CN115135492A - 用于表征二维编织复合材料的等双轴抗压强度的系统和方法 - Google Patents

用于表征二维编织复合材料的等双轴抗压强度的系统和方法 Download PDF

Info

Publication number
CN115135492A
CN115135492A CN202080097119.9A CN202080097119A CN115135492A CN 115135492 A CN115135492 A CN 115135492A CN 202080097119 A CN202080097119 A CN 202080097119A CN 115135492 A CN115135492 A CN 115135492A
Authority
CN
China
Prior art keywords
fiber direction
fiber
fibers
dimensional
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080097119.9A
Other languages
English (en)
Other versions
CN115135492B (zh
Inventor
K·基拉恩
D·德兰
Z·张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Foundation of State University of New York
Original Assignee
Research Foundation of State University of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Foundation of State University of New York filed Critical Research Foundation of State University of New York
Publication of CN115135492A publication Critical patent/CN115135492A/zh
Application granted granted Critical
Publication of CN115135492B publication Critical patent/CN115135492B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • G01N33/367Fabric or woven textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

公开了使用诱导的双轴挠曲来表征二维编织复合材料(比如碳纤维增强层压复合材料)的等双轴抗压强度的方法和系统,来自双轴挠曲的应变测量值用于确定复合材料的等双轴抗压强度。

Description

用于表征二维编织复合材料的等双轴抗压强度的系统和方法
本申请在35 U.S.C. §119下要求2019年12月20日递交的美国临时专利申请美国序列号62/951,674和2020年9月30日递交的美国序列号63/085,407的优先权,其每一个的全部内容通过参考结合至本文中。
技术领域
本公开涉及用于表征二维编织复合材料(非限制性地包括碳纤维增强复合材料等)的等双轴抗压强度的方法,以及用于其的系统。
背景技术
薄型复合材料结构用于广泛种类的工程应用,比如机翼、风力涡轮机叶片、汽车轮胎中的皮带和帘布层、用于储存/运输的压力容器等。为了这些薄型工程结构的可靠运行和有效设计,必须表征和理解其在双轴挠曲及其他应力状态下的失效行为。尽管对纤维增强复合材料的双轴强度存在一定的研究,但涉及板的双轴挠曲失效的研究不太常见。对各向同性脆性材料存在若干测试标准,但对各向异性复合材料不存在这样的标准。用于各向同性材料的双轴挠曲测试的常用方法涉及将圆盘或板形试样支撑于圆环上,并在中心处或中心附近施加平面外载荷。平面外载荷通过球(环上球,BOR)或通过施加均匀压力(环上压力,POR)或经较小的圆环(环上环,ROR)施加。另一种测试方法采用施加于顶部上的点载荷代替加载环,其中圆盘支撑于沿周界的3个支点上;这是混凝土(ASTM C1550测试)以及牙科陶瓷(ISO 6872)的标准测试。在该测试中,诱导应力场仅在加载点处为三重对称和等双轴的。
环上环(ROR)弯曲测试易于进行,为用于测量陶瓷等双轴拉伸强度的ASTM标准测试的主题(ASTM C1499)。由ROR装置产生的载荷类似于二维梁的四点弯曲测试。换言之,试样的每个直径截面均可视为经历4点弯曲的梁。因此,加载环内的圆盘或板形试样区域经历纯弯曲。对于各向同性材料,加载环内区域中的弹性应力分布为轴对称的。该测试程序已应用于表现出宏观各向同性行为且结构均匀的陶瓷。该方法也已扩展至玻璃,并且最近还扩展至混凝土。
板弯曲测试已主要应用于各向同性脆性材料,但可发现一些关于各向异性复合材料的研究(尽管不一定与ROR测试一起)。在一些早期工作中,研究了玻璃纤维增强聚酯(FRP)和FRP-聚氨酯泡沫复合材料的行为,以评估这些材料是否可能用作路面材料。在单调和循环加载下进行了单轴挠曲、拉伸和双轴挠曲测试。这些双轴挠曲测试涉及承受中心侧向载荷并带有全方位夹紧的支撑的圆板试样。发现单轴测试结果与双轴测试良好一致。碳化硅连续纤维增强铝复合材料的双轴挠曲也是已知的,采用ROR测试装置并研究了失效机制。发现在单调加载下纤维断裂和基质开裂两者均会发生,而循环挠曲下,纤维断裂为主要失效机制。还使用圆盘试样分析了交叉帘布层碳纤维树脂复合材料在双轴挠曲下的响应,重点是比较单调和循环加载下的失效模式。发现牙科树脂复合材料、纤维增强胶结复合材料和陶瓷复合材料可能具有另外应用。
尽管有这些实例,但板弯曲测试对于各向异性纤维增强聚合物基质复合材料并不常见。对此的推测原因为边缘效应的存在,其导致失效在边缘而不是中心引发。然而,这并不总是真实的。因此,需要简单、可靠、具有成本效益且可重复的测试来表征二维机织物复合材料的等双轴抗压强度。
发明内容
在一个方面,本公开涉及用于确定二维编织复合材料(比如碳纤维增强层压材料)的等双轴抗压强度的方法,其中二维编织复合材料至少包含布置于第一纤维方向上的第一组纤维和布置于第二纤维方向上的第二组纤维,第一和第二组纤维以一定角度(例如以彼此成直角)交织。该方法包括对二维编织复合材料试样施加平面外单轴载荷(例如单调载荷),以在二维编织复合材料试样中诱导双轴挠曲;获得应变测量值,例如通过两个或更多个沿诱导具有双轴挠曲的二维编织复合材料试样的第一纤维方向和第二纤维方向布置的应变计;和当在二维编织复合材料试样的顶面出现至少一个可见裂纹时和/或当来自应变计的测量值不再重叠而是分叉时,由从沿第一纤维方向和沿第二纤维方向获得的应变测量值计算的应力确定二维编织复合材料试样的等双轴抗压强度。在另一方面,本公开涉及用于确定二维编织复合材料的等双轴强度的系统。
附图说明
图1为显示本公开方法实施方案的几何形状装置的总体方案的分解透视图。
图2为根据本公开示例实施方案的二维编织复合材料中测量的应变的图形描绘。
具体实施方式
在以下对本公开某些实施方案的详细描述中,为了清楚地理解本发明的概念起见,省略了关于本领域已知的相关功能或构造的解释,以避免以不必要的细节混淆本发明。本文所述的系统和方法的实施方案通过施加单轴载荷并使用试样几何形状和测试装置,提供对二维编织复合材料的等双轴抗压强度的可靠测量。出于此目的示例的测试方法为环上环(ROR)挠曲测试。在该测试中,双轴强度通过使无缺口圆盘或无缺口方形板在中心处承受单调平面外载荷来测量。这会诱导试样的双轴挠曲,并将单轴载荷转化成双轴应力状态。这种测试装置便宜且试样几何形状简单。其也不需要任何昂贵的试样夹具,并且可在标准的通用测试机中进行(即不需要单独的载荷框架、载荷传感器等)。如本文进一步描述的,提供了使用该方法的数值应力分析和实验测量。该系统和方法稳定、可靠、可重复,并且潜在地可适用于各种纤维增强复合材料。复合材料的等双轴强度表征对于准确估计承受双轴压缩的结构的载荷能力是必要的,关键是因为复合材料通常在压缩方面较弱。
在一个实施方案中,本公开提供用于确定二维编织复合材料的等双轴抗压强度的方法。在一个实践中,该方法包括提供二维编织复合材料试样,其中该试样至少包括布置于第一纤维方向上的第一组纤维和布置于第二纤维方向上的第二组纤维,第一和第二组纤维以一定角度交织,例如第一组纤维与第二组纤维垂直交织。在一个实践中,第一和第二组纤维分别对应于编织复合材料中的经纱和纬纱。第一和第二组纤维可以平纹图案、斜纹图案、缎纹图案、席纹图案或罗纹图案交织。第一和第二组纤维还可包括针织复合材料。
如图1的非限制性实施方案所见,二维编织复合材料试样100包含顶面110和底面120。二维编织复合材料试样可呈无缺口圆盘或无缺口方形板的形状(如图1所描绘),并且包括布置于第一纤维方向(如所示出,沿侧面180的长度延伸并平行于侧面180的方向(第一纤维方向))的第一组纤维130 (部分示出),以及布置于第二纤维方向(如所示出,沿侧面170的长度延伸并平行于侧面170的方向(第二纤维方向))的第二组纤维140,其第二纤维组与第一组纤维130以一定角度(如所示出垂直地)交织。如所描绘的,二维编织复合材料可为包含多层的层压材料,例如并且非限制性地为8-12层,例如10层,尽管考虑或多或少的层(为方便起见示出了3层),其中一层中的第一组纤维130与上下其他层中的第一组纤维对齐,和一层中的第二组纤维与上下其他层中的第二组纤维对齐。底面120支撑于支撑环150上,并且在一个实践中,为单调载荷的平面外单轴载荷(由箭头示出)通过与支撑环150同心的加载环160施加于顶面110的中心,以诱导二维编织复合材料试样中的双轴挠曲。支撑环150和加载环160可各自为圆形,其中加载环160与支撑环150同心,例如支撑环150的直径为加载环160的直径的3-5倍大;并且两者环由适当刚性的材料(例如包括钢在内的金属)组成,以承受施加的力。二维编织复合材料试样具有足以允许诱导双轴挠曲的厚度,非限制性地例如2 mm-3 mm。在一个实践中,第一组纤维和第二组纤维分别嵌入基质,基质可包含一种或多种聚合物,比如热塑性材料或热固性材料,例如乙烯基酯或环氧树脂。非限制性地,二维编织复合材料试样可包含含有选自碳纤维、玻璃纤维、聚合物纤维和前述组合的纤维的正交各向异性的纤维增强复合材料,以及选自环氧树脂或乙烯基酯的基质。
在一个实施方案中,二维编织复合材料试样包含沿第一纤维方向测量的第一纤维弹性模量和沿第二纤维方向测量的第二纤维弹性模量;任选地存在沿除第一纤维方向和第二纤维方向以外的方向测量的至少一个另外的弹性模量,其中第一纤维弹性模量和第二纤维弹性模量各自独立地大于至少一个另外的弹性模量。当第一组纤维和第二组纤维嵌入基质时,基质本身包含基质弹性模量,并且第一纤维弹性模量和第二纤维弹性模量各自分别地大于基质模量。例如,第一纤维弹性模量和第二纤维弹性模量中的每一个分别为基质模量的至少5倍大。在另一个实践中,二维编织复合材料试样包含拉伸强度和单轴抗压强度,其中拉伸强度大于单轴抗压强度。包含第一和第二组纤维和基质的复合材料的弹性模量(也称为杨氏模量)和复合材料的拉伸强度通过本领域常规已知的方式获得,比如通过应用众所周知的测试标准ASTM D3039/D3039M-14,聚合物基质复合材料拉伸性能的标准测试方法, ASTM International, West Conshohocken PA,或从市售复合材料的制造商处获得。抗压强度(单轴)通过本领域常规已知的方式获得,比如通过应用众所周知的测试标准ASTMD6641/D6641M-16e1,使用组合式加载压缩(Combined Loading Compression) (CLC)测试夹具的聚合物基质复合材料的抗压性能的标准测试方法, ASTM International, WestConshohocken PA,或从市售复合材料的制造商处获得。
在该方法的一个实践中,应变测量值沿诱导具有双轴挠曲的二维编织复合材料试样的第一纤维方向和第二纤维方向获得。应变测量值可在二维编织复合材料试样与施加平面外单轴力的侧面相对的侧面原位获得,例如当平面外单轴力施加于顶面110时,可在二维编织复合材料试样100的底面120上获得应变测量值。应变测量值可从可附接于底面120(非限制性地比如在底面120的中心处或底面120的中心的附近)的市售应变计获得。在一个实践中,使用两个应变计,其中第一应变测量值从第一应变计获得,第一应变计如本领域已知的以平行于第一纤维方向(纤维130)的配置可操作地连接于底面120,和第二应变测量值从第二应变计获得,第二应变计如本领域已知的以平行于第二纤维方向(纤维140)的配置可操作地连接于底面120。在一个实施方案中,第一和第二应变计各自分别地附接于二维编织复合材料试样的中心处和/或二维编织复合材料试样的中心的附近。在一个实践中,施加单调平面外单轴载荷直至复合材料失效,即当二维编织复合材料试样的顶面110出现至少一个可见裂纹时,或当沿第一纤维方向的应变测量值和沿第二纤维方向的应变测量值分叉时,如图2所示和如下示例。等双轴抗压强度可由从沿第一纤维方向和沿第二纤维方向在可见裂纹或应变计分叉点处获得的应变测量值计算的应力确定。在一个实践中,底面上的应变测量用于产生顶面上的应变,其可继而产生应力状态,由此的应力计算经由以下等式(1)表征复合材料的双轴挠曲强度Fbf
F bf = Q 11Єc + Q 12Єc (1)
其中Q11和Q12在等式(2)和(3)中定义,和Єc为失效时(即当二维编织复合材料试样的顶面出现至少一个可见裂纹时,或者当第一应变计和第二应变计的测量值分叉时,以先到者为准)的应变计测量值。
Figure DEST_PATH_IMAGE002
(2)
Figure DEST_PATH_IMAGE004
(3)
其中E1为通过例如ASTM D3039/D3039M-14或本领域已知的其他方式沿第一纤维方向测量的第一纤维弹性模量,和E2为通过例如ASTM D3039/D3039M-14或已知的其他方式沿第二纤维方向测量的第二纤维弹性模量;V12为第一(拉)和第二(缩)纤维方向的平面内泊松比,和V21为第二(拉)和第一(缩)纤维方向的平面内泊松比,如通过ASTM E132-04,(2014) 室温下泊松比的标准测试方法,ASTM International, West Conshohocken PA测量的。
对于实施例中进行的测试1和2,E1、E2、V12和V21的值为:
E1 = 42110.53 MPa
E2 = 42110.53 MPa
V12 = V21 = 0.12
由这些,Q11和Q12由等式(2)和(3)计算为:
Q11 = 47275.78 MPa
Q12 = 5127.094 MPa
对于测试1和2,通过如下公开的方法测量Єc的值:
Єc (对于测试1,在图2的应变分叉点处) = 0.014
Єc (对于测试 2,图表未示出但类似于图2) = 0.013
由等式(1),测试1和2编织复合材料的等双轴抗压强度为:
测试1:Fbf = 670 MPa
测试2:Fbf = 622 MPa
因此,二维编织复合材料的等双轴抗压强度的准确表征可使用原位测量主应变(即在此第一和第二纤维方向的应变)以及弹性模量和平面内泊松比的知识来确定。
实施例
以下实施例为对本公开的说明而不是对本公开的限制。
二维编织复合材料试样的环上环测试:
该实施例中的环上环弯曲测试(ROR)装置使用众所周知的用于陶瓷等双轴挠曲测试的ASTM C1499标准来设计。加载环的直径为20 mm,和加载环的横截面半径为5 mm。支撑环的直径为100 mm,和支撑环的横截面半径为10 mm。两者环均由钢制成。尽管测试圆形陶瓷盘很常见,但对于复合材料来说,制作方形板要容易得多,因为其通常地为从较大的层压板切割下来。采用尺寸为105 mm x 105 mm的无缺口方形复合材料试样。
二维编织复合材料试样的制作:
经由真空辅助树脂灌注技术制备用于环上环弯曲测试的编织复合材料板试样。该复合材料由具有120分钟适用期的system 2000环氧树脂和3K、2 x 2平纹碳纤维织物制成,两者均购自Fibre Glast Development Corp.。环氧树脂与硬化剂以由供应商规定的树脂-硬化剂混合比为100:27混合。将10层切割成期望尺寸的编织碳织物铺在平板上,并然后密封于真空袋中。各层对齐以产生均匀的铺层,即[0°]10。然后将真空袋一端连接于树脂罐,和另一端连接于通用电气 1/3 hp真空泵。真空压力保持在25-30英寸Hg之间,这确保树脂在织物层中的均匀灌注。灌注后,使系统干燥24小时,之后从真空袋中取出。从真空袋中取出总厚度为3.2 mm的10层最终固化复合材料层压板,并切割成期望的105 mm x 105 mm试样尺寸用于测试。
测试说明:
对于ROR弯曲测试,切割尺寸为105 mm x 105 mm 的方形板。这些切割成使得经纱和纬纱平行于方形的侧面。然后使用钢支撑和加载环在双轴挠曲下测试复合材料板试样。在加载环和复合材料之间插入一小层床垫泡沫以防止压痕和确保施加的加载均匀分布。测试在位移控制下以0.5 mm/min的速率进行。在所有4个环上环进行挠曲测试中。本文报道了对如根据实施例制备的二维编织复合材料样品进行的两个测试,测试1和2。
讨论:
进行了两次环上环弯曲测试(测试1和2)直至失效。机器记录载荷和位移。在某个点之后,载荷达到其峰值并然后显著下降,尽管不为零。可以看出,在两次运行中,失效均在编织复合材料的顶面而不是在底面上引发和传播,如陶瓷或先前测试的环氧树脂发生的。通过使用应变计进行测试1和2。由于断裂发生于顶面,因此合乎期望的是测量顶面应变,然而由于加载环的干扰这是不可能的,因此在复合材料的底面上板的中心处附接了两个应变计。每个应变计平行于两个主纤维方向之一,从而测量主应变Є1和Є2两者,即第一和第二纤维方向上的应变。应变计从Omega Engineering获得,预接线并且为线性X-Y平面花环型(Rosette type)。它们的最大应变能力为50,000 μ应变和网格尺寸为2 mm x 3 mm。在支撑环上还切割了合适尺寸的槽,以使应变计线伸出以连接于应变计记录器。在使用应变计的这两个测试中,复合材料的顶面逐渐发生了失效。
测试1 (y轴,Є)的应变计测量值在图2中所示。如图2所示,看出Є1 = Є2 (分别为第一和第二纤维方向上的应变计测量值),这表明复合材料底面上的应变的等双轴拉伸状态。因此,在纯弯曲下,复合材料顶面的应变状态也将为等双轴的,但为压缩的。值得注意的是,在图2中,观察到顶面失效时约Єc = 0.014;在这种情况下,第一和第二纤维方向上的应变计测量值Є1和Є2分叉(Єc,失效时的应变测量值)。
在该测试下编织复合材料板的机械载荷位移行为不同于其他脆性材料(陶瓷、混凝土、玻璃、环氧树脂等)。首先,在双轴压缩下的顶面发生失效。这表明复合材料在双轴压缩下比双轴拉伸更弱。这与对复合材料压缩失效的更广泛理解一致。相反,对于其他脆性材料,由双轴拉伸触发,会在底面发生失效。其次,对于二维编织复合材料,由于更渐进的损伤累积而没有观察到清晰的轮廓分明的峰。峰前的小载荷下降表明损伤开始。在这些载荷下降期间,应变计读数(在底面上)仍然显示出完美的等双轴性。这证实了损伤位于试样的顶侧。并且在开始时,损伤没有破坏底侧的应变场。这可归因于复合材料的层状结构,其中层之间的界面倾向于会减缓损伤。第三,即使超过峰值载荷,失效也不是灾难性的,即载荷没有完全下降至零。这是由于断裂仅局限于顶部一或两层。这也是因为复合材料的异质层状排列。然而,当载荷显示大幅下降时,第一和第二纤维方向上的应变计读数会分叉,表明损伤显著到足以破坏弹性应力/应变场直至底部。在其他脆性材料中,失效为灾难性的,载荷在失效时降至零。对于二维编织复合材料,可见失效由于在顶面形成径向扭结带而发生,这在试样的中心处开始,并向边缘传播。这些大多局限于顶层,并且没有观察到全厚度失效。这种模式类似于对陶瓷/混凝土(并且甚至如更早所示的环氧树脂)观察到的由几个径向拉伸断裂组成的模式。
测试1和测试2的结果:
对于实施例中进行的测试1和2,如本文所述获得的E1、E2、V12和V21的值为:
E1 = 42110.53 MPa
E2 = 42110.53 MPa
V12 = V21 = 0.12
由这些,Q11和Q12由等式(2)和(3)计算为:
Q11 = 47275.78 MPa
Q12 = 5127.094 MPa
对于测试1和2,通过如下公开的方法测量Єc的值:
Єc (对于测试1,在图2的应变分叉点处) = 0.014
Єc (对于测试 2,图表未示出但类似于图2) = 0.013
由等式(1),测试1和2编织复合材料的等双轴抗压强度为:
测试1:Fbf = 670 MPa
测试2:Fbf = 622 MPa
因此,二维编织复合材料的等双轴抗压强度的准确表征可使用原位测量主应变(即在此第一和第二纤维方向的应变)以及弹性模量和平面内泊松比的知识来确定。
尽管已经参考某些实施方案显示和描述了本公开,但是那些本领域的技术人员将理解,可在其中进行对形式和细节的各种变化而不背离本发明及其等同物的精神和范围。

Claims (36)

1.用于确定二维编织复合材料的等双轴抗压强度的方法,其包括:
提供二维编织复合材料试样,该试样至少包含布置于第一纤维方向上的第一组纤维和布置于第二纤维方向上的第二组纤维,第一和第二组纤维以一定角度交织;
向所述二维编织复合材料试样施加平面外单轴载荷,以在所述二维编织复合材料试样中诱导双轴挠曲;
沿所述诱导具有双轴挠曲的二维编织复合材料试样的第一纤维方向和第二纤维方向获得应变测量值;和
从获得的应变测量值确定所述二维编织复合材料试样的等双轴抗压强度。
2.权利要求1的方法,其中所述等双轴抗压强度由从沿第一纤维方向和沿第二纤维方向获得的应变测量值计算的应力确定。
3.权利要求1的方法,其中所述二维编织复合材料试样包含沿第一纤维方向测量的第一纤维弹性模量、沿第二纤维方向测量的第二纤维弹性模量以及任选地沿除第一纤维方向和第二纤维方向以外的方向测量的至少一个另外的弹性模量,并且其中第一纤维弹性模量和第二纤维弹性模量各自独立地大于所述至少一个另外的弹性模量。
4.权利要求3的方法,其中第一组纤维和第二组纤维嵌入基质,所述基质包含基质弹性模量,并且其中第一纤维弹性模量和第二纤维弹性模量各自分别地大于基质模量。
5.权利要求4的方法,其中第一纤维弹性模量和第二纤维弹性模量中的每一个各自分别为所述基质模量的至少5倍大。
6.权利要求1的方法,其中所述二维编织复合材料试样包含拉伸强度和单轴抗压强度,其中所述拉伸强度大于所述单轴抗压强度。
7.权利要求1的方法,其中第一组纤维和第二组纤维以90°角度交织。
8.权利要求1的方法,其中第一和第二组纤维以平纹图案、斜纹图案、缎纹图案、席纹图案或罗纹图案交织。
9.权利要求1的方法,其中所述二维编织复合材料试样包含多层的层压结构,其中每层中的第一纤维方向相同和每层中的第二纤维方向相同。
10.权利要求9的方法,其中所述层压结构包含8-12层。
11.权利要求9的方法,其中所述层压结构具有2 mm-3 mm的厚度。
12.权利要求4的方法,其中所述基质包含热塑性材料或热固性材料。
13.权利要求12的方法,其中所述基质包含环氧树脂或乙烯基酯。
14.权利要求1的方法,其中所述平面外单轴载荷为单调的。
15.权利要求14的方法,其中所述平面外单轴载荷施加于所述二维编织复合材料试样的中心处。
16.权利要求1的方法,其中所述应变测量值在所述二维编织复合材料试样与施加平面外单轴力的侧面相对的侧面上原位获得。
17.权利要求1的方法,其中施加所述平面外单轴载荷直至所述编织复合材料试样的顶面出现至少一个可见裂纹或当沿第一纤维方向的所述应变测量值和沿第二纤维方向的所述应变测量值分叉时。
18.权利要求17的方法,其中所述编织复合材料试样的等双轴抗压强度由从当所述编织复合材料试样的顶面出现至少一个可见裂纹或当沿第一纤维方向的所述应变测量值和沿第二纤维方向的所述应变测量值分叉时获得的沿第一纤维方向和沿第二纤维方向获得的应变测量值计算的应力确定。
19.权利要求1的方法,其中所述二维编织复合材料试样固定于支撑环上并且所述平面外单轴载荷由与所述支撑环同心的加载环施加。
20.权利要求19的方法,其中所述支撑环由钢组成。
21.权利要求19的方法,其中所述支撑环的直径为所述加载环的直径的3-5倍大。
22.权利要求1的方法,其中所述二维编织复合材料试样呈无缺口圆盘或无缺口方形板的形状。
23.权利要求1的方法,其中所述二维编织复合材料试样包含含有选自碳纤维、玻璃纤维、聚合物纤维和前述组合的纤维的正交各向异性的纤维增强复合材料,以及选自环氧树脂或乙烯基酯的基质。
24.用于确定编织复合材料等双轴抗压强度的方法,其包括:
(i) 在支撑环上提供二维编织复合材料试样,所述二维编织复合材料试样包含多层并且包含:
顶面和底面,所述二维编织复合材料试样的底面与所述支撑环接触,
布置于第一纤维方向上的第一组纤维和布置于第二纤维方向上的第二组纤维,第一组纤维和第二组纤维以90°角度交织,
沿第一纤维方向测量的第一纤维弹性模量、沿第二纤维方向测量的第二纤维弹性模量以及任选地沿除第一纤维方向和第二纤维方向以外的方向测量的至少一个另外的弹性模量,其中第一纤维弹性模量和第二纤维弹性模量各自独立地大于所述至少一个另外的弹性模量,和其中所述二维编织复合材料试样包含拉伸强度和单轴抗压强度,所述拉伸强度大于所述单轴抗压强度,和
第一组纤维和第二组纤维嵌入其中的基质,所述基质包含基质弹性模量,第一纤维弹性模量和第二纤维弹性模量各自分别地大于基质模量,所述二维编织复合材料试样的底面与所述支撑环接触;
(ii) 用以平行于第一纤维方向的配置可操作地连接于底面的第一应变计测量第一应变,和用以平行于第二纤维方向的配置可操作地连接于底面的第二应变计测量第二应变;
(iii) 通过在单调力下使加载环与所述编织复合材料试样的顶面接触,向所述二维编织复合材料试样的中心施加平面外单轴载荷,以在所述二维编织复合材料中诱导双轴挠曲,直至所述编织复合材料试样顶面的至少一部分出现至少一个可见裂纹或直至第一和第二应变测量值分叉,所述加载环的直径小于所述支撑环的直径并与所述支撑环同心布置;
(iv) 在步骤(iii)期间从第一和第二应变计获得所述二维编织复合材料试样的应变测量值;和
(v) 由从沿第一纤维方向和沿第二纤维方向获得的所述应变测量值计算的应力确定所述编织复合材料试样的等双轴抗压强度。
25.权利要求24的方法,其中所述支撑环的直径为所述加载环的直径的3-5倍大。
26.权利要求24的方法,其中所述二维编织复合材料试样呈无缺口圆盘或无缺口方形板的形状。
27.权利要求24的方法,其中第一组纤维和第二组纤维以平纹图案、斜纹图案、缎纹图案、席纹图案或罗纹图案交织。
28.权利要求24的方法,其中所述二维编织复合材料试样包含多层的层压结构,其中每层中的第一纤维方向相同和每层中的第二纤维方向相同。
29.权利要求28的方法,其中所述层压结构包含8-12层。
30.权利要求29的方法,其中所述层压结构具有2 mm-3 mm的厚度。
31.权利要求24的方法,其中所述基质包含热塑性材料或热固性材料。
32.权利要求31的方法,其中所述基质包含环氧树脂或乙烯基酯。
33.权利要求24的方法,其中在所述编织复合材料试样的顶面和所述加载环之间插入压痕防护性插入材料。
34.权利要求33的方法,其中压痕防护性插入物由泡沫或含氟聚合物或两者组成。
35.用于确定编织复合材料等双轴抗压强度的系统,其包括:
适于保持包括顶面和底面的二维编织复合材料试样的底面的支撑环,至少布置于第一纤维方向上的第一组纤维和布置于第二纤维方向上的第二组纤维,第一和第二组纤维以一定角度交织,以及加载环,支撑环具有大于所述加载环的直径,所述加载环与所述支撑环同心布置并配置成在单调力条件下与所述二维编织复合材料顶面的中心接触,以在所述编织复合材料试样中诱导双轴挠曲;
在诱导双轴挠曲期间获得应变测量值,借以获得的应变测量值用于确定所述编织复合材料试样的等双轴抗压强度的应变测量装置,所述应变测量装置包括用以平行于第一纤维方向的配置可操作地连接于所述底面的第一应变计的第一应变,并且用以平行于第二纤维方向的配置可操作地连接于所述底面的第二应变计测量第二应变。
36.权利要求35的系统,其中所述支撑环的直径为所述加载环的直径的3-5倍大。
CN202080097119.9A 2019-12-20 2020-12-17 用于表征二维编织复合材料的等双轴抗压强度的系统和方法 Active CN115135492B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962951674P 2019-12-20 2019-12-20
US62/951674 2019-12-20
US202063085407P 2020-09-30 2020-09-30
US63/085407 2020-09-30
PCT/US2020/065449 WO2021127067A1 (en) 2019-12-20 2020-12-17 System and method for characterizing the equibiaxial compressive strength of 2d woven composites

Publications (2)

Publication Number Publication Date
CN115135492A true CN115135492A (zh) 2022-09-30
CN115135492B CN115135492B (zh) 2023-09-08

Family

ID=76478130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080097119.9A Active CN115135492B (zh) 2019-12-20 2020-12-17 用于表征二维编织复合材料的等双轴抗压强度的系统和方法

Country Status (4)

Country Link
US (1) US11768193B2 (zh)
JP (1) JP7270849B2 (zh)
CN (1) CN115135492B (zh)
WO (1) WO2021127067A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254883A (ja) * 2002-02-28 2003-09-10 Fujikura Rubber Ltd 平織布の簡易二軸特性測定方法
CN1621803A (zh) * 2004-12-23 2005-06-01 喻勇 一种测试脆性材料抗拉强度的方法
CN101389457A (zh) * 2006-02-28 2009-03-18 东丽株式会社 预成型体用强化纤维基材等、以及该强化纤维基材的层合体的制造方法等
US20110079348A1 (en) * 2005-07-29 2011-04-07 Toray Industries, Inc. Process for producing a reinforcing woven fabric, a preform and a fiber reinforced plastic molded component
DE102011119209A1 (de) * 2011-11-23 2013-05-23 Audi Ag Vorrichtung zur Bestimmung des Schubmoduls von textilen Halbzeugen
CN205910062U (zh) * 2016-06-22 2017-01-25 广西大学 一种利用真三轴试验机实现岩石双轴拉压试验的装置
CN108896394A (zh) * 2018-07-13 2018-11-27 中国工程物理研究院总体工程研究所 材料双轴压缩加载装置
JP2019035603A (ja) * 2017-08-10 2019-03-07 Jfeスチール株式会社 二軸面内圧縮試験方法
CN109883926A (zh) * 2019-03-28 2019-06-14 广西大学 双轴压力作用下混凝土氯离子扩散性能测试系统及其方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263367A (en) 1979-11-07 1981-04-21 United Technologies Corporation Discontinuous graphite fiber reinforced glass composites
DE69109290T2 (de) 1990-06-29 1996-02-01 Gore & Ass Faserverstärkte flexible kompositmaterialien.
IL104317A (en) 1992-03-16 1995-10-31 Ribbon Technology Corp The compositions are reinforced with a lattice of metal fibers
JPH0872155A (ja) 1994-09-02 1996-03-19 Showa Shell Sekiyu Kk フラットワイズ圧縮試験方法
EP0740004A4 (en) 1994-11-04 1997-08-27 Nippon Steel Corp TRIAXIAL FABRIC WITH A CARBON FIBER BUNDLE AND METHOD FOR THE PRODUCTION THEREOF
JPH08209492A (ja) 1994-11-04 1996-08-13 Nippon Steel Corp 三軸織物及びその製造方法
US5635272A (en) 1995-07-03 1997-06-03 The United States Of America As Represented By The Secretary Of The Army Composite structure for transmitting high shear loads
JP3393787B2 (ja) 1996-07-17 2003-04-07 ケムファブ コーポレイション 荷重支持構造体に用いる半透明ポリマー複合体およびその製造方法
US5759924A (en) 1996-10-18 1998-06-02 Chemfab Corporation Translucent polymeric composite for use in an architectural load-bearing structure
ATE265569T1 (de) 1997-09-09 2004-05-15 Saint Gobain Performance Plast Lichtdurchlässiger polymerischer verbundwerkstoff zur verwendung in einer architektonischen tragenden struktur
US6487902B1 (en) 1999-10-27 2002-12-03 North Carolina State University Apparatus and method for biaxial tensile testing of membrane materials
JP2002174572A (ja) 2000-12-05 2002-06-21 Ueda Seni Kagaku Shinkokai シート状物体の引張異方性測定装置及びそれを用いたシート状物体の引張異方性測定方法
US6790518B2 (en) 2001-12-19 2004-09-14 Lawrence Technological University Ductile hybrid structural fabric
WO2003053679A1 (en) 2001-12-19 2003-07-03 Lawrence Technological University Ductile hybrid structural fabric
US7405854B2 (en) 2002-03-21 2008-07-29 Cornell Research Foundation, Inc. Fibrous micro-composite material
JP2004067487A (ja) 2002-08-09 2004-03-04 Toyo Tanso Kk セラミックス混合炭素繊維強化炭素複合材料
US7560400B2 (en) * 2003-07-16 2009-07-14 Raytheon Company Radome with polyester-polyarylate fibers and a method of making same
US7786026B2 (en) 2003-12-19 2010-08-31 Saint-Gobain Technical Fabrics America, Inc. Enhanced thickness fabric and method of making same
US6860156B1 (en) 2004-05-24 2005-03-01 The United States Of America As Represented By The Secretary Of The Navy Combined in-plane shear and multi-axial tension or compression testing apparatus
US7204160B1 (en) 2004-05-24 2007-04-17 The United States Of America As Represented By The Secretary Of The Navy Biaxial and shear testing apparatus with force controls
EP1815048B1 (en) 2004-11-15 2009-09-30 Textronics, Inc. Elastic composite yarn, methods for making the same, and articles incorporating the same
US8201371B2 (en) 2005-03-31 2012-06-19 The Boeing Company Composite beam chord between reinforcement plates
US20060222837A1 (en) * 2005-03-31 2006-10-05 The Boeing Company Multi-axial laminate composite structures and methods of forming the same
JP4899692B2 (ja) * 2005-07-29 2012-03-21 東レ株式会社 強化繊維織物とその製造方法
JP2007099825A (ja) 2005-09-30 2007-04-19 Fujifilm Corp 水性インク、インクジェット記録用インク、インクジェット記録方法、記録物、インクカートリッジ、インクジェットプリンタ
US8148276B2 (en) 2005-11-28 2012-04-03 University Of Hawaii Three-dimensionally reinforced multifunctional nanocomposites
US20070193362A1 (en) 2006-02-06 2007-08-23 Ferguson Stephen K Fiber optic strain gage
WO2010082977A1 (en) * 2009-01-16 2010-07-22 University Of Utah Research Foundation Equi-biaxial flexure test device for thin and ultra-thin semiconductor wafers and other wafers
US9023452B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making
US9597938B2 (en) 2013-03-15 2017-03-21 Polyone Corporation High strength, light weight composite leaf spring and method of making
DE102013212884A1 (de) 2013-07-02 2015-01-08 Wobben Properties Gmbh Probekörper, Prüfmethode, Windenergieanlage
CN105980468A (zh) 2013-11-06 2016-09-28 加德公司 复合材料
CN103970969B (zh) 2014-05-30 2016-08-31 哈尔滨工业大学 一种使用有限元方法模拟编织复合材料双轴试验确定材料性能参数的方法
CN104880351B (zh) 2015-05-27 2017-11-03 南京航空航天大学 一种单向陶瓷基复合材料平板试件及其制备方法
US10190954B2 (en) 2015-06-01 2019-01-29 The Boeing Company Pre-strained composite test coupons
CA3170919A1 (en) 2016-08-08 2018-02-15 General Atomics Engineered sic-sic composite and monolithic sic layered structures
US10670501B2 (en) * 2016-08-26 2020-06-02 Rasoul Jelokhani Niaraki Apparatus for universal testing of metal sheet formability
JP2018039115A (ja) 2016-09-05 2018-03-15 トヨタ自動車株式会社 繊維強化樹脂複合構造体及び高圧容器、並びにこれらの製造方法
US11556683B2 (en) 2018-06-14 2023-01-17 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Fibrous composite failure criteria with material degradation for finite element solvers
US11231351B2 (en) * 2018-10-31 2022-01-25 Corning Incorporated Portable flexure fixtures for stressing glass samples and methods of testing stressed glass samples
CN110160866B (zh) * 2019-06-20 2024-02-06 四川大学 一种ring-on-ring双轴弯曲强度测试夹具及其定位盖

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254883A (ja) * 2002-02-28 2003-09-10 Fujikura Rubber Ltd 平織布の簡易二軸特性測定方法
CN1621803A (zh) * 2004-12-23 2005-06-01 喻勇 一种测试脆性材料抗拉强度的方法
US20110079348A1 (en) * 2005-07-29 2011-04-07 Toray Industries, Inc. Process for producing a reinforcing woven fabric, a preform and a fiber reinforced plastic molded component
CN101389457A (zh) * 2006-02-28 2009-03-18 东丽株式会社 预成型体用强化纤维基材等、以及该强化纤维基材的层合体的制造方法等
DE102011119209A1 (de) * 2011-11-23 2013-05-23 Audi Ag Vorrichtung zur Bestimmung des Schubmoduls von textilen Halbzeugen
CN205910062U (zh) * 2016-06-22 2017-01-25 广西大学 一种利用真三轴试验机实现岩石双轴拉压试验的装置
JP2019035603A (ja) * 2017-08-10 2019-03-07 Jfeスチール株式会社 二軸面内圧縮試験方法
CN108896394A (zh) * 2018-07-13 2018-11-27 中国工程物理研究院总体工程研究所 材料双轴压缩加载装置
CN109883926A (zh) * 2019-03-28 2019-06-14 广西大学 双轴压力作用下混凝土氯离子扩散性能测试系统及其方法

Also Published As

Publication number Publication date
JP7270849B2 (ja) 2023-05-10
WO2021127067A1 (en) 2021-06-24
US11768193B2 (en) 2023-09-26
JP2022551348A (ja) 2022-12-08
CN115135492B (zh) 2023-09-08
US20230044143A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
Korkiakoski et al. Influence of specimen type and reinforcement on measured tension–tension fatigue life of unidirectional GFRP laminates
Priyadarsini et al. Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression
Zhou et al. Experimental investigation on the effects of fabric architectures on mechanical and damage behaviors of carbon/epoxy woven composites
Zhou et al. Damage characteristics of composite honeycomb sandwich panels in bending under quasi-static loading
Netravali et al. Continuous micro-indenter push-through technique for measuring interfacial shear strength of fiber composites
Sun et al. A new end tab design for off-axis tension test of composite materials
Belingardi et al. Investigation of influence of tab types on tensile strength of E-glass/epoxy fiber einforced composite materials
Faizal et al. Tensile property of hand lay-up plain-weave woven e-glass/polyester composite: Curing pressure and Ply arrangement effect
Selezneva et al. Microscale experimental investigation of failure mechanisms in off-axis woven laminates at elevated temperatures
Azadian et al. Low velocity impact behavior of 3D hollow core sandwich composites produced with flat-knitted spacer fabrics
Arifin et al. Failure characterisation in polymer matrix composite for un-notched and notched (open-hole) specimens under tension condition
Sayman et al. Experimental determination of bearing strength in fiber reinforced laminated composite bolted joints under preload
Ai et al. Effects of stitching parameters on the mechanical properties of stitched sandwich panel structures
Shindo et al. Mechanical response of nonwoven polyester fabric/epoxy composites at cryogenic temperatures
Gao et al. Experimental determination of mechanical properties of a single-ply broken twill 1/3 weave reinforced shape memory polymer composite
Deland et al. Biaxial flexural failure of woven composite plates investigated by the ring on ring bending test
Hamed et al. Experimental characterization of filament wound glass/epoxy and carbon/epoxy composite materials
CN115135492B (zh) 用于表征二维编织复合材料的等双轴抗压强度的系统和方法
Mall et al. The performance of graphite-epoxy composite with embedded optical fibers under compression
Qureshi et al. Multi-mode real-time strain monitoring in composites using low vacuum carbon fibers as a strain sensor under different loading conditions
Antonucci et al. Numerical and Experimental Study of a Concentrated Indentation Force on Polymer Matrix Composites
Sarker et al. Tension-tension fatigue properties of multiaxial laminated carbon/epoxy composites molded by high-pressure resin transfer molding (HP-RTM) process
Shokrieh et al. Understanding residual stresses in polymer matrix composites
Muñoz et al. Multiaxial stress and strain analysis on laminated plates under different flexural loading rates
Ntakobatagize et al. The Effect of Fabric Architecture on the Processing and Properties of Composites Made by Vacuum Assisted Resin Transfer Molding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant