CN115145235A - 一种铸造全流程的多目标智能调度方法 - Google Patents
一种铸造全流程的多目标智能调度方法 Download PDFInfo
- Publication number
- CN115145235A CN115145235A CN202211046307.6A CN202211046307A CN115145235A CN 115145235 A CN115145235 A CN 115145235A CN 202211046307 A CN202211046307 A CN 202211046307A CN 115145235 A CN115145235 A CN 115145235A
- Authority
- CN
- China
- Prior art keywords
- population
- processing
- time
- batch
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 174
- 238000005266 casting Methods 0.000 title claims abstract description 38
- 230000008569 process Effects 0.000 title claims description 103
- 238000005457 optimization Methods 0.000 claims abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 115
- 238000005265 energy consumption Methods 0.000 claims description 15
- 238000003754 machining Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 11
- 239000002243 precursor Substances 0.000 claims description 10
- 238000003780 insertion Methods 0.000 claims description 8
- 230000037431 insertion Effects 0.000 claims description 8
- 238000012163 sequencing technique Methods 0.000 claims description 6
- 206010019133 Hangover Diseases 0.000 claims description 5
- 239000013598 vector Substances 0.000 claims description 5
- 230000001174 ascending effect Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000003245 coal Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 20
- 230000002028 premature Effects 0.000 abstract description 3
- 230000002068 genetic effect Effects 0.000 abstract 1
- 238000013178 mathematical model Methods 0.000 abstract 1
- 230000006870 function Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000739 chaotic effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000007528 sand casting Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32252—Scheduling production, machining, job shop
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提出一种铸造全流程的多目标智能调度方法,以最小碳排放、最小最大完工时间、最小加权拖期/提前惩罚、最小最大机器负载为优化目标建立数学模型,设计了一种改进的分组教学优化‑遗传算法的混合算法IGTOA来求解铸造生产调度问题。本发明自上而下对算法的个体编解码、分段解码、种群初始化、子种群个体搜索策略、子种群个体更新方式、种群最优个体更新方式等进行全面改进来实现。通过将种群总体划分为两个子种群来减少问题复杂性,其中,不同的子种群采取不同的进化策略。另外,通过在改进的分组教学优化算法的基础上,引入改进的遗传算法进行混合,以增加种群的多样性,避免算法局部极小值的过早收敛。
Description
技术领域
本发明涉及铸造流水车间的调度方法,具体涉及铸造全流程的多目标智能调度方法。
背景技术
砂型铸造是一种高能耗高污染的行业,铸造热加工和机械冷加工贯穿铸造全流程。砂型铸造全生产调度问题是混合流水车间的一种变种。在每个工件模具制造阶段的造型工序和制芯工序可以同时由不同并行机进行加工;在熔炼浇注阶段多个工件可组批由一台熔炼炉进行熔炼;在后期处理阶段,根据每批次工件的实际情况进行组批热处理与机加工。
在实际的生产中,企业的目标通常只注重于最小完工时间等单目标对调度进行优化。随着可持续发展需求的提高,实际生产与绿色制造的联系越来越紧,碳排放量也成了企业的重点关注的目标因素,因此在现在制造业中,需要同时优化最小完工时间和最小碳排放等对个目标,存在着多个目标的优化问题。因此,亟需一种可以对多目标进行调度优化的方法。
发明内容
本发明提出了一种铸造全流程的多目标智能调度方法,以最小碳排放、最小最大完工时间、最小加权拖期/提前惩罚、最小最大机器负载作为优化目标,对铸造全流程的调度进行优化。
为解决上述技术问题,本发明提供了一种铸造全流程的多目标智能调度方法,包括以下步骤:
步骤S1:对目标车间设定预设条件、基本参数和约束条件,并基于最小完工时间、碳排放、机器负载和拖期/提前惩罚四个目标设定优化目标函数,构建车间调度模型;
步骤S2:对所述目标车间所有的加工调度方案进行编码,得到可行解集合;
步骤S3:利用改进的分组教学优化算法IGTOA,求得所述可行解集合中的最优解。
优选地,所述基本参数具体包括:
n:工件总数量;
m:加工设备总数量;
i:工件编号,i=1, 2, …, n;
j:工件i的工序号,j=1, 2, …, s;
M:加工机器集合;
Mh:第h台机器;
Oij:工件i的第j道工序;
Wbk:批次总重量;
Wi:工件i的重量;
Q:批处理机容量;
b:批次总数目;
Cijh:工序Oij在机器h上的处理时间;
STij:工序Oij的开始时间;
ETij:工序Oij在机器h上的完工时间;
Fpij:工序 j-1与工序j组成并行工序阶段;
STFpij:Fpij的开始时间;
ETFpij:Fpij的结束时间;
Fbnj:n个工件的第j道工序组成批处理;
STFbnj:Fbnj的开工时间;
ETFbnj:Fbnj的结束时间;
ETi:第i道工序的结束时间;
Th:机器h上的待机时间;
Ph:加工设备h的额定运行功率;
Ph':加工设备h的待机功率;
B:电力标煤换算系数;
EF:电能碳排放系数;
Cmax:最大完工时间;
E:最大碳排放量;
Wm:最大机器负载;
ET:总拖期惩罚;
Ci:工件i的最后一道工作完成时间;
Di:工件i的标准完成时间;
Ei:工件i的提前完成惩罚值;
Ni:工件i的拖期完成惩罚值;
Ti:工件i的最大总加工时间;
Tij:工件Oij的最大处理时间;
决策变量:
Xijh:0-1变量,工序Oij在加工设备h上加工时则Xijh=1,否则为0;
Yijk:0-1变量,工序Oij属于批次k,则Yijk=1,否则为0。
优选地,所述约束条件具体包括:
1)除并行工序阶段外,其他工序阶段之间有着严格的加工次序约束:
2)并行工序阶段的加工时间位于前阶段加工完成时间之后:
3)并行工序阶段的加工时间位于后阶段加工开始时间之前:
4)任意一个工序只能与一台加工设备上加工:
5)每一个工序不能属于多个批次:
6)批处理阶段的每一个批次总重量为该批次加工工件的重量之和:
7)每一个加工的总重量不能超过批处理机的最大承受重量
8)批处理的最早开工时间不早于该批次中工件的前驱工序完工时间:
优选地,所述优化目标函数包括:
1)最小化完工时间:
2)碳排放:
3)机器负载:
4)拖期/提前惩罚:
优选地,步骤S2中所述编码的具体方法为:采用MSOS整数编码的方式,以向量 S=[Sj|Sm]表示车间加工调度方案的一个解,其中,Sj表示工件工序段,Sm表示加工设备选择段。
优选地,步骤S3求最优解的方法包括以下步骤:
步骤S31:基于所述可行解集合,构建初始化种群;
步骤S32:基于所述车间调度模型,从并行工序阶段和批处理阶段两个阶段分别设定解码算法,对所述初始化种群进行解码,计算所述种群的适应度;
步骤S33:基于所述适应度,应用Pareto排序和PCA占优比较对所述种群进行排序;
步骤S34:将所述种群进行分组,其中排序靠前的一半分配到GoodGroup组,排序靠后的一半分配到BadGroup组;
步骤S35:采用动态领域搜索方法对所述GoodGroup组中的种群进行更新得到较优种群;采用动态全局搜索方法对所述BadGroup组中的种群进行更新得到较劣种群;
步骤S36:将所述较优种群和较劣种群进行合并,当达到设定的迭代次数时,输出最优解,否则将合并后的种群作为初始种群,重新执行步骤S32~S36。
优选地,步骤S32中解码包括以下步骤:
步骤S321:基于所述优化目标函数,设定三个衡量标准:缓存率f1,能耗变化率f2和装载率f3;
其中缓存率f1表示在交货期的前提下,每个批次加工完成后平均每个工件剩余的时间,计算公式为:
式中,dij表示Oij的理论交货期,s表示该阶段加工的工件个数;
能耗变化率f2表示两个所述加工调度方案之间的能耗变化率,计算公式为:
装载率f3表示加工设备的利用率,计算公式为:
步骤S322:对于所述并行工序阶段,采用缓存率f1作为衡量标准,对所述初始化种群进行解码;
步骤S323:对于所述批处理阶段,采用能耗变化率f2和装载率f3作为衡量标准,对所述初始化种群进行解码;
优选地,步骤S322的并行工序阶段的解码包括以下步骤:
步骤S3221:针对所述初始化种群中的可并行工序Oij和Oij-1,获取前驱工序Oij-2的完工时间Ts以及Oij-1的开工时间Te;
步骤S3222:获取Oij的可加工设备的空闲时间集合t;
步骤S3223:求空闲时间集合t与时间段Ts~Te的交集,并按时间顺序对交集进行排序得到集合T';
步骤S3224:将Oij在所有可处理Oij的机器设备Mh上的完工时间ETij与集合T'中的每一个元素ti进行对比,若满足ETij<ti,则选择最早可以插入的时间,将插入后的时间作为Oij的开始加工时间,并重新确定Oij+1的开工时间,若开工时间早于并行工序Oij和Oij-1的完工时间,则无法插入;
步骤S3225:若在多台加工设备上都可进行插入,重复步骤S321~ S324,计算每种方案的缓存率f1,选择缓存率f1最大值的方案的最为最优方案,对所述初始化种群进行解码。
优选地,步骤S323的批处理阶段解码包括以下步骤:
步骤S3231:设定所述批处理阶段的划分依据函数fb:
式中,f2'与f3'为加工调度方案包含的任务最多的集合,μ为权重系数;
步骤S3232:确定每个工件批处理工序的前驱加工阶段的完成时间,基于所述完成时间,工件重量和批处理机的阈值,确定批处理机可处理的窗口大小;
步骤S3233:基于所述窗口大小,进行批处理组合,形成多个批处理方案;
步骤S3234:计算所述批处理方案的fb,选择fb最大的方案作为最优方案;
步骤S3235:重复步骤S3232~ S3234,划分完所有的批处理工序和加工机器,对所述初始化种群进行解码。
优选地,步骤S35的具体过程如下:
在GoodGroup中,选择种群中每个优化目标的最优值的个体作为老师集合,其它个体作为学生集合,进行种群的知识迭代更新;之后基于混合算子的排序,采用轮盘赌策略选择种群中的个体进行变异,生成新解,若产生的新解根据PCA占优计算占优于旧解,则替换旧解,若新解不占优于旧解,则进行领域搜索;
所述领域搜索包括以下三种领域:
1)基于关键路径的领域;
2)基于并行工序重新分配的领域,随机选择若干道并行工序,交换该工序和和与其并行的工序的位置,并为之重新分配加工机器;
3)批处理阶段领域,随机选择若干道批处理工序,按交货期升序重新分配工序与机器位置;
在BadGroup中,以概率x选择种群中排序排名第一的个体作为老师,其它个体作为学生集合,进行种群的知识迭代更新;以x的概率将新解与GoodGroup中的排序最后的个体进行占优比较,若该个体不占优,则选择种群中排序第一的个体作为父代,进行POX交叉,产生新解替换旧解。
本发明的优点在于:
本发明构建了铸造全流程生产车间生产调度问题模型,并针对该模型改进求解算法,为铸造企业提高生产效益问题提供一套可选择的解决方案。
改进的分组教学优化算法IGTOA,用于求解在约束条件下的铸造全流程的多目标智能调度问题的有效性和优越性。
1)本发明根据铸件实际生产过程中的工艺约束特征与多目标特征,提出一种铸造全流程的多目标智能调度方法,进而实现了铸造生产调度理论在实际铸件生产中的应用,弥补了铸造全流程车间调度相关学术研究领域上的空白。
2)本发明构建了铸造全流程生产车间生产调度问题模型,并针对该模型设计改进求解算法,以实际铸造企业生产数据作为实例,开发一套铸造全流程生产调度管理系统,为铸造企业提供一套可选择的解决方案。
3)GTOA是一种模拟学生向老师学习的过程的算法,在迭代过程中,学生的知识水平向着教师的知识水平靠近,最后容易导致大部分学生知识水平与教师相同或相近,从而陷入局部最优。本发明针对车间调度类离散型优化问题,将学生分为GoodGroup与BadGroup两个小组,针对不同的小组设计了不同的教师选择与教学方案。在种群个体更新阶段,加入一种基于变异与交叉的动态搜索策略,避免算法过早收敛,加强算法的全局搜索能力。
附图说明
图1为本发明的算法流程图;
图2为本发明的在并行工序阶段的解码示意图;
图3为本发明在批处理阶段的解码示意图;
图4为四种算法Pareto第一前沿分布图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图1所示,本发明实施例提供了一种铸造全流程的多目标智能调度方法,包括以下步骤:
步骤S1:对目标车间设定预设条件、基本参数和约束条件,并基于最小完工时间、碳排放、机器负载和拖期/提前惩罚四个目标设定优化目标函数,构建车间调度模型。
本发明实施例所构建的车间调度模型需要设定以下的预设条件:
1)在零时刻,任意设备均可被使用,任意铸件均可被加工;
2)加工过程中不可被中断;
3)不同铸件间没有加工顺序约束,同一铸件除并行工序外,其它工序之间存在加工顺序约束;
4)不同的工件之间没有加工任务的优先级;
5)加工机器在首个工件到达后启动,完成最后一个工件加工后停机;
6)批处理过程中不能增加或减少该批次工件数目;
7)忽略机器间运输时间与运输能耗;
8)规定设备的启动时间和启动状态下的能耗和碳排放忽略不计;
9)批处理阶段的每一个批次总重量为改批次加工工件的重量之和;
10)批处理机器每一个加工的总重量不能超过批处理机的最大承受重量;
11)并行工序阶段的加工时间位于前阶段加工完成时间和后阶段加工开始时间之间。
具体基本参数设置如下:
n:工件总数量;
m:加工设备总数量;
i:工件编号,i=1, 2, …, n;
j:工件i的工序号,j=1, 2, …, s;
M:加工机器集合;
Mh:第h台机器;
Oij:工件i的第j道工序;
Wbk:批次总重量;
Wi:工件i的重量;
Q:批处理机容量;
b:批次总数目;
Cijh:工序Oij在机器h上的处理时间;
STij:工序Oij的开始时间;
ETij:工序Oij在机器h上的完工时间;
Fpij:工序 j-1与工序j组成并行工序阶段;
STFpij:Fpij的开始时间;
ETFpij:Fpij的结束时间;
Fbnj:n个工件的第j道工序组成批处理;
STFbnj:Fbnj的开工时间;
ETFbnj:Fbnj的结束时间;
ETi:第i道工序的结束时间;
Th:机器h上的待机时间;
Ph:加工设备h的额定运行功率;
Ph':加工设备h的待机功率;
B:电力标煤换算系数;
EF:电能碳排放系数;
Cmax:最大完工时间;
E:最大碳排放量;
Wm:最大机器负载;
ET:总拖期惩罚;
Ci:工件i的最后一道工作完成时间;
Di:工件i的标准完成时间;
Ei:工件i的提前完成惩罚值;
Ni:工件i的拖期完成惩罚值;
Ti:工件i的最大总加工时间;
Tij:工件Oij的最大处理时间;
决策变量:
Xijh:0-1变量,工序Oij在加工设备h上加工时则Xijh=1,否则为0;
Yijk:0-1变量,工序Oij属于批次k,则Yijk =1,否则为0。
设置约束条件如下:
1)除并行工序阶段外,其他工序阶段之间有着严格的加工次序约束,如公式所示:
2)行工序阶段的加工时间位于前阶段加工完成时间后面,如公式所示:
3)并行工序阶段的加工时间位于后阶段加工开始时间之前,如公式所示:
4)任意一个工序只能与一台机器上加工,如公式所示:
5)每一个工序不能属于多个批次,如公式所示:
6)批处理阶段的每一个批次总重量为改批次加工工件的重量之和,如公式所示:
7)每一个加工的总重量不能超过批处理机的最大承受重量,如公式所示:
8)批处理的最早开工时间不早于该批次中工件的前驱工序完工时间,如公式所示:
根据上述设定的基本参数、预设条件和约束条件,以最小完工时间、碳排放、机器负载和拖期/提前惩罚四个目标设定优化目标函数如下所示:
1)最小化完工时间:
2)碳排放:
3)机器负载:
4)拖期/提前惩罚:
步骤S2:对所述目标车间所有的加工调度方案进行编码,得到可行解集合;
本发明实施例中采用MSOS整数编码的方式,以一组向量S=[Sj|Sm]表示车间加工调度方案的一个解,其中,Sj表示工件工序段,Sm表示加工设备选择段。
具体地,如表1所示,已随机的一个解S=[1 2 3 1 2 1 2 3 3 1 2 3 | 2 2 1 1 22 1 1 2 2 1 2 1 1 2]为例,Sj中第一个位置的1表示工件1的O11,第8个位置的并且第二次出现的3表示工件3的O32,O32可选的加工设备集为{M3,M4},对应Sm中第8个位置的1,表示O32在加工设备M3上进行加工。
通过上述的编码方法,生成可行解集合。
表1
步骤S3:利用改进的分组教学优化算法IGTOA,求得所述可行解集合中的最优解。
步骤S31:基于所述可行解集合,构建初始化种群;
为了求得可行解集合对于多目标调度中的最优解,本发明实施例首先进行种群初始化;
构建种群规模为N维度为D的混沌序列Y={Yd,d=1,2,…,D},Yd={Yid,i=1,2,…,N},混沌映射函数表达式如下:
通过混沌序列映射到解空间生成初始化种群X={Xi,i=1,2,…,N},Xi={Xid,d=1,2,…,D},Xid通过如下公式得到,
式中,Xub和Xlb分别表示个体位置序列随机值的上下界。
通过如下公式计算初始种群X的反向种群BX:
初始种群和反向种群均计算完毕后,将反向解与初始解进行比较,若反向解优于初始解,则替换初始解形成新的种群X。
步骤S32:基于所述车间调度模型,从并行工序阶段和批处理阶段两个阶段设定解码算法,对所述初始化种群进行解码,计算所述种群的适应度;
解码是将矢量还原成实际问题信息的过程,为了提高算法的有效性,本发明针对多阶段问题设计了一种分段式的解码规则来得到实际的加工顺序。对于并行工序阶段,引用了一种基于机器空闲时间集的先排序后插入式方法进行解码;对于批处理阶段,设计一种改进前瞻窗口策略的解码方法;设计一种全局优化方法加强不同阶段的解码方案的联系。
定义三个方案衡量的依据:缓存率f1,能耗变化率f2,装载率f3。其中f1衡量并行工序阶段,f2与f3衡量批处理阶段。
缓冲率f1表示在交货期的前提下,每个批次加工完成后平均每个工件剩余的时间,计算公式为:
式中,dij表示Oij的理论交货期,s表示该阶段加工的工件个数。
能耗变化率f2表示该方案的与插入前的能耗变化。
装载率f3表示机器的利用率,计算公式为:
并行工序阶段内两个并行工序没有加工顺序约束,为保证优化时模型的准确性,首先在不考虑工序并行的状态下进行排序,然后对并行工序的加工机器选择进行判断,最后判断能否进行最早空闲时间的插入,若有x台机器可以进行插入,则有x个方案,计算每个方案的f1。
具体地,如图2所示,O1i与O1i-1构成并行工序阶段,O1i-1为前驱阶段,O1i+1为后续阶段。t={t1,t2,…,tn}为机器的空闲时间集。具体解码步骤如下:
步骤S3221:不考虑工序并行的情况下对工件的工序O1i与O1i-1分配,并获取O1i-1与O1i的加工时间段以及O1i选择的加工机器Mh以及该在该机器上的加工时间CTijh,并获取前驱工序O1i-2的完工时间Ts以及O1i-1的开工时间Te;
步骤S3222:获取O1i的加工机器的空闲时间集合t。
步骤S3223:求集合t与时间段Ts~Te的交集,并按时间顺序对交集进行排序得到集合T';
步骤S3224:将O1i在机器M3上的加工时间ETij与集合T'中的每一个元素ti进行对比,若满足ETij<ti,则表示可以在该时间段内进行插入。若该机器上有多个时间段可以插入,则选择最早可以插入的时间段,将插入后的时间作为O1i的开始加工时间,重新确定O1i+1的开工时间,且开工时间不早于并行工序集的完工时间。若无法插入,则O1i与后续阶段O1i+1的开工时间不改变。
步骤S3225:若在m台机器上都可进行插入,则形成m种插入方案,重复步骤S3221~S3224,计算每种方案的f1,选择最大值的方案的作为暂定的方案,进行解码。
针对实际企业的订单式生产,提出一种基于交货期的改进前瞻窗口规则,进行批处理阶段的解码。窗口的开始时间为批处理机器的最早空闲时间与前驱阶段完成时间中的较大者,窗口的大小为批处理机的加工阈值。假设n个工件的前驱工序完工时间t={t1,t2,…tn},工件的交货期为d={d1,d2,…,dn},批处理机器的加工阈值为Q。假设在第i个工件完成前驱阶段加工时,有H个任务在前瞻窗口内到达,则可以形成1+H个方案,计算每个方案的f2与f3。
由于量纲不同,对两个依据进行归一化处理,用于确定每个批处理批次的划分依据fb。其计算公式为:
f2和f3为第s个工件到达时该方案的能耗量与装载率。f2'与f3'为方案包含的任务最多的集合,μ为权重系数。计算每一个方案的fb值,并选择最大的作为最后方案。
具体地,如图3所示,M4为批处理机器,工件的第j个工序为批处理阶段。解码步骤如下:
确定每个工件的前驱加工阶段的完成时间,并将其以升序排序得到排序后的时间集合t'={t'1,t'2,…t'n}。根据完工时间,工件重量和批处理机的阈值确定求窗口大小。
在窗口内依次进行不同的组批尝试,并确定其加工时间。在窗口内形成多个备选方案,分别计算每个方案的fb,选择fb最大的方案作为最终的方案。同机器上下一个前瞻窗口的开始时间不早于本窗口的结束时间。
依次重复上述步骤直到划分完所有的批次和其加工机器,且每个工件的后续加工阶段最早开工时间不得小于他所在批次的完工时间。
通过上述的分段解码方案对初始化种群解码后,计算所有方案的适应度。
步骤S33:基于所述适应度,应用Pareto排序和PCA占优比较对所述种群进行排序;
本发明通过将PCA降维和pareto排序相结合,并采用拥挤度计算的方法,设计一种混合算子进行个体占优比较。PCA常用于高维数据降维,提取数据的主要特征分量。
本发明对初始化种群的适应度值进行PCA降维,得到降维后每个目标的权重向量w={w1,w2,∙∙∙,wm},则种群个体的支配关系按如下的标准:
式中,a与b表示两个个体,fi(a)表示个体a在目标i上的值,wj为目标j的权重,如满足这一不等式,则表示个体a占优于个体b。
之后再对种群进行Pareto排序,计算种群中个体的拥挤度,在Pareto排序基础上进行拥挤度排序。
对于同属于一个级别且拥挤度相同的个体进行PCA占优比较,若表明A优于B,则A排序靠前,反之亦然。若降维后数值相同,则随机选择一个个体位于前列,重复进行上述过程,直到种群中的所有个体排序完成。
步骤S34:将所述种群进行分组,其中排序靠前的一半分配到GoodGroup组,排序靠后的一半分配到BadGroup组;
步骤S35:采用动态领域搜索方法对所述GoodGroup组中的种群进行更新得到较优种群;采用动态全局搜索方法对所述BadGroup组中的种群进行更新得到较劣种群。
GTOA是一种全局优化算法,在所有迭代中知识量都会向着教师的知识量靠近,容易陷入局部最优。本文针对车间调度类离散型问题,对GoodGroup和BadGroup分别设计了不同的教师选择与教学方案。在更新阶段加入一种基于变异与交叉的动态搜索策略,避免算法过早收敛,加强算法的搜索能力。动态搜索策略包括动态全局搜索和动态领域搜索。
在GoodGroup中,选择种群中每个目标的最优值的个体作为老师集合。在进行知识迭代过程中随机选择集合中一个作为老师。在进行老师阶段与学生阶段的更新后,进行一种动态触发领域的搜索机制。流程如图1所示,具体流程为在进行知识更新后,对该组的新解进行基于混合算子的排序,再采用轮盘赌策略选择个体进行变异,若产生的新解根据PCA占优计算占优于旧解,则替换旧解,若新解不占优于旧解,则进行领域搜索,排序越靠前,被选中的概率就越大。针对多阶段调度模型,采用3种领域搜索结构:
1.基于关键路径的领域。
2.基于并行工序重新分配的领域。随机选择若干道并行工序,交换该工序和与并行的工序的位置,并为之重新分配加工机器。
3.批处理阶段领域。随机选择若干道批处理工序,按交货期升序重新分配工序与机器位置。
在BadGroup中,以概率x选择种群中排序排名第一的个体作为老师。在个体进行老师阶段与学生阶段的更新后,为了避免种群陷入局部最优,采用一种动态触发的全局搜索机制。以x的概率将新解与GoodGroup中的排序最后的个体进行占优比较,若不占优该个体,则选择种群中排序第一的个体作为父代,进行POX交叉,产生新的子代替换旧解。
步骤S36:将所述较优种群和较劣种群进行合并,当达到设定的迭代次数时,输出最优解,否则将合并后的种群作为初始种群,重新执行步骤S32~S36。
以实际的某铸造企业生产数据为例,通过对生产实例进行实验分析。为评估本发明所采用IGTOA算法的性能,将其与GWO算法、帝国竞争算法ICA、多目标粒子群算法DPSO以及原NSGA-II算法进行对比。每种算法四种算法均在Windows 10系统、CPU主频四核2.3GHz、运行内存8GB的计算机中运行,实验实施条件为MATLAB R2016a on an Intel Core i72.30 GHz PC with 8.00 GB of memory。将每种算法每次运行后得到的Pareto第一前沿解记录下来,四种算法的Pareto第一前沿解的三维分布如图4中(a)和(b)所示,其第一前沿的二位维分布如图4中的(c)(d)(e)(f)。由图可知本发明所提算法获得的前沿排列在其他3种算法第一前沿的前列,说明所采用的IGTOA算法较其它三种算法寻优能力更强,性能更好。
Claims (10)
1.一种铸造全流程的多目标智能调度方法,其特征在于:包括以下步骤:
步骤S1:对目标车间设定预设条件、基本参数和约束条件,并基于最小完工时间、碳排放、机器负载和拖期/提前惩罚四个目标设定优化目标函数,构建车间调度模型;
步骤S2:对所述目标车间所有的加工调度方案进行编码,得到可行解集合;
步骤S3:利用改进的分组教学优化算法IGTOA,求得所述可行解集合中的最优解。
2.根据权利要求1所述的一种铸造全流程的多目标智能调度方法,其特征在于:所述基本参数具体包括:
n:工件总数量;
m:加工设备总数量;
i:工件编号,i=1, 2, …, n;
j:工件i的工序号,j=1, 2, …, s;
M:加工机器集合;
Mh:第h台机器;
Oij:工件i的第j道工序;
Wbk:批次总重量;
Wi:工件i的重量;
Q:批处理机容量;
b:批次总数目;
Cijh:工序Oij在机器h上的处理时间;
STij:工序Oij的开始时间;
ETij:工序Oij在机器h上的完工时间;
Fpij:工序 j-1与工序j组成并行工序阶段;
STFpij:Fpij的开始时间;
ETFpij:Fpij的结束时间;
Fbnj:n个工件的第j道工序组成批处理;
STFbnj:Fbnj的开工时间;
ETFbnj:Fbnj的结束时间;
ETi:第i道工序的结束时间;
Th:机器h上的待机时间;
Ph:加工设备h的额定运行功率;
Ph':加工设备h的待机功率;
B:电力标煤换算系数;
EF:电能碳排放系数;
Cmax:最大完工时间;
E:最大碳排放量;
Wm:最大机器负载;
ET:总拖期惩罚;
Ci:工件i的最后一道工作完成时间;
Di:工件i的标准完成时间;
Ei:工件i的提前完成惩罚值;
Ni:工件i的拖期完成惩罚值;
Ti:工件i的最大总加工时间;
Tij:工件Oij的最大处理时间;
决策变量:
Xijh:0-1变量,工序Oij在加工设备h上加工时则Xijh=1,否则为0;
Yijk:0-1变量,工序Oij属于批次k,则Yijk=1,否则为0。
5.根据权利要求1所述的一种铸造全流程的多目标智能调度方法,其特征在于:步骤S2中所述编码的具体方法为:采用MSOS整数编码的方式,以向量 S=[Sj|Sm]表示车间加工调度方案的一个解,其中,Sj表示工件工序段,Sm表示加工设备选择段。
6.根据权利要求1所述的一种铸造全流程的多目标智能调度方法,其特征在于:步骤S3求最优解的方法包括以下步骤:
步骤S31:基于所述可行解集合,构建初始化种群;
步骤S32:基于所述车间调度模型,从并行工序阶段和批处理阶段两个阶段设定解码算法,对所述初始化种群进行解码,计算所述种群的适应度;
步骤S33:基于所述适应度,应用Pareto排序和PCA占优比较对所述种群进行排序;
步骤S34:将所述种群进行分组,其中排序靠前的一半分配到GoodGroup组,排序靠后的一半分配到BadGroup组;
步骤S35:采用动态领域搜索方法对所述GoodGroup组中的种群进行更新得到较优种群;采用动态全局搜索方法对所述BadGroup组中的种群进行更新得到较劣种群;
步骤S36:将所述较优种群和较劣种群进行合并,当达到设定的迭代次数时,输出最优解,否则将合并后的种群作为初始种群,重新执行步骤S32~S36。
7.根据权利要求6所述的一种铸造全流程的多目标智能调度方法,其特征在于:步骤S32中解码包括以下步骤:
步骤S321:基于所述优化目标函数,设定三个衡量标准:缓存率f1,能耗变化率f2和装载率f3;
其中缓存率f1表示在交货期的前提下,每个批次加工完成后平均每个工件剩余的时间,计算公式为:
式中,dij表示Oij的理论交货期,s表示该阶段加工的工件个数;
能耗变化率f2表示两个所述加工调度方案之间的能耗变化率,计算公式为:
装载率f3表示加工设备的利用率,计算公式为:
步骤S322:对于所述并行工序阶段,采用缓存率f1作为衡量标准,对所述初始化种群进行解码;
步骤S323:对于所述批处理阶段,采用能耗变化率f2和装载率f3作为衡量标准,对所述初始化种群进行解码。
8.根据权利要求7所述的一种铸造全流程的多目标智能调度方法,其特征在于:步骤S322的并行工序阶段的解码包括以下步骤:
步骤S3221:针对所述初始化种群中的可并行工序Oij和Oij-1,获取前驱工序Oij-2的完工时间Ts以及Oij-1的开工时间Te;
步骤S3222:获取Oij的可加工设备的空闲时间集合t;
步骤S3223:求空闲时间集合t与时间段Ts~Te的交集,并按时间顺序对交集进行排序得到集合T';
步骤S3224:将Oij在所有可处理Oij的机器设备Mh上的完工时间ETij与集合T'中的每一个元素ti进行对比,若满足ETij<ti,则选择最早可以插入的时间,将插入后的时间作为Oij的开始加工时间,并重新确定Oij+1的开工时间,若开工时间早于并行工序Oij和Oij-1的完工时间,则无法插入;
步骤S3225:若在多台加工设备上都可进行插入,重复步骤S3221~ S3224,计算每种方案的缓存率f1,选择缓存率f1最大值的方案的作为最优方案,对所述初始化种群进行解码。
9.根据权利要求7所述的一种铸造全流程的多目标智能调度方法,其特征在于:步骤S323的批处理阶段解码包括以下步骤:
步骤S3231:设定所述批处理阶段的划分依据函数fb:
式中,f2'与f3'为加工调度方案包含的任务最多的集合,μ为权重系数;
步骤S3232:确定每个工件批处理工序的前驱加工阶段的完成时间,基于所述完成时间,工件重量和批处理机的阈值,确定批处理机可处理的窗口大小;
步骤S3233:基于所述窗口大小,进行批处理组合,形成多个批处理方案;
步骤S3234:计算所述批处理方案的fb,选择fb最大的方案作为最优方案;
步骤S3235:重复步骤S3232~ S3234,划分完所有的批处理工序和加工机器,对所述初始化种群进行解码。
10.根据权利要求6所述的一种铸造全流程的多目标智能调度方法,其特征在于:步骤S35的具体过程如下:
在GoodGroup中,选择种群中每个优化目标的最优值的个体作为老师集合,其它个体作为学生集合,进行种群的知识迭代更新;之后基于混合算子的排序,采用轮盘赌策略选择种群中的个体进行变异,生成新解,若产生的新解根据PCA占优计算占优于旧解,则替换旧解,若新解不占优于旧解,则进行领域搜索;
所述领域搜索包括以下三种领域:
1)基于关键路径的领域;
2)基于并行工序重新分配的领域,随机选择若干道并行工序,交换该工序和和与其并行的工序的位置,并为之重新分配加工机器;
3)批处理阶段领域,随机选择若干道批处理工序,按交货期升序重新分配工序与机器位置;
在BadGroup中,以概率x选择种群中排序排名第一的个体作为老师,其它个体作为学生集合,进行种群的知识迭代更新;以x的概率将新解与GoodGroup中的排序最后的个体进行占优比较,若该个体不占优,则选择种群中排序第一的个体作为父代,进行POX交叉,产生新解替换旧解。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211046307.6A CN115145235B (zh) | 2022-08-30 | 2022-08-30 | 一种铸造全流程的多目标智能调度方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211046307.6A CN115145235B (zh) | 2022-08-30 | 2022-08-30 | 一种铸造全流程的多目标智能调度方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115145235A true CN115145235A (zh) | 2022-10-04 |
CN115145235B CN115145235B (zh) | 2022-11-25 |
Family
ID=83415844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211046307.6A Active CN115145235B (zh) | 2022-08-30 | 2022-08-30 | 一种铸造全流程的多目标智能调度方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115145235B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115685920A (zh) * | 2022-10-26 | 2023-02-03 | 湖北工业大学 | 基于改进布谷鸟算法的铸造混合流水车间调度方法及系统 |
CN115981262A (zh) * | 2023-01-31 | 2023-04-18 | 武汉理工大学 | 基于imoea的液压缸零部件车间生产调度方法 |
CN117391259A (zh) * | 2023-12-11 | 2024-01-12 | 山东建筑大学 | 一种混凝土预制构件分组生产调度方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140189083A1 (en) * | 2012-12-28 | 2014-07-03 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for packet job scheduler in data processing based on workload self-learning |
CN106611220A (zh) * | 2016-02-27 | 2017-05-03 | 四川用联信息技术有限公司 | 一种新的混合算法求解柔性作业车间调度问题 |
CN114819040A (zh) * | 2022-04-21 | 2022-07-29 | 华东理工大学 | 一种基于对偶搜索的双种群协同进化方法及应用 |
-
2022
- 2022-08-30 CN CN202211046307.6A patent/CN115145235B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140189083A1 (en) * | 2012-12-28 | 2014-07-03 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for packet job scheduler in data processing based on workload self-learning |
CN106611220A (zh) * | 2016-02-27 | 2017-05-03 | 四川用联信息技术有限公司 | 一种新的混合算法求解柔性作业车间调度问题 |
CN114819040A (zh) * | 2022-04-21 | 2022-07-29 | 华东理工大学 | 一种基于对偶搜索的双种群协同进化方法及应用 |
Non-Patent Citations (2)
Title |
---|
ZHILE YANG 等: "A self-learning TLBO based dynamic economic/environmental dispatch considering multiple plug-in electric vehicle loads", 《CLEAN ENERGY》 * |
娄航宇 等: "基于扩展双资源约束型航空构件制造车间调度方法", 《计算机集成制造系统》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115685920A (zh) * | 2022-10-26 | 2023-02-03 | 湖北工业大学 | 基于改进布谷鸟算法的铸造混合流水车间调度方法及系统 |
CN115981262A (zh) * | 2023-01-31 | 2023-04-18 | 武汉理工大学 | 基于imoea的液压缸零部件车间生产调度方法 |
CN115981262B (zh) * | 2023-01-31 | 2023-12-12 | 武汉理工大学 | 基于imoea的液压缸零部件车间生产调度方法 |
CN117391259A (zh) * | 2023-12-11 | 2024-01-12 | 山东建筑大学 | 一种混凝土预制构件分组生产调度方法及系统 |
CN117391259B (zh) * | 2023-12-11 | 2024-03-26 | 山东建筑大学 | 一种混凝土预制构件分组生产调度方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN115145235B (zh) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115145235B (zh) | 一种铸造全流程的多目标智能调度方法 | |
Emami et al. | Managing a new multi-objective model for the dynamic facility layout problem | |
Tiacci | Mixed-model U-shaped assembly lines: Balancing and comparing with straight lines with buffers and parallel workstations | |
CN110598941A (zh) | 一种基于仿生策略的粒子群优化制造系统双目标排产方法 | |
Chen et al. | Development of hybrid evolutionary algorithms for production scheduling of hot strip mill | |
CN103309316A (zh) | 带有批处理机的多阶段变异混合流水车间调度方法 | |
CN101901425A (zh) | 一种基于多种群协同进化的柔性作业车间调度方法 | |
CN112381273B (zh) | 一种基于u-nsga-iii算法的多目标作业车间节能优化方法 | |
Wei et al. | A multi-objective migrating birds optimization algorithm based on game theory for dynamic flexible job shop scheduling problem | |
CN108376315A (zh) | 一种基于图模型的不确定炼钢-连铸柔性优化调度方法及系统 | |
CN111340345B (zh) | 一种基于改进粒子群算法的刀具调度方法 | |
Li et al. | An improved cuckoo search algorithm for the hybrid flow-shop scheduling problem in sand casting enterprises considering batch processing | |
CN116466659A (zh) | 一种基于深度强化学习的分布式装配流水车间调度方法 | |
CN117148796A (zh) | 一种求解多目标柔性作业车间调度问题的优化方法 | |
CN111210125B (zh) | 一种基于历史信息指导的多目标工件批调度方法及装置 | |
Zhang et al. | A cooperative evolutionary algorithm with simulated annealing for integrated scheduling of distributed flexible job shops and distribution | |
Zhang et al. | Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times | |
Wu et al. | Optimizing job release and scheduling jointly in a reentrant hybrid flow shop | |
Li et al. | Joint scheduling optimisation method for the machining and heat-treatment of hydraulic cylinders based on improved multi-objective migrating birds optimisation | |
CN117726119A (zh) | 一种解决分布式混合流水车间组调度的图仿生学习方法 | |
CN117170318A (zh) | 基于改进堆优化算法解决模糊生产调度问题的方法 | |
Li et al. | An improved whale optimisation algorithm for distributed assembly flow shop with crane transportation | |
CN115456268A (zh) | 一种导向辊制造资源优化配置方法、装置、设备及介质 | |
CN104021437B (zh) | 一种基于有向图适应度评估的混合差分进化算法 | |
Laoraksakiat et al. | Bi-objective hybrid flow shop scheduling with family setup times using hybrid genetic and migrating birds optimization algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |