CN115129958B - BIM technology-based visual production scheduling method for precast beam - Google Patents

BIM technology-based visual production scheduling method for precast beam Download PDF

Info

Publication number
CN115129958B
CN115129958B CN202210987761.5A CN202210987761A CN115129958B CN 115129958 B CN115129958 B CN 115129958B CN 202210987761 A CN202210987761 A CN 202210987761A CN 115129958 B CN115129958 B CN 115129958B
Authority
CN
China
Prior art keywords
precast
precast beam
production
model
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210987761.5A
Other languages
Chinese (zh)
Other versions
CN115129958A (en
Inventor
叶锦华
赵欣
王梦筱
张啸驰
王利伟
郭冬春
李博森
谢文杰
韩强
胡燕川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Youbi Zhicheng Construction Technology Co ltd
Beijing Municipal Road and Bridge Co Ltd
Original Assignee
Beijing Youbi Zhicheng Construction Technology Co ltd
Beijing Municipal Road and Bridge Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Youbi Zhicheng Construction Technology Co ltd, Beijing Municipal Road and Bridge Co Ltd filed Critical Beijing Youbi Zhicheng Construction Technology Co ltd
Priority to CN202210987761.5A priority Critical patent/CN115129958B/en
Publication of CN115129958A publication Critical patent/CN115129958A/en
Application granted granted Critical
Publication of CN115129958B publication Critical patent/CN115129958B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/904Browsing; Visualisation therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Databases & Information Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Computer Graphics (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

The invention discloses a visual production scheduling method for a precast beam based on a BIM (building information modeling) technology, which comprises the following steps of: collecting production information of a precast beam field and an engineering project; constructing a BIM (building information modeling) model of the precast beam field and a BIM model of the engineering project based on production information of the precast beam field and the engineering project; displaying the state of the precast beam field through different colors based on the BIM model of the precast beam field; acquiring production data of the precast beam based on the BIM model of the engineering project, and constructing a precast beam data set; calculating and obtaining the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam based on the precast beam data set; and displaying the state of the precast beam by adopting different colors according to the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam. The visual production scheduling method for the precast beam can reasonably plan production, and solves the problem that the cost is sharply increased due to the temporary addition of beam manufacturing pedestals, beam storage pedestals, templates and other measures.

Description

BIM technology-based visual production scheduling method for precast beam
Technical Field
The invention belongs to the technical field of precast beam production scheduling, and particularly relates to a visual precast beam production scheduling method based on a BIM (building information modeling) technology.
Background
With the rapid development of fabricated construction and BIM technology, the number of fabricated bridge projects is increasing, and thus the production requirements for prefabricated parts are also increasing. The production scheduling of the precast beam yard needs to consider the production capacity, storage capacity, production cycle, engineering period, beam specification and other factors, and reasonably arrange the production plan of the precast beam. However, the traditional purely manual production scheduling method is limited by the ability and experience of technicians, the reasonability of the plan is difficult to guarantee, measures such as beam making pedestals, beam storage pedestals and templates are required to be added temporarily, and therefore the cost is increased sharply.
Disclosure of Invention
In order to solve the problem that the cost is increased rapidly due to the fact that measures such as beam manufacturing pedestals, beam storage pedestals and templates are added temporarily, the invention provides a visual production scheduling method for precast beams based on a BIM technology.
In order to achieve the purpose, the invention provides the following scheme: a visual production scheduling method for precast beams based on a BIM technology comprises the following steps:
collecting production information of a precast beam field and an engineering project, and constructing a BIM (building information modeling) model based on the production information;
displaying the precast beam field states through different colors based on a BIM model, and calculating to obtain the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam;
and displaying the state of the precast beam through different colors according to the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam.
Preferably, the BIM model comprises a BIM model of a precast beam field and a BIM model of an engineering project;
displaying the state of the precast beam field through different colors based on the BIM model of the precast beam field;
and obtaining production data of the precast beam based on the BIM model of the engineering project, constructing a precast beam data set, and calculating beam manufacturing starting time and beam manufacturing finishing time of the precast beam through the precast beam data set.
Preferably, based on the BIM model of the precast beam field, the process of displaying the state of the precast beam field in different colors includes:
constructing a beam-making pedestal model and a beam-storing pedestal model, and respectively obtaining the running states of the beam-making pedestal and the beam-storing pedestal based on the beam-making pedestal model and the beam-storing pedestal model; the running state comprises occupied state, idle state and maintenance state;
and setting different colors for the beam-making pedestal model and the beam-storing pedestal model according to the running state.
Preferably, the production data of the precast beam is obtained based on the BIM model of the engineering project, and the process of constructing the precast beam data set includes:
obtaining precast beam components according to the BIM model of the engineering project, and obtaining production data of the precast beam based on the precast beam component data to form a precast beam data set; the production data comprise precast beam codes, beam types, beam lengths, beam positions and initial hoisting time.
Preferably, the precast beam code is used for displaying precast beam information, and the precast beam information includes: routes, bridge names, project projects of parts and items, axle numbers, positions and types;
the part comprises a middle beam and an edge beam; the beam types include small box beams, large box beams, T-beams, and hollow beam slabs.
Preferably, the process of calculating the girder manufacturing start time and the girder manufacturing completion time of the precast girder based on the precast girder data set includes:
according to the precast beam data set, the precast beams are grouped according to beam length and pedestal specification, and a precast beam data set and a precast pedestal set and a beam storage pedestal set corresponding to the precast beam data set are constructed;
and (4) associating the precast beams and the precast platform seat sets and the beam storage platform seat sets of each group, and calculating to obtain the beam manufacturing starting time and the beam manufacturing finishing time of the precast beams.
Preferably, the process of obtaining each set of corresponding pre-fabrication pedestal set and storage beam pedestal set comprises:
calculating to obtain the integral production cycle of each group based on the precast beam data group and by combining the initial hoisting time parameter;
calculating to obtain the number of the beams to be manufactured per day of each group based on the integral production period of each group and the number of the precast beams of each group;
calculating to obtain the average prefabrication days of each group based on the prefabrication days of different beam types and the number of each group;
calculating and obtaining the number of the prefabricated pedestals required by each group based on the number of the beams to be manufactured in each group per day and the average prefabricating days;
based on the number of the prefabricated pedestals of each group, combining the beam storage coefficients of the beam field, and calculating to obtain the number of the beam storage pedestals of each group;
and calculating to obtain the corresponding prefabricated pedestal set and the beam storage pedestal set of each group based on the beam field state, the number of the prefabricated pedestals and the number of the beam storage pedestals.
Preferably, the process of displaying the state of the precast beam by different colors according to the beam forming start time and the beam forming completion time of the precast beam includes:
setting observation time, and calculating the state of the precast beam according to the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam; the state comprises production in process and production to be carried out;
and modifying the color of the precast beam model according to the state of the precast beam.
The invention discloses the following technical effects:
the method can rapidly and intuitively perform the scheduling work of the precast beams, so that the labor is not required to be consumed to calculate the beam manufacturing starting time and the beam manufacturing finishing time of the precast beams in batch, and technicians are assisted to rapidly perform scheduling work on the precast beams of engineering projects. When aiming at large-scale assembly type projects, the working efficiency of technicians can be effectively improved, and a large amount of labor and time are saved.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed in the embodiments will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings without creative efforts.
Fig. 1 is a flowchart of a precast beam visual production scheduling method based on the BIM technique according to an embodiment of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
In order to make the aforementioned objects, features and advantages of the present invention comprehensible, embodiments accompanied with figures are described in further detail below.
As shown in fig. 1, the invention provides a visual production scheduling method for precast beams based on the BIM technology, which comprises the following steps:
collecting production information of a precast beam field and an engineering project, and constructing a BIM (building information modeling) model based on the production information;
displaying the precast beam field states through different colors based on a BIM model, and calculating to obtain the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam;
and displaying the state of the precast beam through different colors according to the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam.
Preferably, the BIM model comprises a BIM model of the precast beam field and a BIM model of the engineering project;
displaying the state of the precast beam field through different colors based on the BIM model of the precast beam field;
and obtaining production data of the precast beam based on a BIM model of the engineering project, constructing a precast beam data set, and calculating beam manufacturing starting time and beam manufacturing finishing time of the precast beam through the precast beam data set.
Preferably, based on the BIM model of the precast beam field, the process of displaying the precast beam field state by using different colors includes:
constructing a beam manufacturing pedestal model and a beam storage pedestal model, and respectively obtaining the running states of the beam manufacturing pedestal and the beam storage pedestal based on the beam manufacturing pedestal model and the beam storage pedestal model; the running state comprises occupation, idle and maintenance;
and according to the running state, setting different colors for the beam making pedestal model and the beam storing pedestal model.
Further optimizing the scheme, when the running state is occupied, the color of the pedestal is updated to red, when the running state is idle, the color of the pedestal is updated to green, and when the running state is maintenance, the color of the pedestal is updated to yellow.
Preferably, the production data of the precast beam is obtained based on a BIM model of the engineering project, and the process of constructing the precast beam data set includes:
obtaining precast beam components according to a BIM model of an engineering project, and obtaining production data of the precast beam based on the precast beam component data to form a precast beam data set; the production data comprises precast beam codes, beam types, beam lengths, beam positions and initial hoisting time.
Preferably, the precast beam code is used for displaying precast beam information, and the precast beam information includes: routes, bridge names, branch projects, axle numbers, positions and types;
the part comprises a middle beam and an edge beam; the beam types include small box beams, large box beams, T-beams, and hollow beam slabs.
Preferably, the process of calculating the girder manufacturing start time and the girder manufacturing completion time of the precast girder based on the precast girder data set includes:
according to the precast beam data set, grouping precast beams according to beam length and pedestal specification, and constructing a precast beam data set and a precast pedestal set and a beam storage pedestal set corresponding to the precast beam data set;
and (4) associating the precast beams and the precast platform seat sets and the beam storage platform seat sets of each group, and calculating to obtain the beam manufacturing starting time and the beam manufacturing finishing time of the precast beams.
Preferably, the process of obtaining each set of corresponding set of precast pedestals and set of storage beam pedestals comprises:
based on the precast beam data group, calculating and obtaining the integral production cycle of each group by combining the initial hoisting time parameter;
calculating to obtain the number of the beams to be manufactured per day of each group based on the integral production period of each group and the number of the precast beams of each group;
calculating to obtain the average prefabrication days of each group based on the prefabrication days of different beam types and the number of each group;
calculating and obtaining the number of the prefabricated pedestals required by each group based on the number of the beams to be manufactured and the average prefabrication days of each group;
based on the number of the prefabricated pedestals of each group, calculating and obtaining the number of the beam storage pedestals of each group by combining beam storage coefficients of the beam field;
and calculating to obtain the corresponding prefabricated pedestal set and the beam storage pedestal set of each group based on the beam field state, the number of the prefabricated pedestals and the number of the beam storage pedestals.
Preferably, the process of displaying the state of the precast beam by different colors according to the beam forming start time and the beam forming completion time of the precast beam includes:
setting observation time, and calculating the state of the precast beam according to the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam; the state comprises production in process and production to be carried out;
and modifying the color of the precast beam model according to the state of the precast beam.
Further optimizing the scheme, when the state of the precast beam is in production, the precast beam model is updated to be black, and when the state of the precast beam is to be produced, the precast beam model is updated to be white.
In summary, the significant advantages of the present invention over the prior art are summarized as follows:
1) According to the method, manpower is not consumed for calculating the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam in batch, and the working efficiency of technicians is effectively improved.
2) The invention can assist technicians to quickly arrange production of the precast beam of the engineering project.
3) The invention can display the state of each structure by color to achieve the effect of quick identification.
The above-described embodiments are merely illustrative of the preferred embodiments of the present invention, and do not limit the scope of the present invention, and various modifications and improvements of the technical solutions of the present invention can be made by those skilled in the art without departing from the spirit of the present invention, and the technical solutions of the present invention are within the scope of the present invention defined by the claims.

Claims (6)

1. A visual production scheduling method for precast beams based on a BIM technology is characterized by comprising the following steps:
collecting production information of a precast beam field and an engineering project, and constructing a BIM (building information modeling) model based on the production information;
displaying the precast beam field states through different colors based on a BIM model, and calculating to obtain the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam;
the process of calculating and obtaining the beam forming starting time and the beam forming finishing time of the precast beam comprises the following steps:
according to the precast beam data set, the precast beams are grouped according to beam length and pedestal specification, and a precast beam data set and a precast pedestal set and a beam storage pedestal set corresponding to the precast beam data set are constructed;
associating each group of precast beams with the precast platform set and the beam storage platform set, and calculating to obtain beam manufacturing starting time and beam manufacturing finishing time of the precast beams;
the process of obtaining each set of corresponding precast pedestal set and beam storage pedestal set comprises:
calculating to obtain the integral production cycle of each group based on the precast beam data group and by combining the initial hoisting time parameter;
calculating to obtain the number of the beams to be manufactured per day of each group based on the integral production period of each group and the number of the precast beams of each group;
calculating to obtain the average prefabrication days of each group based on the prefabrication days of different beam types and the number of each group;
calculating and obtaining the number of the prefabricated pedestals required by each group based on the number of the beams to be manufactured in each group every day and the average prefabrication days;
based on the number of the prefabricated pedestals of each group, combining the beam storage coefficients of the beam field, and calculating to obtain the number of the beam storage pedestals of each group;
based on the beam field state, the number of the prefabricated pedestals and the number of the beam storage pedestals, calculating to obtain a prefabricated pedestal set and a beam storage pedestal set corresponding to each group;
and displaying the state of the precast beam through different colors according to the beam forming starting time and the beam forming finishing time of the precast beam.
2. The BIM technology-based precast beam visual production scheduling method according to claim 1,
the BIM model comprises a BIM model of a precast beam field and a BIM model of an engineering project;
displaying the state of the precast beam field through different colors based on the BIM model of the precast beam field;
and obtaining production data of the precast beam based on the BIM model of the engineering project, constructing a precast beam data set, and calculating beam manufacturing starting time and beam manufacturing finishing time of the precast beam through the precast beam data set.
3. The visual precast beam production scheduling method based on the BIM technology as claimed in claim 1, wherein the process of displaying the precast beam field state with different colors based on the BIM model of the precast beam field comprises:
constructing a beam-making pedestal model and a beam-storing pedestal model, and respectively obtaining the running states of the beam-making pedestal and the beam-storing pedestal based on the beam-making pedestal model and the beam-storing pedestal model; the running state comprises occupied state, idle state and maintenance state;
and setting different colors for the beam-making pedestal model and the beam-storing pedestal model according to the running state.
4. The visual precast beam production scheduling method based on the BIM technology as claimed in claim 1, wherein the production data of the precast beam is obtained based on the BIM model of the engineering project, and the process of constructing the precast beam data set comprises:
obtaining precast beam components according to the BIM model of the engineering project, and obtaining production data of the precast beam based on the precast beam component data to form a precast beam data set; the production data comprises precast beam codes, beam types, beam lengths, beam positions and initial hoisting time.
5. The BIM technology-based precast beam visual production scheduling method of claim 4,
the precast beam code is used for displaying precast beam information, the precast beam information including: routes, bridge names, branch projects, axle numbers, positions and types;
the part comprises a middle beam and an edge beam; the beam types include small box beams, large box beams, T-beams, and hollow beam slabs.
6. The BIM technology-based precast beam visual production scheduling method of claim 1, wherein the process of displaying the precast beam state through different colors according to the precast beam forming start time and the precast beam forming completion time comprises:
setting observation time, and calculating the state of the precast beam according to the beam manufacturing starting time and the beam manufacturing finishing time of the precast beam; the state comprises production in process and production waiting;
and modifying the color of the precast beam model according to the state of the precast beam.
CN202210987761.5A 2022-08-17 2022-08-17 BIM technology-based visual production scheduling method for precast beam Active CN115129958B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210987761.5A CN115129958B (en) 2022-08-17 2022-08-17 BIM technology-based visual production scheduling method for precast beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210987761.5A CN115129958B (en) 2022-08-17 2022-08-17 BIM technology-based visual production scheduling method for precast beam

Publications (2)

Publication Number Publication Date
CN115129958A CN115129958A (en) 2022-09-30
CN115129958B true CN115129958B (en) 2023-04-14

Family

ID=83387368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210987761.5A Active CN115129958B (en) 2022-08-17 2022-08-17 BIM technology-based visual production scheduling method for precast beam

Country Status (1)

Country Link
CN (1) CN115129958B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117172673A (en) * 2023-08-07 2023-12-05 广州南沙智慧城市大数据有限公司 Method and system for managing visual beam storage of precast beam

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100024318A1 (en) * 2007-02-15 2010-02-04 Shanghai Precision Houses Manufacturing Co., Ltd. Prefab system, structure and assembling method for all-functional framed buildings
CN105931029B (en) * 2016-05-17 2018-08-03 中建三局第一建设工程有限责任公司 A kind of beam field production management system based on BIM
PL425559A1 (en) * 2018-05-15 2019-11-18 Marek Szochner Precast building element and method for erecting structures of the precast building elements
CN110658790A (en) * 2019-09-17 2020-01-07 广州市微柏软件股份有限公司 Precast beam production management system based on three-dimensional visual process management
CN112101760A (en) * 2020-09-04 2020-12-18 中铁大桥局集团有限公司 Beam yard production state visualization method and system based on GIS

Also Published As

Publication number Publication date
CN115129958A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
CN106156408A (en) The building of the classification of a kind of Component-Based Development and combination works in coordination with constructing system and method
CN115129958B (en) BIM technology-based visual production scheduling method for precast beam
CN110543674B (en) Automatic splitting method of assembled floor based on BIM
CN109146118B (en) Prefabricated part storage yard optimization system based on optimization algorithm and optimization method thereof
CN113806837B (en) Method for automatically generating three-dimensional model of steel bar based on plain graph information
CN109977481B (en) Method for creating concrete assembly template and member steel bar based on CATIA
CN112560134A (en) Batch deepening design method of assembled structure laminated slab based on CAD and BIM
CN113505418A (en) Bridge construction method based on BIM
CN110658790A (en) Precast beam production management system based on three-dimensional visual process management
CN113449360A (en) Construction planning method based on building information model
CN110096828A (en) The modeling and construction method of the elongated muscle in floor Vierendeel girder top or bearing rod based on BIM technology
KR102619713B1 (en) Structure construction method for multiple buildings with wall structure
CN107368972A (en) It is a kind of that work platform and its application method are sent based on BIM technology
CN112731892A (en) BIM-based construction method for assembly type building management and control and material tracing production line
CN106951621A (en) A kind of simulation optimization method that Plan rescheduling is carried for ship
CN110704907A (en) BIM-based fabricated floor design method and system
CN110909409A (en) BIM-based assembly type construction steel bar data generation method, device, equipment and medium
CN109145481A (en) Bridge pier shaft based on BIM is template optimized to use arrangement method
CN112765711A (en) BIM modeling method for green building simulation calculation
Patil et al. Labour productivity improvement by work-study tools of fiber composite company
CN114077765A (en) Dynamo project data management method and device and computer equipment
CN107480846A (en) A kind of method that aeronautical product standard component demand is provided
Ma et al. Research on prefabricated structure design method based on BIM technology
CN111027940A (en) Assembly type building structure design system based on BIM technology
CN110263376A (en) A kind of beam bridge 3 D Parametric Modeling method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant