037910045500000310
Figure BDA00037910045500000311
Figure BDA00037910045500000312
上述各式中,Fvpp,j为系统运行成本,Fp-v,j为负荷波动方差,Fpf,j为潮流不均衡度,FV,j为电压偏差,μ1~μ4分别为四种目标函数对应的权重系数;
Figure BDA00037910045500000313
为配网从主网接收的功率,γt为调用虚拟电厂的单位成本,
Figure BDA0003791004550000041
为配网区域负荷,ηt为配网售电价格;
Figure BDA0003791004550000042
为潮流不均衡度,
Figure BDA0003791004550000043
和Hj,t分别为虚拟电厂参与调度前后配网区域的潮流熵,
Figure BDA0003791004550000044
为潮流熵最大值;Θj为配网区域的节点集合,k为配网区域内的节点编号,Uj,k,t为节点电压,Uj,ref为配网区域参考电压。
进一步地,所述配网虚拟电厂集控中心其运行的约束条件为:
1)功率平衡约束:
Figure BDA0003791004550000045
Figure BDA0003791004550000046
式中,
Figure BDA0003791004550000047
为不参与虚拟电厂调节时配网区域的电负荷;
2)主配网间传输功率约束:
Figure BDA0003791004550000048
3)虚拟电厂出力约束:
Figure BDA0003791004550000049
式中,
Figure BDA00037910045500000410
Figure BDA00037910045500000411
分别为虚拟电厂的最小和最大出力;
4)潮流熵约束:
Figure BDA00037910045500000412
式中,
Figure BDA00037910045500000413
为线路l的负载率,
Figure BDA00037910045500000414
为线路l的潮流值,Lj为线路总条数;
给定一个常数列Aj={aj,1,aj,2,...,aj,f,...,aj,z},
Figure BDA00037910045500000415
表示负载率
Figure BDA00037910045500000416
的输电线路条数,把各个负载区间内的线路条数比例化得:
Figure BDA00037910045500000417
Figure BDA00037910045500000418
式中,C为常数;当系统中所有支路的负载率都在同一个区间时,Hj,t为零,这时系统的潮流分布处于最均衡状态,即线路承载的潮流与其容量成正比;而当系统中所有线路的负载率都不在同一个区间时,Hj,t便达到最大值:
Figure BDA0003791004550000051
5)电压约束:
Figure BDA0003791004550000052
式中,
Figure BDA0003791004550000053
Figure BDA0003791004550000054
分别为节点电压幅值的下限和上限;
6)配电网潮流约束:
Figure BDA0003791004550000055
Figure BDA0003791004550000056
式中,Pj,mn,t和Qj,mn,t分别为配网区域内节点m流向节点n的有功和无功功率;rj,mn和xj,mn分别为节点m和n之间线路的电阻和电抗;Pj,n,t和Qj,n,t分别为节点n流入的有功功率和无功功率;u(n)j为功率流向节点n的节点集合;g∈v(n)j为节点n功率流向的节点的集合;
7)线路传输容量约束:
Figure BDA0003791004550000057
进一步地,所述主网调度中心以运行成本最小为目标,其目标函数为:
minCgrid=CG-Csell
Figure BDA0003791004550000058
Figure BDA0003791004550000059
上述式中,CG为发电机发电成本,Csell为售电收益,Cvpp为调用虚拟电厂的成本;T为调度周期,I为常规发电机组集合,J为配网集合;下标t表示时段t,i表示常规发电机i,j表示配网j;PG,i,t为常规机组的出力,ai、bi和ci为对应的成本系数;
Figure BDA0003791004550000061
为主网向配网传输的功率,λt为电价。
进一步地,所述主网调度中心运行的约束条件为:
1)功率平衡约束:
Figure BDA0003791004550000062
2)常规机组出力约束:
Figure BDA0003791004550000063
Figure BDA0003791004550000064
式中,
Figure BDA0003791004550000065
Figure BDA0003791004550000066
分别为机组的出力上下限,
Figure BDA0003791004550000067
Figure BDA0003791004550000068
分别为机组向下和向上爬坡率,Δt为一个运行时段;
3)主配网间传输功率约束:
Figure BDA0003791004550000069
式中,
Figure BDA00037910045500000610
Figure BDA00037910045500000611
分别为主网和配网间传输功率的最小值和最大值。
进一步地,采用目标级联法对模型进行变换;
配网目标函数表示为:
Figure BDA00037910045500000612
式中,
Figure BDA00037910045500000613
为主网优化后的值;ωj,t和θj,t分别为拉格朗日罚函数的一次项与二次项的乘子;
主网目标函数表示为:
Figure BDA00037910045500000614
式中,
Figure BDA00037910045500000615
为配网优化后的值。
进一步地,采用目标级联法进行求解步骤为:
步骤21:输入主网、配网参数和设备参数,设定好耦合变量及罚函数乘子初值,令迭代次数z=1;
步骤22:每个配网区域根据含拉格朗日罚函数项的配网目标函数和每个配网的约束条件进行各自优化问题的求解,并将求解得到的配网接收功率
Figure BDA0003791004550000071
传递给主网调度层,配网间可并行求解,加快计算速度;
步骤23:主网接收到配网传递的数据后,根据含拉格朗日罚函数项的主网目标函数和主网的约束条件进行优化求解,将得到的主网传输功率
Figure BDA0003791004550000072
传递给配网;
步骤24:根据下列公式判断是否满足收敛条件:
Figure BDA0003791004550000073
Figure BDA0003791004550000074
式中,ε1和ε2为收敛精度;若同时满足则终止迭代过程,输出结果;否则,则按下式更新拉格朗日罚函数乘子,令z=z+1,返回步骤22继续求解;
Figure BDA0003791004550000075
其中,ωj,t和θj,t的初值为常数。
本发明的有益效果:
1、本发明虚拟电厂调用的为已有需求侧资源,采用虚拟电厂技术可提高设备的利用率,改善配网供电质量,实现资源的充分利用;
2、本发明各分区配网可依据区域自身负荷对不同目标设置权重实现本地优化,从而更有针对性的改善配网供电问题;
3、本发明采用目标级联分析法进行求解,主网和配网间仅交互传输功率信息,且多个配网间可并行计算,减轻了主网的通讯负担,提高了计算速度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明虚拟电厂的系统运行架构示意图;
图2是本发明实施例配网虚拟电厂的构建示意图;
图3是本发明实施例的网络系统结构示意图;
图4是本发明基于分区自治的多区域虚拟电厂协同优化运行的求解流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1-2所示,虚拟电厂的系统运行架构,包括:末端可调资源、配网虚拟电厂集控中心和主网调度中心三部分;
一种基于分区自治的多区域虚拟电厂协同优化运行方法包括以下步骤:
S1,对末端可调资源进行调节潜力分析;
S2,基于配网区域内末端可调资源构建配网虚拟电厂集控中心;由配网虚拟电厂集控中心向上对接主网调度中心并接收调度指令,对下接收末端可调资源的运行信息并下发控制指令;
S3,主网调度中心依据虚拟电厂的可调潜力和常规机组发电能力进行机组出力组合,确定虚拟电厂的出力并对其下发调度指令。
S1中,末端可调资源包括:空调负荷、电动公交充电站、电储能和分布式光伏;其中,各可调资源的调节潜力分析如下:
1)空调负荷;
空调负荷作为虚拟电厂资源时,主要通过调节室内温度进行负荷削减,本专利对建筑物的热动态模型采用一阶ETP模型进行描述,假设室外温度在一个调度时间段Δt内保持不变,则室内温度变化可表达为:
Figure BDA0003791004550000091
式中,C和R分别为建筑物的热容和热阻;Tt in和Tt out分别为室内和室外温度;Pt AC为空调的电功率,COP为空调的制冷效率;
为满足室内人员供热舒适度,室内温度应满足:
Tt in,min≤Tt in≤Tt in,max
式中,Tt in,min和Tt in,max分别为舒适度允许的室内最低和最高温度;
空调的电功率应满足如下约束:
Figure BDA0003791004550000092
式中,
Figure BDA0003791004550000093
为空调的额定功率;
则空调负荷调节潜力为:
Pt AC,DR=Pt AC,base-Pt AC
式中,Pt AC,DR为空调的调节潜力;Pt AC,base为最佳舒适状态时的空调电功率。
2)电动公交车充电站;
电动公交车白天运营夜间进行充电,考虑到不同线路公交车运营时间差异不大,本发明默认相同型号的公交车在运营时荷电状态相同,电动公交车充电站参与虚拟电厂调节时主要通过调整其不同时段的充电功率进行负荷转移;为便于分析其对外调节潜力,将整个充电站看作一个整体,即
Figure BDA0003791004550000101
Figure BDA0003791004550000102
Figure BDA0003791004550000103
Figure BDA0003791004550000104
式中,
Figure BDA0003791004550000105
为公交车的充电功率;
Figure BDA0003791004550000106
为避免车辆进入休眠状态的最小功率;
Figure BDA0003791004550000107
为最大充电功率;
Figure BDA0003791004550000108
为充电效率;SEV,t为公交车电池的电量;
Figure BDA0003791004550000109
为电池的最大蓄电量;Tdis、Tch和Tch_end分别表示公交运营时段、夜间充电时段和充电结束时段;
Figure BDA00037910045500001010
为充电结束时电池需要满足的最低电量;
则充电站的调节潜力为
Figure BDA00037910045500001011
式中,Pt EV,DR为充电站的调节潜力,
Figure BDA00037910045500001012
为不参与虚拟电厂调节时的充电功率。
3)电储能;
电储能最为灵活性资源可参与削峰、填谷等多场景的调节,对于电储能其约束主要如下:
Figure BDA00037910045500001013
Figure BDA00037910045500001014
Figure BDA00037910045500001015
Figure BDA00037910045500001016
Figure BDA00037910045500001017
式中,SES,t为储能的能量;
Figure BDA00037910045500001018
为储能的储能量上限;
Figure BDA00037910045500001019
为储能的充电功率,
Figure BDA0003791004550000111
为储能的放电功率;
Figure BDA0003791004550000112
Figure BDA0003791004550000113
分别为储能的最大充电和放电功率;
Figure BDA0003791004550000114
Figure BDA0003791004550000115
分别为充电和放电效率;
则电储能的可调节潜力为
Figure BDA0003791004550000116
式中,Pt ES,DR为储能的调节潜力,
Figure BDA0003791004550000117
Figure BDA0003791004550000118
分别为不参与虚拟电厂调节时的电储能的充电和放电功率。
4)分布式光伏
虚拟电厂可根据分布式光伏发电最大出力预测信息对光伏有功和无功出力进行优化调度,有功和无功出力约束主要为
Figure BDA0003791004550000119
式中,Ppv,t
Figure BDA00037910045500001110
分别为光伏发电单元的有功出力和最大预测出力;
光伏逆变器可利用自身无功控制功能为配电系统提供电压支撑,可调无功范围与逆变器容量关系为
Figure BDA00037910045500001111
Figure BDA00037910045500001112
式中,Qpv,t为分布式光伏的无功出力;
Figure BDA00037910045500001113
为最大无功调节容量;Sinv为逆变器的容量,约为额定有功容量的1.0~1.1倍;
则分布式光伏的可调潜力为
Figure BDA00037910045500001114
式中,
Figure BDA00037910045500001115
为分布式光伏的可调潜力,
Figure BDA00037910045500001116
Figure BDA00037910045500001117
分别为分布式光伏不参与虚拟电厂调节时的有功和无功出力。
S3中,配网虚拟电厂的出力如下:
对配网区域内上述各种资源调节潜力进行加和,可得到配网区域虚拟电厂的出力为:
Figure BDA0003791004550000121
式中,
Figure BDA0003791004550000122
为配网区域虚拟电厂出力的视在功率,
Figure BDA0003791004550000123
Figure BDA0003791004550000124
分别为配网区域虚拟电厂出力的有功功率和无功功率。
所述运行架构中的配网虚拟电厂集控中心其运行的目标函数和约束条件如下:
(1)配网虚拟电厂集控中心的目标函数;
对于不同配网区域其负荷特性不同,所需虚拟电厂来调节的场景也不相同;本发明构建系统运行成本Fvpp,j最小、负荷波动方差Fp-v,j最小、潮流不均衡度Fpf,j最小和电压偏差FV,j最小四种目标函数,不同配网区域通过权重来确定调节需求,即配网优化目标函数为:
minFj=μ1Fvpp,j2Fp-v,j3Fpf,j4FV,j
μ1234=1
式中,μ1~μ4分别为四种目标函数对应的权重系数;
A.成本最优;
配网运行成本主要包括从主网的购电成本、调用负荷侧资源的成本和售电收益,即
Figure BDA0003791004550000125
B.负荷波动方差最小;
当配网区域负荷峰谷差大时,为解决供电缺口问题需对变电站进行扩容,将造成大规模投资,而这种高峰负荷在一年中仅存在极少时间,会使得设备利用率降低;采用虚拟电厂降低区域的峰谷差,从而提高设备的利用率,即
Figure BDA0003791004550000131
C.潮流不均衡度最小;
当配网存在负荷密度高的热点地区时,会使得潮流分布不均衡,当出现扰动时负载率较高的线路容易过载引发系统故障,可通过调用虚拟电厂来均衡配网区域的潮流,以潮流不均衡度最小为目标,即
Figure BDA0003791004550000132
D.电压偏差最小;
分布式电源的接入会导致部分配网区域出现电压越限等问题,通过调用虚拟电厂资源可改善配网电压水平,以调度周期内部分节点电压偏差最小为优化目标,即
Figure BDA0003791004550000133
以上各式中,
Figure BDA0003791004550000134
为配网从主网接收的功率,γt为调用虚拟电厂的单位成本,
Figure BDA0003791004550000135
为配网区域负荷,ηt为配网售电价格;
Figure BDA0003791004550000136
为潮流不均衡度,
Figure BDA0003791004550000137
和Hj,t分别为虚拟电厂参与调度前后配网区域的潮流熵,
Figure BDA0003791004550000138
为潮流熵最大值;Θj为配网区域的节点集合,k为配网区域内的节点编号,Uj,k,t为节点电压,Uj,ref为配网区域参考电压。
(2)约束条件;
A.功率平衡约束:
Figure BDA0003791004550000139
Figure BDA00037910045500001310
式中,
Figure BDA00037910045500001311
为不参与虚拟电厂调节时配网区域的电负荷;
B.主配网间传输功率约束:
Figure BDA0003791004550000141
C.虚拟电厂出力约束:
Figure BDA0003791004550000142
式中,
Figure BDA0003791004550000143
Figure BDA0003791004550000144
分别为虚拟电厂的最小和最大出力;
D.潮流熵约束:
Figure BDA0003791004550000145
式中,
Figure BDA0003791004550000146
为线路l的负载率,
Figure BDA0003791004550000147
为线路l的潮流值,Lj为线路总条数;
给定一个常数列Aj={aj,1,aj,2,...,aj,f,...,aj,z},
Figure BDA0003791004550000148
表示负载率
Figure BDA0003791004550000149
的输电线路条数,把各个负载区间内的线路条数比例化得:
Figure BDA00037910045500001410
Figure BDA00037910045500001411
式中,C为常数,本发明取为ln10;当系统中所有支路的负载率都在同一个区间时,Hj,t为零,这时系统的潮流分布处于最均衡状态,即线路承载的潮流与其容量成正比;而当系统中所有线路的负载率都不在同一个区间时,Hj,t便达到最大值:
Figure BDA00037910045500001412
E.电压约束:
Figure BDA00037910045500001413
式中,
Figure BDA00037910045500001414
Figure BDA00037910045500001415
分别为节点电压幅值的下限和上限;
F.配电网潮流约束:
Figure BDA0003791004550000151
Figure BDA0003791004550000152
式中,Pj,mn,t和Qj,mn,t分别为配网区域内节点m流向节点n的有功和无功功率;rj,mn和xj,mn分别为节点m和n之间线路的电阻和电抗;Pj,n,t和Qj,n,t分别为节点n流入的有功功率和无功功率;u(n)j为功率流向节点n的节点集合;g∈v(n)j为节点n功率流向的节点的集合;
G.线路传输容量约束:
Figure BDA0003791004550000153
所述运行架构中的主网调度中心其运行的目标函数和约束条件如下:
(1)主网调度中心目标函数;
主网以运行成本最小为目标,其目标函数为
minCgrid=CG-Csell
式中,CG为发电机发电成本,Csell为售电收益,Cvpp为调用虚拟电厂的成本;
Figure BDA0003791004550000154
Figure BDA0003791004550000155
式中,T为调度周期,I为常规发电机组集合,J为配网集合;下标t表示时段t,i表示常规发电机i,j表示配网j;PG,i,t为常规机组的出力,ai、bi和ci为对应的成本系数;
Figure BDA0003791004550000156
为主网向配网传输的功率,λt为电价。
(2)约束条件;
A.功率平衡约束:
Figure BDA0003791004550000161
B.常规机组出力约束:
Figure BDA0003791004550000162
Figure BDA0003791004550000163
式中,
Figure BDA0003791004550000164
Figure BDA0003791004550000165
分别为机组的出力上下限,
Figure BDA0003791004550000166
Figure BDA0003791004550000167
分别为机组向下和向上爬坡率,Δt为一个运行时段;
C.主配网间传输功率约束:
Figure BDA0003791004550000168
式中,
Figure BDA0003791004550000169
Figure BDA00037910045500001610
分别为主网和配网间传输功率的最小值和最大值。
如图3所示,主网下面含有2个110kV配电网区域和2个35kV配电网区域。采用目标级联法实现基于分区自治的多区域虚拟电厂系统优化运行的求解步骤如下:
步骤1、模型变换;
由前述模型可以看出,主网向配网的传输功率
Figure BDA00037910045500001611
和配网从主网接收的功率
Figure BDA00037910045500001612
为耦合变量,存在如下约束:
Figure BDA00037910045500001613
主网在求解经济调度方案时,将传输功率
Figure BDA00037910045500001614
优化后的值
Figure BDA00037910045500001615
以参数形式传递给配网;配网在优化自身目标函数的同时,需要考虑主网传输功率
Figure BDA00037910045500001616
和配网接收功率
Figure BDA00037910045500001617
的协调,在配网的目标函数中加入拉格朗日罚函数来表示配网接收功率
Figure BDA00037910045500001618
与主网优化后的传输功率
Figure BDA00037910045500001619
的偏差,则配网目标函数可表示为:
Figure BDA00037910045500001620
式中,ωj,t和θj,t分别为拉格朗日罚函数的一次项与二次项的乘子;
同理,主网与J个配网相连,在主网的目标函数中加入J个拉格朗日罚函数,表示主网传输功率
Figure BDA0003791004550000171
与每个配网优化后的接收功率
Figure BDA0003791004550000172
的偏差,则主网的目标函数可表示为:
Figure BDA0003791004550000173
步骤2、模型求解;
如图4所示,基于分区自治的多区域虚拟电厂协同优化运行的求解流程,具体求解步骤为:
步骤21:输入主网、配网参数和设备参数,设定好耦合变量(即主网传输功率和配网接收功率)及罚函数乘子初值,令迭代次数z=1;
步骤22:每个配网区域根据含拉格朗日罚函数项的配网目标函数和每个配网的约束条件进行各自优化问题的求解,并将求解得到的配网接收功率
Figure BDA0003791004550000174
传递给主网调度层,配网间可并行求解,加快计算速度;
步骤23:主网接收到配网传递的数据后,根据含拉格朗日罚函数项的主网目标函数和主网的约束条件进行优化求解,将得到的主网传输功率
Figure BDA0003791004550000175
传递给配网;
步骤24:根据下列公式判断是否满足收敛条件:
Figure BDA0003791004550000176
Figure BDA0003791004550000177
式中,ε1和ε2为收敛精度;若同时满足则终止迭代过程,输出结果;否则,则按下式更新拉格朗日罚函数乘子,令z=z+1,返回步骤22继续求解;
Figure BDA0003791004550000181
其中,ωj,t和θj,t的初值一般取较小的常数。
需要说明的是,尽管在上述实施例及附图中以特定顺序描述了本发明方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
本发明提出的基于分区自治的多区域虚拟电厂协同优化运行方法,优化调用配网区域内的现有可调资源,针对性解决配网运行存在的峰谷差过大、潮流不均衡度过高和电压偏差过大等问题,采用目标级联分析法以较快的求解速度实现基于分区自治的多区域虚拟电厂协调运行的优化求解。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (10)

1.一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,所述虚拟电厂的系统运行架构包括:末端可调资源、配网虚拟电厂集控中心和主网调度中心;运行方法包括以下步骤:
S1,对末端可调资源进行调节潜力分析;
S2,基于配网区域内末端可调资源构建配网虚拟电厂集控中心;由配网虚拟电厂集控中心向上对接主网调度中心并接收调度指令,对下接收末端可调资源的运行信息并下发控制指令;
S3,主网调度中心依据虚拟电厂的可调潜力和常规机组发电能力进行机组出力组合,确定虚拟电厂的出力并对其下发调度指令。
2.根据权利要求1所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,所述末端可调资源包括:空调负荷、电动公交充电站、电储能和分布式光伏。
3.根据权利要求2所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,所述末端可调资源的调节潜力如下:
1)空调负荷:
Pt AC,DR=Pt AC,base-Pt AC
式中,Pt AC为空调的电功率;Pt AC,DR为空调的调节潜力;Pt AC,base为最佳舒适状态时的空调电功率;
2)电动公交车充电站:
Figure FDA0003791004540000011
式中,Pt EV,DR为充电站的调节潜力;
Figure FDA0003791004540000012
为公交车的充电功率;
Figure FDA0003791004540000013
为不参与虚拟电厂调节时的充电功率:
3)电储能:
Figure FDA0003791004540000021
式中,Pt ES,DR为储能的调节潜力;
Figure FDA0003791004540000022
Figure FDA0003791004540000023
分别为储能的充电和放电功率;
Figure FDA0003791004540000024
Figure FDA0003791004540000025
分别为不参与虚拟电厂调节时的电储能的充电和放电功率;
4)分布式光伏:
Figure FDA0003791004540000026
式中,
Figure FDA0003791004540000027
为分布式光伏的可调潜力;Ppv,t和Qpv,t分别为分布式光伏的有功和无功出力;
Figure FDA0003791004540000028
Figure FDA0003791004540000029
分别为分布式光伏不参与虚拟电厂调节时的有功和无功出力。
4.根据权利要求3所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,配网区域虚拟电厂的出力为:
Figure FDA00037910045400000210
式中,
Figure FDA00037910045400000211
为配网区域虚拟电厂出力的视在功率,
Figure FDA00037910045400000212
Figure FDA00037910045400000213
分别为配网区域虚拟电厂出力的有功功率和无功功率。
5.根据权利要求3所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,所述配网虚拟电厂集控中心其运行的目标函数包括为:
minFj=μ1Fvpp,j2Fp-v,j3Fpf,j4FV,j
μ1234=1
系统运行成本最小、负荷波动方差最小、潮流不均衡度最小和电压偏差最小四种目标函数分别为:
Figure FDA00037910045400000214
Figure FDA0003791004540000031
Figure FDA0003791004540000032
Figure FDA0003791004540000033
上述各式中,Fvpp,j为系统运行成本,Fp-v,j为负荷波动方差,Fpf,j为潮流不均衡度,FV,j为电压偏差,μ1~μ4分别为四种目标函数对应的权重系数;
Figure FDA0003791004540000034
为配网从主网接收的功率,γt为调用虚拟电厂的单位成本,
Figure FDA0003791004540000035
为配网区域负荷,ηt为配网售电价格;
Figure FDA0003791004540000036
为潮流不均衡度,
Figure FDA0003791004540000037
和Hj,t分别为虚拟电厂参与调度前后配网区域的潮流熵,
Figure FDA0003791004540000038
为潮流熵最大值;Θj为配网区域的节点集合,k为配网区域内的节点编号,Uj,k,t为节点电压,Uj,ref为配网区域参考电压。
6.据权利要求5所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,所述配网虚拟电厂集控中心其运行的约束条件为:
1)功率平衡约束:
Figure FDA0003791004540000039
Figure FDA00037910045400000310
式中,
Figure FDA00037910045400000311
为不参与虚拟电厂调节时配网区域的电负荷;
2)主配网间传输功率约束:
Figure FDA00037910045400000312
3)虚拟电厂出力约束:
Figure FDA00037910045400000313
式中,
Figure FDA00037910045400000314
Figure FDA00037910045400000315
分别为虚拟电厂的最小和最大出力;
4)潮流熵约束:
Figure FDA0003791004540000041
式中,
Figure FDA0003791004540000042
为线路l的负载率,
Figure FDA0003791004540000043
为线路l的潮流值,Lj为线路总条数;
给定一个常数列Aj={aj,1,aj,2,...,aj,f,...,aj,z},
Figure FDA0003791004540000044
表示负载率
Figure FDA0003791004540000045
的输电线路条数,把各个负载区间内的线路条数比例化得:
Figure FDA0003791004540000046
Figure FDA0003791004540000047
式中,C为常数;当系统中所有支路的负载率都在同一个区间时,Hj,t为零,这时系统的潮流分布处于最均衡状态,即线路承载的潮流与其容量成正比;而当系统中所有线路的负载率都不在同一个区间时,Hj,t便达到最大值:
Figure FDA0003791004540000048
5)电压约束:
Figure FDA0003791004540000049
式中,
Figure FDA00037910045400000410
Figure FDA00037910045400000411
分别为节点电压幅值的下限和上限;
6)配电网潮流约束:
Figure FDA00037910045400000412
Figure FDA00037910045400000413
式中,Pj,mn,t和Qj,mn,t分别为配网区域内节点m流向节点n的有功和无功功率;rj,mn和xj,mn分别为节点m和n之间线路的电阻和电抗;Pj,n,t和Qj,n,t分别为节点n流入的有功功率和无功功率;u(n)j为功率流向节点n的节点集合;g∈v(n)j为节点n功率流向的节点的集合;
7)线路传输容量约束:
Figure FDA0003791004540000051
7.据权利要求6所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,所述主网调度中心以运行成本最小为目标,其目标函数为:
minCgrid=CG-Csell
Figure FDA0003791004540000052
Figure FDA0003791004540000053
上述式中,CG为发电机发电成本,Csell为售电收益,Cvpp为调用虚拟电厂的成本;T为调度周期,I为常规发电机组集合,J为配网集合;下标t表示时段t,i表示常规发电机i,j表示配网j;PG,i,t为常规机组的出力,ai、bi和ci为对应的成本系数;
Figure FDA0003791004540000054
为主网向配网传输的功率,λt为电价。
8.据权利要求7所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,所述主网调度中心运行的约束条件为:
1)功率平衡约束:
Figure FDA0003791004540000055
2)常规机组出力约束:
Figure FDA0003791004540000056
Figure FDA0003791004540000057
式中,
Figure FDA0003791004540000058
Figure FDA0003791004540000059
分别为机组的出力上下限,
Figure FDA00037910045400000510
Figure FDA00037910045400000511
分别为机组向下和向上爬坡率,Δt为一个运行时段;
3)主配网间传输功率约束:
Figure FDA0003791004540000061
式中,
Figure FDA0003791004540000062
Figure FDA0003791004540000063
分别为主网和配网间传输功率的最小值和最大值。
9.据权利要求8所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,采用目标级联法对模型进行变换;
配网目标函数表示为:
Figure FDA0003791004540000064
式中,
Figure FDA0003791004540000065
为主网优化后的值;ωj,t和θj,t分别为拉格朗日罚函数的一次项与二次项的乘子;
主网目标函数表示为:
Figure FDA0003791004540000066
式中,
Figure FDA0003791004540000067
为配网优化后的值。
10.据权利要求9所述的一种基于分区自治的多区域虚拟电厂协同优化运行方法,其特征在于,采用目标级联法进行求解步骤为:
步骤21:输入主网、配网参数和设备参数,设定好耦合变量及罚函数乘子初值,令迭代次数z=1;
步骤22:每个配网区域根据含拉格朗日罚函数项的配网目标函数和每个配网的约束条件进行各自优化问题的求解,并将求解得到的配网接收功率
Figure FDA0003791004540000068
传递给主网调度层,配网间可并行求解,加快计算速度;
步骤23:主网接收到配网传递的数据后,根据含拉格朗日罚函数项的主网目标函数和主网的约束条件进行优化求解,将得到的主网传输功率
Figure FDA0003791004540000069
传递给配网;
步骤24:根据下列公式判断是否满足收敛条件:
Figure FDA0003791004540000071
Figure FDA0003791004540000072
式中,ε1和ε2为收敛精度;若同时满足则终止迭代过程,输出结果;否则,则按下式更新拉格朗日罚函数乘子,令z=z+1,返回步骤22继续求解;
Figure FDA0003791004540000073
其中,ωj,t和θj,t的初值为常数。
CN202210955194.5A 2022-08-10 2022-08-10 一种基于分区自治的多区域虚拟电厂协同优化运行方法 Pending CN115149540A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210955194.5A CN115149540A (zh) 2022-08-10 2022-08-10 一种基于分区自治的多区域虚拟电厂协同优化运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210955194.5A CN115149540A (zh) 2022-08-10 2022-08-10 一种基于分区自治的多区域虚拟电厂协同优化运行方法

Publications (1)

Publication Number Publication Date
CN115149540A true CN115149540A (zh) 2022-10-04

Family

ID=83415820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210955194.5A Pending CN115149540A (zh) 2022-08-10 2022-08-10 一种基于分区自治的多区域虚拟电厂协同优化运行方法

Country Status (1)

Country Link
CN (1) CN115149540A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117191130A (zh) * 2023-09-27 2023-12-08 深圳市英博伟业科技有限公司 一种多场景在线温湿度监控方法和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117191130A (zh) * 2023-09-27 2023-12-08 深圳市英博伟业科技有限公司 一种多场景在线温湿度监控方法和系统

Similar Documents

Publication Publication Date Title
CN112467722B (zh) 一种考虑电动汽车充电站的主动配电网源-网-荷-储协调规划方法
CN108667147B (zh) 一种含多微电网的柔性中压直流配电中心优化调度方法
Wang et al. Load curve smoothing strategy based on unified state model of different demand side resources
CN110245810B (zh) 一种区域能源互联网协调优化运行方法
CN115360804B (zh) 一种有序充电系统及有序充电方法
CN111313444A (zh) 一种面向高密度光伏配网台区侧的储能系统优化配置方法
CN115149540A (zh) 一种基于分区自治的多区域虚拟电厂协同优化运行方法
CN116961044A (zh) 基于模糊机会约束规划广义共享储能优化配置方法及系统
CN116388286A (zh) 一种多能群控站不同灵活性资源调控系统
CN114844100A (zh) 一种虚拟电厂参与配电网多目标优化调度模型与方法
CN115833105A (zh) 一种基于集群划分的配电网规划方法
CN114219524A (zh) 一种全国统一电力现货市场省间耦合出清方法和装置
Cuiqing et al. A Hybrid AC/DC Microgrid Energy Management Strategy Based on Neural Network
Su et al. A Data-Driven Multi-Time Scale Coordinated Economic Dispatch Model for Flexible Interconnection Low-voltage Distribution Station Areas
Zhu et al. Optimal Scheduling Model for Virtual Power Plant Participating in Energy and Regulation Markets
Rezaei et al. A network of BIMGs participating in demand response using EVs and HVAC units
Shi et al. Optimal cost scheduling of virtual power plant for new power system
CN117353395B (zh) 一种分布式优化调度方法、系统、设备及存储介质
Liu et al. Bi-level optimal configuration of shared energy storage for multi-energy microgrid system
CN113361864B (zh) 一种基于纳什均衡的配电网分布式协同优化调控方法
Liu et al. Optimal allocation of battery energy storage in distribution network considering the co-operation of generalized demand side resources
CN112270432B (zh) 一种考虑多主体利益均衡的综合能源系统的能量管理方法
Zhang et al. A flexibility assessment method for power system considering demand side adjustable resources
Wang et al. SOURCE-GRID COLLABORATED OPTIMAL DISPATCHING APPROACH BASED ON VIRTUAL POWER PLANT
Yao et al. Scheduling optimization mode of multi-microgrid considering demand response

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination