CN115130330B - 一种含气泡介质的中子输运计算方法 - Google Patents

一种含气泡介质的中子输运计算方法 Download PDF

Info

Publication number
CN115130330B
CN115130330B CN202211046384.1A CN202211046384A CN115130330B CN 115130330 B CN115130330 B CN 115130330B CN 202211046384 A CN202211046384 A CN 202211046384A CN 115130330 B CN115130330 B CN 115130330B
Authority
CN
China
Prior art keywords
neutron
bubble
grid
region
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211046384.1A
Other languages
English (en)
Other versions
CN115130330A (zh
Inventor
王永平
郑友琦
杜夏楠
吴宏春
曹良志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202211046384.1A priority Critical patent/CN115130330B/zh
Publication of CN115130330A publication Critical patent/CN115130330A/zh
Application granted granted Critical
Publication of CN115130330B publication Critical patent/CN115130330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明公开了一种含气泡介质的中子输运计算方法,首先分别计算核反应堆活性区内各个网格中气泡区域和非气泡区域的宏观中子反应截面;根据各网格内气泡尺寸,计算气泡区域和非气泡区域间的中子碰撞概率;利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度;最后,通过通量‑体积权重对网格中气泡区域和非气泡区域的宏观中子反应截面加权平均获得网格的均匀化宏观中子反应截面,从而考虑了气泡区域和非气泡区域的通量分布的区别,提供了准确的均匀化中子反应截面,提高了后续中子输运计算的精度。

Description

一种含气泡介质的中子输运计算方法
技术领域
本发明涉及核反应堆物理分析计算技术领域,具体涉及一种含气泡介质的中子输运计算方法。
背景技术
在反应堆正常运行过程中,堆芯活性区不会出现气泡,因此在采用两步法进行物理分析时,组件计算只计算包含固体(如燃料或其他结构材料)和液体(如冷却剂)的均匀化截面。然而,在某些情况下,如反应性严重事故工况,由于裂变反应剧增、反应堆温度超限,堆芯内会产生气泡,气泡的产生改变了局部的材料布置特性,对反应堆临界特性产生较大影响,因此必须考虑这一现象。
目前,在堆芯输运计算时,若堆芯活性区产生气泡,则根据气泡体积改变网格内核素的平均核子密度,即将气泡均匀打混至液体中去。这一做法相当于体积权重,忽略了气泡区域和非气泡区域的中子通量的差别,无法保证网格内的中子反应率守恒,在中子输运计算中引入了误差。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种含气泡介质的中子输运计算方法,首先分别计算核反应堆活性区网格内气泡区域和非气泡区域的宏观中子反应截面,根据各网格内气泡尺寸计算气泡区域和非气泡区域间的中子碰撞概率,利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度,通过通量-体积权重获得网格内的均匀化宏观中子反应截面,从而考虑了气泡区域和非气泡区域的通量分布的区别,提供了准确的均匀化中子反应截面,提高了后续中子输运计算的精度。
为了实现以上目的,本发明采取如下的技术方案予以实施:
一种含气泡介质的中子输运计算方法,首先分别计算核反应堆活性区网格内气泡区域和非气泡区域的宏观中子反应截面,根据各网格内气泡尺寸计算气泡区域和非气泡区域间的中子碰撞概率,利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度,通过通量-体积权重获得网格内的均匀化宏观中子反应截面,从而考虑了气泡区域和非气泡区域的通量分布的区别,提供了准确的均匀化中子反应截面,提高了后续中子输运计算的精度,包括如下步骤:
步骤1:对于每个计算网格,分别利用公式(1)和公式(2)计算气泡区域和非气泡区域的宏观中子反应截面:
Figure GDA0003905060590000021
Figure GDA0003905060590000022
式中:
Σg——气泡区域的宏观中子反应截面;
I——气泡区域的核素总数;
i——气泡区域的第i种核素;
Ng,i——气泡区域第i种核素的核子密度;
σg,i——气泡区域第i种核素的微观中子反应截面;
Σl——非气泡区域的宏观中子反应截面;
J——非气泡区域的核素总数;
j——气泡区域的第j种核素;
Nl,j——非气泡区域第j种核素的核子密度;
σl,j——非气泡区域第j种核素的微观中子反应截面;
步骤2:根据各网格内气泡尺寸,计算气泡区域和非气泡区域间的中子碰撞概率;
根据各网格内气泡尺寸,计算出气泡的中子穿透概率和中子逃脱概率为:
Figure GDA0003905060590000031
Figure GDA0003905060590000032
式中:
T——气泡的中子穿透概率,即中子进入气泡后能飞出气泡的概率;
E——气泡的中子逃脱概率,即气泡内的中子未经碰撞逃脱气泡的概率;
Σg,tr——气泡区域的宏观中子输运截面;
R——气泡的平均半径;
计算气泡区域和非气泡区域间的中子碰撞概率:
Figure GDA0003905060590000033
Figure GDA0003905060590000041
Figure GDA0003905060590000042
Figure GDA0003905060590000043
式中:
Pg→l——气泡区域到非气泡区域的中子碰撞概率;
Pl→l——非气泡区域到非气泡区域的中子碰撞概率;
Pg→g——气泡区域到气泡区域的中子碰撞概率;
Pl→g——非气泡区域到气泡区域的中子碰撞概率;
Σl,tr——非气泡区域的宏观中子输运截面;
λ——非气泡区域的平均弦长;
步骤3:利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度;
利用中子碰撞概率,建立以下气泡区域和非气泡区域的中子平衡方程:
Figure GDA0003905060590000044
Figure GDA0003905060590000045
式中:
φg——气泡区域的中子通量密度;
Σg,s——气泡区域的宏观中子散射截面;
φl——非气泡区域的中子通量密度;
Σl,s——非气泡区域的宏观中子散射截面;
keff——核反应堆的中子有效增殖因数;
方程(9)和方程(10)包含的未知量为φg和φl,两个方程两个未知数,因此通过求解获得气泡区域的中子通量密度φg和非气泡区域的中子通量密度φl
步骤4:通过通量-体积权重对网格中气泡区域和非气泡区域的宏观中子反应截面加权平均获得网格内的均匀化宏观中子反应截面,从而进行后续中子输运计算,获得各网格内的中子通量密度;
网格内的均匀化宏观中子反应截面计算式为:
Figure GDA0003905060590000051
式中:
Figure GDA0003905060590000052
——网格的均匀化宏观中子反应截面;
Vg——气泡区域的体积;
Vl——非气泡区域的体积;
获得网格内的均匀化宏观中子反应截面后,便采用中子输运计算方法求解中子输运方程,最终获得所有网格内的中子通量密度。
优选的,获得网格内的均匀化宏观中子反应截面后,利用离散纵标计算方法求解中子输运方程,获得所有网格内的中子通量密度。
与现有技术相比,本发明有如下优点:
本发明通过计算网格内气泡区域和非气泡区域间的中子碰撞概率,获得了网格内气泡区域和非气泡区域的中子通量密度,进而可以通过体积-通量权重获得网格均匀化截面,获得了保证反应率守恒的高精度的网格均匀化截面,提高了堆芯中子输运计算的精度。
附图说明
图1为一种含气泡介质的中子输运计算方法总体流程图。
图2为某一网格内气泡区域和非气泡区域示意图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步详细说明:
如图1所示,本发明一种含气泡介质的中子输运计算方法,包括如下步骤:
步骤1:对于核反应堆活性区的计算网格,分别利用公式(1)和公式(2)计算气泡区域和非气泡区域的宏观中子反应截面。例如,脉冲堆在大脉冲功率运行工况下,会产生局部高温,导致水中产生气泡,如图2所示,分别计算图2中气泡区域和非气泡区域的宏观中子反应截面。
Figure GDA0003905060590000061
Figure GDA0003905060590000062
式中:
Σg——气泡区域的宏观中子反应截面;
I——气泡区域的核素总数;
i——气泡区域的第i种核素;
Ng,i——气泡区域第i种核素的核子密度;
σg,i——气泡区域第i种核素的微观中子反应截面;
Σl——非气泡区域的宏观中子反应截面;
J——非气泡区域的核素总数;
j——气泡区域的第j种核素;
Nl,j——非气泡区域第j种核素的核子密度;
σl,j——非气泡区域第j种核素的微观中子反应截面;
步骤2:中子碰撞概率的计算与气泡尺寸密切相关,因此需要根据各网格内气泡尺寸,计算气泡区域和非气泡区域间的中子碰撞概率;
根据各网格内气泡尺寸,计算出气泡的中子穿透概率和中子逃脱概率为:
Figure GDA0003905060590000071
Figure GDA0003905060590000072
式中:
T——气泡的中子穿透概率,即中子进入气泡后能飞出气泡的概率;
E——气泡的中子逃脱概率,即气泡内的中子未经碰撞逃脱气泡的概率;
Σg,tr——气泡区域的宏观中子输运截面;
R——气泡的平均半径;
计算气泡区域和非气泡区域间的中子碰撞概率:
Figure GDA0003905060590000081
Figure GDA0003905060590000082
Figure GDA0003905060590000083
Figure GDA0003905060590000084
式中:
Pg→l——气泡区域到非气泡区域的中子碰撞概率;
Pl→l——非气泡区域到非气泡区域的中子碰撞概率;
Pg→g——气泡区域到气泡区域的中子碰撞概率;
Pl→g——非气泡区域到气泡区域的中子碰撞概率;
Σl,tr——非气泡区域的宏观中子输运截面;
λ——非气泡区域的平均弦长;
步骤3:利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度;
利用中子碰撞概率,建立以下气泡区域和非气泡区域的中子平衡方程:
Figure GDA0003905060590000085
Figure GDA0003905060590000091
式中:
φg——气泡区域的中子通量密度;
Σg,s——气泡区域的宏观中子散射截面;
φl——非气泡区域的中子通量密度;
Σl,s——非气泡区域的宏观中子散射截面;
keff——核反应堆的中子有效增殖因数;
方程(9)和方程(10)等号左边为该区域的中子总消失率,等式右边为该区域中子总产生率。以上两个方程包含的未知量为φg和φl,两个方程两个未知数,因此通过求解获得气泡区域的中子通量密度φg和非气泡区域的中子通量密度φl
步骤4:通过通量-体积权重对网格中气泡区域和非气泡区域的宏观中子反应截面加权平均获得网格内的均匀化宏观中子反应截面,从而进行后续中子输运计算,获得各网格内的中子通量密度;
网格内的均匀化宏观中子反应截面计算式为:
Figure GDA0003905060590000092
式中:
Figure GDA0003905060590000093
——网格的均匀化宏观中子反应截面;
Vg——气泡区域的体积;
Vl——非气泡区域的体积;
获得网格内的均匀化宏观中子反应截面后,网格内便不再区分气泡区域和非气泡区域,此时便可采用现有中子输运计算方法求解中子输运方程,本实施例采用离散纵标计算方法求解中子输运方程,最终获得所有网格内的中子通量密度。

Claims (2)

1.一种含气泡介质的中子输运计算方法,其特征在于:首先分别计算核反应堆活性区网格内气泡区域和非气泡区域的宏观中子反应截面,根据各网格内气泡尺寸计算气泡区域和非气泡区域间的中子碰撞概率,利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度,通过通量-体积权重获得网格内的均匀化宏观中子反应截面,包括如下步骤:
步骤1:对于每个计算网格,分别利用公式(1)和公式(2)计算气泡区域和非气泡区域的宏观中子反应截面:
Figure FDA0003905060580000011
Figure FDA0003905060580000012
式中:
Σg——气泡区域的宏观中子反应截面;
I——气泡区域的核素总数;
i——气泡区域的第i种核素;
Ng,i——气泡区域第i种核素的核子密度;
σg,i——气泡区域第i种核素的微观中子反应截面;
Σl——非气泡区域的宏观中子反应截面;
J——非气泡区域的核素总数;
j——气泡区域的第j种核素;
Nl,j——非气泡区域第j种核素的核子密度;
σl,j——非气泡区域第j种核素的微观中子反应截面;
步骤2:根据各网格内气泡尺寸,计算气泡区域和非气泡区域间的中子碰撞概率;
根据各网格内气泡尺寸,计算出气泡的中子穿透概率和中子逃脱概率为:
Figure FDA0003905060580000021
Figure FDA0003905060580000022
式中:
T——气泡的中子穿透概率,即中子进入气泡后能飞出气泡的概率;
E——气泡的中子逃脱概率,即气泡内的中子未经碰撞逃脱气泡的概率;
Σg,tr——气泡区域的宏观中子输运截面;
R——气泡的平均半径;
计算气泡区域和非气泡区域间的中子碰撞概率:
Figure FDA0003905060580000023
Figure FDA0003905060580000024
Figure FDA0003905060580000025
Figure FDA0003905060580000026
式中:
Pg→l——气泡区域到非气泡区域的中子碰撞概率;
Pl→l——非气泡区域到非气泡区域的中子碰撞概率;
Pg→g——气泡区域到气泡区域的中子碰撞概率;
Pl→g——非气泡区域到气泡区域的中子碰撞概率;
Σl,tr——非气泡区域的宏观中子输运截面;
λ——非气泡区域的平均弦长;
步骤3:利用中子碰撞概率计算网格内气泡区域和非气泡区域的中子通量密度;
利用中子碰撞概率,建立以下气泡区域和非气泡区域的中子平衡方程:
Figure FDA0003905060580000031
Figure FDA0003905060580000032
式中:
φg——气泡区域的中子通量密度;
Σg,s——气泡区域的宏观中子散射截面;
φl——非气泡区域的中子通量密度;
Σl,s——非气泡区域的宏观中子散射截面;
keff——核反应堆的中子有效增殖因数;
方程(9)和方程(10)包含的未知量为φg和φl,两个方程两个未知数,因此通过求解获得气泡区域的中子通量密度φg和非气泡区域的中子通量密度φl
步骤4:通过通量-体积权重对网格中气泡区域和非气泡区域的宏观中子反应截面加权平均获得网格内的均匀化宏观中子反应截面,从而进行后续中子输运计算,获得各网格内的中子通量密度;
网格内的均匀化宏观中子反应截面计算式为:
Figure FDA0003905060580000041
式中:
Figure FDA0003905060580000042
——网格的均匀化宏观中子反应截面;
Vg——气泡区域的体积;
Vl——非气泡区域的体积;
获得网格内的均匀化宏观中子反应截面后,便采用中子输运计算方法求解中子输运方程,最终获得所有网格内的中子通量密度。
2.根据权利要求1所述的一种含气泡介质的中子输运计算方法,其特征在于:所述中子输运计算方法为离散纵标计算方法。
CN202211046384.1A 2022-08-30 2022-08-30 一种含气泡介质的中子输运计算方法 Active CN115130330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211046384.1A CN115130330B (zh) 2022-08-30 2022-08-30 一种含气泡介质的中子输运计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211046384.1A CN115130330B (zh) 2022-08-30 2022-08-30 一种含气泡介质的中子输运计算方法

Publications (2)

Publication Number Publication Date
CN115130330A CN115130330A (zh) 2022-09-30
CN115130330B true CN115130330B (zh) 2022-12-09

Family

ID=83386923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211046384.1A Active CN115130330B (zh) 2022-08-30 2022-08-30 一种含气泡介质的中子输运计算方法

Country Status (1)

Country Link
CN (1) CN115130330B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107273582A (zh) * 2017-05-23 2017-10-20 西安交通大学 一种用于快中子反应堆中子输运燃耗耦合分析的计算方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4333796A (en) * 1978-05-19 1982-06-08 Flynn Hugh G Method of generating energy by acoustically induced cavitation fusion and reactor therefor
US6320193B1 (en) * 1999-02-26 2001-11-20 The United States Of America As Represented By The United States Department Of Energy Method for non-intrusively identifying a contained material utilizing uncollided nuclear transmission measurements
CA2999894A1 (en) * 2015-09-30 2017-04-06 Terrapower, Llc Neutron reflector assembly for dynamic spectrum shifting
GB2588259B (en) * 2020-03-27 2022-06-08 Rolls Royce Plc Reactor control device
CN112380719B (zh) * 2020-11-23 2024-03-29 中国科学技术大学 一种快堆边界下的裂变气体释放的数值确定方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107273582A (zh) * 2017-05-23 2017-10-20 西安交通大学 一种用于快中子反应堆中子输运燃耗耦合分析的计算方法

Also Published As

Publication number Publication date
CN115130330A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
Dinh et al. Turbulence modelling for large volumetrically heated liquid pools
Nishihara et al. Neutronics design of accelerator-driven system for power flattening and beam current reduction
WO2018111417A1 (en) Integration of real-time measurements and atomistic modeling to license nuclear components
CN115130330B (zh) 一种含气泡介质的中子输运计算方法
Williamson et al. Reactivity insertion accident (RIA) capability status in the BISON fuel performance code
AAljasar Comparison of the neutronic calculations of the cells of VVER-1000 and PWR reactors using the GETERA code
Younan et al. Extension and preliminary validation of the Polaris lattice physics code for CANDU analysis
Pierre et al. Monte Carlo simulation of the LEU-fueled SLOWPOKE-2 nuclear reactor using MCNP 4A
Takano et al. Analysis of SHE critical experiments by neutronic design codes for experimental Very High Temperature Reactor
Willermoz et al. HORUS3D code package development and validation for the JHR modelling
Liu et al. Nonuniform oxidation on the surface of fuel element in HTR
Mohapatra et al. Moderator temperature effect on reactivity in light water moderated experimental reactors
Nasonov et al. Mathematical modeling and computational analysis of the neutron-physical parameters of the IR-8 reactor with conversion to low-enrichment uranium fuel
Tang et al. A proposed model to describe the relationship between online burnup assay and economy and safety of pebble bed reactor
Smolen et al. Criticality data and validation studies of mixed-oxide fuel pin arrays in Pu+ U+ Gd nitrate
Mercatali et al. Propagation of nuclear data uncertainties in PWR pin-cell burnup calculations via stochastic sampling
Umano et al. Application of the “best representativity” method to a PWR fuel calculation using the critical experiments at the Toshiba NCA facility
Fukizaki et al. Preliminary core design of the solid moderator reactor for investigation of the in-depth Europa ice layer
Palau et al. Application of Recent Developments in Integral Data Assimilation to In-Depth Analysis of UH1. 2 Experiment and Transposition to Whole Pwr Core
Fei et al. Numerical simulation on the saturated pool boiling on a downward facing hemispherical
US20160064106A1 (en) Residual power of UNF
Thie Operating Information from Reactor Noise
Bonaccorsi et al. Development of a multi-physics calculation platform dedicated to irradiation devices in a material testing reactor
Schmitt et al. NATURAL URANIUM-GRAPHITE SYSTEM
Kugo et al. Application of bias factor method with use of exponentiated experimental value to prediction uncertainty reduction in coolant void reactivity of breeding light water reactor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant