CN115127362A - 一种串联调节式空冷岛系统 - Google Patents

一种串联调节式空冷岛系统 Download PDF

Info

Publication number
CN115127362A
CN115127362A CN202210754415.2A CN202210754415A CN115127362A CN 115127362 A CN115127362 A CN 115127362A CN 202210754415 A CN202210754415 A CN 202210754415A CN 115127362 A CN115127362 A CN 115127362A
Authority
CN
China
Prior art keywords
pipeline
island system
water
cooling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210754415.2A
Other languages
English (en)
Inventor
王卫良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202210754415.2A priority Critical patent/CN115127362A/zh
Publication of CN115127362A publication Critical patent/CN115127362A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开一种串联调节式空冷岛系统,包括安装平台、顺流岛系统和逆流岛系统;顺流岛系统设于安装平台上,逆流岛系统与顺流岛系统串联;顺流岛系统包括若干个并联连接的顺流换热子系统,由一蒸汽分配总管向若干个顺流换热子系统分配蒸汽,顺流换热子系统适于将蒸汽部分或全部冷却凝结成水,并分别将余气输向余气总管、凝结水输向凝结水总管;逆流岛系统与余气总管连接,并用于将余气总管中的余气凝结成水。取消传统空冷岛中的逆流区,并将原逆流区改造为顺流区,将所有的顺流区设置在同一安装平台形成一个整体的顺流岛系统,而采用串联的逆流岛系统提供二级冷却,提高顺流空冷散热器的传热效果,并降低空冷散热器的阻力,提高冷却调节能力。

Description

一种串联调节式空冷岛系统
技术领域
本发明涉及火力发电领域,进一步涉及火力发电的蒸汽冷却领域,特别涉及一种串联调节式空冷岛系统。
背景技术
空冷岛系统是火力发电厂汽水系统中的重要部分,是通过空冷方式对汽轮机4中做功完成的蒸汽进行冷凝并保持汽轮机4真空的机构。
参照附图1,目前通用的空冷岛系统中,包括有相互串联的顺流式散热器1和逆流式散热器2,顺流式散热器1包括若干并联的顺流管束,逆流式散热器2包括若干并联的逆流管束,通过轴流风机吹风至两套散热器中冷却蒸汽。其中顺流式散热器1中的冷凝水通过布置在顺流管束底部的冷凝水收集管道流出。不凝结气体和剩余的部分蒸汽通过布置在顺流管束底部的冷凝水收集管道进入逆流式散热器进一步冷凝。在逆流式散热器顶部与抽真空管道3连接,以将不凝结气体和少量的未冷凝蒸汽抽出,以保持系统的真空。
现有的空冷岛系统中,由于顺流管束和逆流管束中各管路的阻力特性和传热特性存在一定的差异,加上管路设计、制造、安装工艺等差异以及外侧环境风、轴流风机运行方式、沾污等多方面的因素,系统在运行时,蒸汽流场和温度场分布明显不均,导致系统背压升高,影响机组效率。现有采用罗茨真空泵等在抽真空系统的改进措施,无法从根本上改善空冷岛本身的流场与热负荷分布特性,节能效果不明显。
因此,为了提高换热效果、提升节能效果,很多研发人员尝试用全顺流式散热器进行乏汽换热,但是顺流式散热器在低负荷或低气温条件下容易发生冰冻等问题,此时需要减小在顺流式散热器中的热负荷,利用其它的冷源来冷却一部分乏汽,如何节能地进行冷却调节,是目前行业中的技术瓶颈。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一。为此,本发明提供一种串联调节式空冷岛系统,取消传统空冷岛中逆流区的概念,提供串联式两级冷却方式,彻底改变乏汽的冷却方式,显著提升冷却效率、降低阻力与背压。
根据本发明的一种串联调节式空冷岛系统,包括安装平台、顺流岛系统和逆流岛系统;所述顺流岛系统设于所述安装平台上,所述逆流岛系统与所述顺流岛系统串联;
所述顺流岛系统包括若干个并联连接的顺流换热子系统,由一蒸汽分配总管向若干个所述顺流换热子系统分配蒸汽,所述顺流换热子系统适于将所述蒸汽部分或全部冷却凝结成水,并分别将余气输向余气总管、凝结水输向凝结水总管;
所述逆流岛系统与所述余气总管连接,并用于将所述余气总管中的余气凝结成水。
根据本发明的一些实施例,所述顺流换热子系统包括:
蒸汽分配管道,与所述蒸汽分配总管连接;
水汽分离管道,位于所述蒸汽分配管道的下方;
顺流式空冷散热器,包括顺流式空冷管道和吹气装置,所述顺流式空冷管道的两端分别连通所述蒸汽分配管道和所述水汽分离管道,所述吹气装置适于向所述顺流式空冷管道吹风;
凝结水收集管道,连通所述水汽分离管道的下部,适于收集所述水汽分离管道内的凝结水,并与所述凝结水总管连接;
余气收集管道,连通所述水汽分离管道的上部,适于收集所述水汽分离管道内的余气,并与所述余气总管连接。
根据本发明的一些实施例,所述逆流岛系统包括补偿冷凝器,所述补偿冷凝器与所述余气总管连接,所述补偿冷凝器连接有抽真空装置;补偿冷凝器连通有补偿冷却管道,所述补偿冷却管道和所述余气总管在所述补偿冷凝器中进行热交换。
根据本发明的一些实施例,所述补偿冷却管道上设置有介质储存容器,所述介质储存容器包括内容积可变的热容置腔和/或冷容置腔。
根据本发明的一些实施例,所述补偿冷却管道包括两端相互连通并形成回路的热介质管部和冷介质管部,所述热介质管部和所述冷介质管部的一端均连通所述补偿冷凝器,所述热介质管部和所述冷介质管部的另一端均连通于一散热装置上,所述热介质管部或所述冷介质管部上设置输送泵,所述热介质管部和/或所述冷介质管部上设置有介质储存容器。
根据本发明的一些实施例,所述介质储存容器包括上下分层设置的若干层介质储存子容置腔,相邻的所述介质储存子容置腔通过控制阀门进行通断连接,将至少一个所述介质储存子容置腔连通后形成所述热容置腔或冷容置腔,所述热容置腔设置在所述热介质管部上,所述冷容置腔设置在所述冷介质管部上。
根据本发明的一些实施例,所述热介质管部、冷介质管部、散热装置和补偿冷凝器中的至少一部分形成闭环循环换热回路。
根据本发明的一些实施例,所述凝结水总管连通有下降总管,所述下降总管上设有凝结总水箱和凝结总水泵,所述补偿冷凝器连通有疏水总管道,所述疏水总管道连通所述凝结总水箱。
根据本发明的一些实施例,所述水汽分离管道包括两组并分别位于所述蒸汽分配管道的两侧,所述顺流式空冷管道包括两组顺流管束且分别位于所述蒸汽分配管道两侧,两组所述顺流管束的一端均连通所述蒸汽分配管道,两组所述顺流管束的另一端则分别对应连通两组所述水汽分离管道。
根据本发明的一些实施例,所述余气收集管道的前端连通有两组第一支管,两组所述第一支管分别连通两组所述水汽分离管道;所述凝结水收集管道的前端连通有两组第二支管,两组所述第二支管分别连通两组所述水汽分离管道。
根据本发明实施例的一种串联调节式空冷岛系统,至少具有如下有益效果:①取消传统空冷岛中的逆流区,并将原逆流区改造为顺流区,将所有的顺流区设置在同一安装平台形成一个整体的顺流岛系统,而采用串联的逆流岛系统提供二级冷却,提高顺流空冷散热器的传热效果,并降低空冷散热器的阻力,提高空冷岛系统的冷却调节能力;②简化安装平台上的空冷散热器结构,使其只有顺流区管束,可大幅改善其阻力特性,优化汽水侧流动阻力分布,可大幅提高空冷散热器的抵抗撕裂与冬季防冻性能;③提供顺流式空冷管道和补偿冷凝器所组成的串联式二级冷却方式,充分冷却蒸汽,提高系统能效水平;④在补偿冷却管道上设有介质储存容器,根据实际冷却条件的变化,可选择性地提高或者减少热容置腔和/或冷容置腔的内容积,利用例如夜间较好的冷却环境进行冷介质的储能,以便提高日间的冷却效果。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为背景技术中的现有冷却系统的结构示意图;
图2为串联调节式空冷岛系统实施例的系统结构示意图;
图3为串联调节式空冷岛系统实施例的结构示意图;
图4为以单个顺流换热子系统作为示例时与补偿冷凝器的连接示意图。
图5为以单个顺流换热子系统作为示例时与逆流岛系统的连接示意图。
蒸汽分配总管10、蒸汽分配管道100、水汽分离管道200、顺流式空冷散热器300、顺流式空冷管道310、吹气装置320、顺流管束330、单元管束331、凝结水总管40、凝结水收集管道400、第二支管410、下降总管420、凝结总水箱430、凝结总水泵440、余气总管50、余气收集管道500、第一支管510、补偿冷凝器520、抽真空装置530、疏水总管道540、安装平台600、补偿冷却管道700、热介质管部710、冷介质管部720、散热装置730、输送泵740、介质储存容器750、介质储存子容置腔751、顺流式散热器1、逆流式散热器2、抽真空管道3、汽轮机4。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“上方”、“下方”、“上部”、“下部”、“前端”、“两侧”、“下方”、“水平方向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
参照图2和图3,本发明实施例提供一种串联调节式空冷岛系统,包括安装平台、顺流岛系统和逆流岛系统;所述顺流岛系统设于所述安装平台上,所述逆流岛系统与所述顺流岛系统串联;
所述顺流岛系统包括若干个并联连接的顺流换热子系统,由一蒸汽分配总管10向若干个所述顺流换热子系统分配蒸汽,所述顺流换热子系统适于将所述蒸汽部分或全部冷却凝结成水,并分别将余气输向余气总管50、凝结水输向凝结水总管40;
所述逆流岛系统与所述余气总管50连接,并用于将所述余气总管50中的余气凝结成水。
需要说明的是,在顺流岛系统中只有顺流式空冷散热器,将多个顺流换热子系统并联连接后统一设置在安装平台上,与这一联合体的顺流岛系统相连的只有蒸汽分配总管10、余气总管50和凝结水总管40,连接管路简单,且顺流式空冷散热器的故障率较低,将顺流式空冷散热器隔离出来置于一个安装平台上,能将具有同样性质的功能模块统一维护管理,整个顺流岛系统的可靠性较高,从顺流岛系统输出的余气和凝结水分别通过余气总管50和凝结水总管40向外界输出,其中,逆流岛系统负责将剩余的余气进一步冷却,使余气再凝结成水,起到了串联调节的作用,将在顺流岛系统中无法凝结的余气再度冷却,由于顺流式空冷散热器中容易出现冰冻问题,在低负荷或低气温条件下,可以降低整个顺流岛系统的热负荷,并将这部分热量转移至逆流岛系统中,实现热量分配,串联调节。
结合图4,作为一种实施方式,顺流换热子系统包括:蒸汽分配管道100,与所述蒸汽分配总管10连接,蒸汽分配总管10接收汽轮机中已经做完功的乏汽,并能够将乏汽均匀分配到各个蒸汽分配管道100中,蒸汽分配管道再将乏汽分配至顺流式空冷散热器300中;水汽分离管道200,位于蒸汽分配管道100的下方,用于接收经过顺流式空冷散热器300冷却后的乏汽;顺流式空冷散热器300,包括顺流式空冷管道310和吹气装置320,顺流式空冷管道310的两端分别连通蒸汽分配管道100和水汽分离管道200,吹气装置320适于向顺流式空冷管道310吹风;凝结水收集管道400,连通水汽分离管道200的下部,适于收集水汽分离管道200内的凝结水,并与凝结水总管40连接;余气收集管道500,连通水汽分离管道200的上部,适于收集水汽分离管道200内的余气,并与余气总管50连接。
逆流岛系统的形式有多种,更具体地,可以是补偿冷凝器的形式,补偿冷凝器520与所述余气总管50连接,补偿冷凝器520连接有抽真空装置530;补偿冷凝器520连通有补偿冷却管道700,补偿冷却管道700上设置有介质储存容器750,介质储存容器750包括内容积可变的热容置腔和/或冷容置腔,补偿冷却管道700和余气总管50在补偿冷凝器520中进行热交换;凝结水总管40连通有下降总管420,下降总管420上设有凝结总水箱430和凝结总水泵440;补偿冷凝器520连通有疏水总管道540,疏水总管道540连通凝结总水箱430,具体的热交换方式可以是相邻管道的方式,也可以是同轴管的方式。
应理解,余气可以是乏汽除去凝结水的部分,具体可以是包括不凝结气体和部分未被凝结的乏汽。
应理解,水汽分离管道的下部可以是水汽分离管道的下半部分的任意位置,优选是水汽分离管道的底部;水汽分离管道的上部可以是水汽分离管道的上半部分的任意位置,优选是水汽分离管道的顶部。
应理解,蒸汽分配管道和水汽分离管道可以是水平延伸,顺流式空冷管道可以是斜向下延伸。
应理解,余气总管50中所收集的余气,包括有未被凝结的水蒸气,这部分水蒸气在补偿冷凝器中凝结后形成凝结水,这部分凝结水通过疏水总管道540回流至凝结总水箱430中,减少了冷凝水的补充量,节能性增强。
应理解,介质储存容器750包括内容积可变的热容置腔和/或冷容置腔,其中热容置腔用于存储热介质,冷容置腔用于存储冷介质,冷介质从冷容置腔中流入补偿冷凝器,经过吸热后变成热介质,热介质经由热容置腔存放后,在散热装置中得到降温,变回冷介质,再存放在冷容置腔中,因此当在夜间,环境温度比较低时,可以加大冷容置腔的内容积,进行冷源储能,以供日间冷却使用;当在日间,环境温度比较高时,可以加大热容置腔的内容积,减少散热装置的热负荷,保证循环回来的冷介质的温度比较稳定。
在本实施例中,在顺流式空冷管道的末端设置感温器,利用感温器检测顺流式空冷管道的末端温度,当末端温度低于一定温度时,则表示可能会出现冰冻现象,此时可通过降低吹风装置的转速,来降低顺流式空冷散热器的换热量,使得顺流式空冷散热器中的乏汽温度不至于降到很低,提高顺流式空冷管道的末端温度,而这一部分换热量需求将转移到与其串联的补偿冷凝器上,而为了节能地调节补偿冷凝器的实际换热量,以适应调节需求,采用内容积可变的热容置腔和/或冷容置腔,提前在低气温的夜间或者其他时刻,加大冷容置腔的内容积,进行冷源储能,当急需调节换热量时,加大冷源的流量,提高补偿冷凝器的换热量,适应需求变化,且节能效果优越。
对应实施例的一种串联调节式空冷岛系统,本发明还可以提供一种冷却方法,包括:
空冷步骤,利用蒸汽分配总管10将乏汽分配到不同的蒸汽分配管道100,乏汽经蒸汽分配管道100流动至顺流式空冷管道310,利用吹气装置320吹气至顺流式空冷管道310以冷却乏汽,乏汽经顺流式空冷管道310流动至水汽分离管道200;
水汽分离步骤,乏汽冷却出的凝结水在水汽分离管道200中沉底并进入凝结水收集管道400,将所有的凝结水收集管道400汇集在一根凝结水总管40,乏汽中剩余的余气在水汽分离管道200中升起并进入余气收集管道500,将所有的余气收集管道500汇集在一根余气总管50;
再冷却步骤,将余气总管50中的余气输送至补偿冷凝器520,在补偿冷凝器520中进行二级冷却,将余气冷凝成水,再通过疏水总管道540将冷凝水输送至凝结总水箱430,与凝结水总管40通过下降总管420输送来的凝结水在凝结总水箱430中汇集。
为了简化说明,从顺流岛系统中抽取出一个顺流换热子系统,用单个顺流换热子系统与逆流岛系统的连接状态进行说明,参照图4和图5,图5中箭头1表示乏汽的流动方向,箭头2表示余气的流动方向,箭头3表示凝结水的流动方向,箭头4表示散热装置730的吹风方向。汽轮机所排出的乏汽先经过蒸汽分配管道100,之后进入顺流式空冷管道310,利用吹气装置320吹气冷却顺流式空冷管道310中的乏汽,被冷却的乏汽进入到水汽分离管道200中,在水汽分离管道200中沉底的凝结水能够进入到凝结水收集管道400中,水汽分离管道200中的余气升起后能够进入到余气收集管道500。另外地,因图中是单个顺流换热子系统的示意图,所以在图中未图示出余气总管50、凝结水总管40的结构,余气总管50、凝结水总管40的具体连接关系以图1的为准。
相对于图1中现有的空冷岛冷却系统,第一方面实施例的一种串联调节式空冷岛系统通过取消传统空冷岛中的逆流区的方式,将图1中原有的逆流区改造为顺流区,取消了从逆流区顶部延伸出的抽真空管道,通过在水汽分离管道中对冷却后的乏汽进行凝结水和余气的分离,并利用凝结水收集管道和余气收集管道分别收集凝结水和余气,从而完全代替了原有的空冷岛冷却系统和冷却方法。
取消传统空冷岛中的逆流区,并将原逆流区改造为顺流区,将所有的顺流区设置在同一安装平台形成一个整体的顺流岛系统,而采用串联的逆流岛系统提供二级冷却,提高顺流空冷散热器的传热效果,并降低空冷散热器的阻力,且提高空冷岛系统的冷却调节能力;简化空冷散热器结构,使其只有顺流区管束,能够显著改善其阻力特性,优化汽水侧流动阻力分布。
参照图4和图5,通过抽真空装置530作为余气抽出的动力,补偿冷却管道700在补偿冷凝器520中对余气收集管道500中的余气进行再次冷却,目的是为了把顺流式空冷散热器300未冷却的乏汽进行冷却,通过在顺流式空冷散热器上串联补偿冷凝器520,替代图1中原有冷却系统中的逆流区的低效的逆流散热器,进一步提高冷却效率,节约能耗。
参照图5,本发明的一些实施例中,补偿冷却管道700可以包括两端相互连通并形成回路的热介质管部710和冷介质管部720,其中,补偿冷却管道700中的冷却介质可以是水,也可以其他介质。热介质管部710和冷介质管部720的一端均连通补偿冷凝器,热介质管部710和冷介质管部720的另一端均连通于一散热装置730上,热介质管部710或冷介质管部720上设置输送泵740。散热装置730可以是通风式的冷却塔,也可以是其他冷却机构,目的是对热介质进行散热。通过热介质管部710和冷介质管部720组成的补偿冷却管道700能够对余气收集管道中的余气进行充分冷却。
本发明的一些实施例中,热介质管部和/或冷介质管部上设置有介质储存容器,优选是热介质管部和冷介质管部上均设置介质储存容器,通过介质储存容器能够适当储存补偿冷却管道中的介质,也便于增补补偿冷却管道中的介质。需要说明的是,热介质管部和冷介质管部上的介质储存容器在结构上可以是分开独立的,也可以将热介质管部和冷介质管部对应的介质储存容器组成在一个大容器结构中,在这一容器结构中再划分有热容置腔和冷容置腔。
参照图3,本发明的一些实施例中,介质储存容器750包括上下分层设置的若干层介质储存子容置腔751,每个介质储存子容置腔751都是相对独立的一个空间,相邻的介质储存子容置腔751通过控制阀门进行通断连接,当打开两层介质储存子容置腔751之间的控制阀门后,这两层的介质储存子容置腔751就会被连通,对应的内容积加大,当关闭两层介质储存子容置腔751之间的控制阀门后,这两层的介质储存子容置腔751就会被隔断,对应的内容积减小,将至少一个介质储存子容置腔751连通后形成热容置腔或冷容置腔,热容置腔设置在热介质管部上,冷容置腔设置在冷介质管部上,需要说明的是,如需加大冷容置腔的内容积,则将连接在冷介质管部上的多层介质储存子容置腔751导通,按需调节连通的层数,反之亦然。另外地,通过介质储存子容置腔751可以增补热介质管部710和冷介质管部720中的冷却介质情况。
本发明的一些实施例中,热介质管部、冷介质管部、散热装置和补偿冷凝器中的至少一部分形成闭环循环换热回路,由于在补偿冷凝器中形成两个独立的空间,一个是供余气收集管道中收集的余气流动,另一个是供冷却介质流动,对于供冷却介质流动的那部分,其与热介质管部、冷介质管部、散热装置形成一个闭环循环换热回路,避免了冷却介质的损失,防止有杂质混入,对补偿冷凝器造成堵塞等问题。
本发明的一些实施例中,参照图4和图5,水汽分离管道200可以包括两组并分别位于蒸汽分配管道100的两侧,顺流式空冷管道310可以包括两组顺流管束330且分别位于蒸汽分配管道100两侧,两组顺流管束330的一端可以均连通蒸汽分配管道100,两组顺流管束330的另一端则可以分别对应连通两组水汽分离管道200。通过在蒸汽分配管道100两侧均布置顺流管束330和水汽分离管道200,乏汽经蒸汽分配管道100向下分流到两组顺流管束330中,之后分别进入两组水汽分离管道200中,利用两组顺流管束330冷却乏汽,能够显著提升乏汽的冷却效率,通过两组水汽分离管道200来分离凝结水和余气,显著提升水汽分离的效率。
参照图4,本发明的一些实施例中,余气收集管道500的前端可以连通有两组第一支管510,两组第一支管510可以分别连通两组水汽分离管道200;凝结水收集管道400的前端可以连通有两组第二支管410,两组第二支管410可以分别连通两组水汽分离管道200。通过两组第一支管510能够汇集两组水汽分离管道200中的余气至余气收集管道500中,通过两组第二支管410能够汇集两组水汽分离管道200中的凝结水至凝结水收集管道400中,余气和凝结水后续分别集中处理,提升系统效率。
参照图5,本发明的一些实施例中,每组顺流管束330可以均包括若干单元管束331,同一组的所有单元管束331可以连续并排平铺布置并形成平面。
另,单元管束可以由余气收集管道统一收集余气,也可以是参照图3的方式,每一单元管束331均对应连通第一支管510,若干第一支管510再汇集到余气收集管道500,每一单元管束也可以对应连通多个第一支管。
应理解,顺流管束可以理解为由若干单元管束按照并排平行平铺的方式组成,平面设置的顺流管束便于提升冷却效率。连续并排平铺可以理解为每个单元管束相互紧靠着地并排铺设,铺设后形成接近于平面的形状。每个单元管束内可以包括基板和设置在基板上的若干平行的单元冷却管。
连续并排平铺布置的单元管束能够合理利用散热面积,提升冷却效率,并且冷却均匀。
参照图5,本发明的一些实施例中,吹气装置320可以包括轴流风机,轴流风机可以位于顺流式空冷管道310的下方并适于向上吹风。按照顺流式空冷管道的水平铺设方向可以对应有至少两台轴流风机,多台轴流风机可以均布设置在顺流式空冷管道的下方。轴流风机的设置能够对顺流式空冷管道进行高效冷却。
本空冷岛系统的实施例,除具有冷却系统实施例的效果外,通过省去逆流区,还能够使空冷岛系统的整体安装过程更快捷,安装难度降低,整体系统的运行也更稳定。
相对于现有技术,本发明提供一种串联调节式空冷岛系统,至少具有如下有益效果:①取消传统空冷岛中的逆流区,并将原逆流区改造为顺流区,将所有的顺流区设置在同一安装平台形成一个整体的顺流岛系统,而采用串联的逆流岛系统提供二级冷却,提高顺流空冷散热器的传热效果,并降低空冷散热器的阻力,提高空冷岛系统的冷却调节能力;②简化安装平台上的空冷散热器结构,使其只有顺流区管束,可大幅改善其阻力特性,优化汽水侧流动阻力分布,可大幅提高空冷散热器的抵抗撕裂与冬季防冻性能;③提供顺流式空冷管道和补偿冷凝器所组成的串联式二级冷却方式,充分冷却蒸汽,提高系统能效水平;④在补偿冷却管道上设有介质储存容器,根据实际冷却条件的变化,可选择性地提高或者减少热容置腔和/或冷容置腔的内容积,利用例如夜间较好的冷却环境进行冷介质的储能,以便提高日间的冷却效果。
在本说明书的描述中,参考术语“一些实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

1.一种串联调节式空冷岛系统,其特征在于,包括安装平台、顺流岛系统和逆流岛系统;所述顺流岛系统设于所述安装平台上,所述逆流岛系统与所述顺流岛系统串联;
所述顺流岛系统包括若干个并联连接的顺流换热子系统,由一蒸汽分配总管向若干个所述顺流换热子系统分配蒸汽,所述顺流换热子系统适于将所述蒸汽部分或全部冷却凝结成水,并分别将余气输向余气总管、凝结水输向凝结水总管;
所述逆流岛系统与所述余气总管连接,并用于将所述余气总管中的余气凝结成水。
2.根据权利要求1所述的一种串联调节式空冷岛系统,其特征在于,所述顺流换热子系统包括:
蒸汽分配管道,与所述蒸汽分配总管连接;
水汽分离管道,位于所述蒸汽分配管道的下方;
顺流式空冷散热器,包括顺流式空冷管道和吹气装置,所述顺流式空冷管道的两端分别连通所述蒸汽分配管道和所述水汽分离管道,所述吹气装置适于向所述顺流式空冷管道吹风;
凝结水收集管道,连通所述水汽分离管道的下部,适于收集所述水汽分离管道内的凝结水,并与所述凝结水总管连接;
余气收集管道,连通所述水汽分离管道的上部,适于收集所述水汽分离管道内的余气,并与所述余气总管连接。
3.根据权利要求2所述的一种串联调节式空冷岛系统,其特征在于,所述逆流岛系统包括补偿冷凝器,所述补偿冷凝器与所述余气总管连接,所述补偿冷凝器连接有抽真空装置;补偿冷凝器连通有补偿冷却管道,所述补偿冷却管道和所述余气总管在所述补偿冷凝器中进行热交换。
4.根据权利要求3所述的一种串联调节式空冷岛系统,其特征在于,所述补偿冷却管道上设置有介质储存容器,所述介质储存容器包括内容积可变的热容置腔和/或冷容置腔。
5.根据权利要求4所述的一种串联调节式空冷岛系统,其特征在于,所述补偿冷却管道包括两端相互连通并形成回路的热介质管部和冷介质管部,所述热介质管部和所述冷介质管部的一端均连通所述补偿冷凝器,所述热介质管部和所述冷介质管部的另一端均连通于一散热装置上,所述热介质管部或所述冷介质管部上设置输送泵,所述热介质管部和/或所述冷介质管部上设置有介质储存容器。
6.根据权利要求5所述的一种串联调节式空冷岛系统,其特征在于,所述介质储存容器包括上下分层设置的若干层介质储存子容置腔,相邻的所述介质储存子容置腔通过控制阀门进行通断连接,将至少一个所述介质储存子容置腔连通后形成所述热容置腔或冷容置腔,所述热容置腔设置在所述热介质管部上,所述冷容置腔设置在所述冷介质管部上。
7.根据权利要求6所述的一种串联调节式空冷岛系统,其特征在于,所述热介质管部、冷介质管部、散热装置和补偿冷凝器中的至少一部分形成闭环循环换热回路。
8.根据权利要求1至7任一项所述的一种串联调节式空冷岛系统,其特征在于,所述凝结水总管连通有下降总管,所述下降总管上设有凝结总水箱和凝结总水泵,所述补偿冷凝器连通有疏水总管道,所述疏水总管道连通所述凝结总水箱。
9.根据权利要求8所述的一种串联调节式空冷岛系统,其特征在于,所述水汽分离管道包括两组并分别位于所述蒸汽分配管道的两侧,所述顺流式空冷管道包括两组顺流管束且分别位于所述蒸汽分配管道两侧,两组所述顺流管束的一端均连通所述蒸汽分配管道,两组所述顺流管束的另一端则分别对应连通两组所述水汽分离管道。
10.根据权利要求9所述的一种串联调节式空冷岛系统,其特征在于,所述余气收集管道的前端连通有两组第一支管,两组所述第一支管分别连通两组所述水汽分离管道;所述凝结水收集管道的前端连通有两组第二支管,两组所述第二支管分别连通两组所述水汽分离管道。
CN202210754415.2A 2020-02-18 2020-02-18 一种串联调节式空冷岛系统 Pending CN115127362A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210754415.2A CN115127362A (zh) 2020-02-18 2020-02-18 一种串联调节式空冷岛系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010099198.9A CN111288813A (zh) 2020-02-18 2020-02-18 串联式冷却系统及空冷岛系统
CN202210754415.2A CN115127362A (zh) 2020-02-18 2020-02-18 一种串联调节式空冷岛系统

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202010099198.9A Division CN111288813A (zh) 2020-02-18 2020-02-18 串联式冷却系统及空冷岛系统

Publications (1)

Publication Number Publication Date
CN115127362A true CN115127362A (zh) 2022-09-30

Family

ID=71021390

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210754415.2A Pending CN115127362A (zh) 2020-02-18 2020-02-18 一种串联调节式空冷岛系统
CN202010099198.9A Pending CN111288813A (zh) 2020-02-18 2020-02-18 串联式冷却系统及空冷岛系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010099198.9A Pending CN111288813A (zh) 2020-02-18 2020-02-18 串联式冷却系统及空冷岛系统

Country Status (1)

Country Link
CN (2) CN115127362A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112177587B (zh) * 2020-09-09 2022-11-08 杭州勃扬能源设备有限公司 一种石油伴生气除油装置
CN113945100B (zh) * 2021-09-18 2024-02-20 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种用于空冷机组的调节空冷散热器流场和温度场均匀化的装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129180A (en) * 1976-12-06 1978-12-12 Hudson Products Corporation Vapor condensing apparatus
HU225331B1 (hu) * 2003-04-24 2006-09-28 Egi Energiagazdalkodasi Reszve Léghûtõ rendszer
CN101526313B (zh) * 2009-01-08 2010-08-04 江苏双良空调设备股份有限公司 防止冻结的直接空冷凝汽器
CN203011179U (zh) * 2012-12-03 2013-06-19 中国电力工程顾问集团西北电力设计院 塔式直接空冷凝汽器及其塔式直接干冷系统
CN205591971U (zh) * 2016-05-06 2016-09-21 神华集团有限责任公司 空冷系统
CN106705697A (zh) * 2017-02-15 2017-05-24 北京中电云汇技术有限公司 一种冷却补偿式空冷岛系统

Also Published As

Publication number Publication date
CN111288813A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN114267907B (zh) 一种电池储能的热安全管理系统、控制方法及其应用
JP4366114B2 (ja) 熱電発電装置
US9708978B2 (en) Heat engine
CN115127362A (zh) 一种串联调节式空冷岛系统
WO2007086418A1 (ja) 流体の冷却装置
CN102192660B (zh) 一种汽轮机排汽用的蒸发式冷凝器散热模件
CN108105918A (zh) 双源复合热泵与光伏热管理一体化系统及其控制方法
CN107449026A (zh) 基于分级式储热放热的高效太阳能供暖方法和系统
CN112713286A (zh) 一种换热装置、燃料电池系统及其温控方法
CN115179983B (zh) 一种轨道列车牵引设备的热能回收利用系统
CN110425903A (zh) 一种翅片式换热器及其智能调温方法
CN111288814A (zh) 串联式空湿混合冷却系统、空冷岛系统及冷却方法
CN200941010Y (zh) 自加热式空冷凝汽器防冻不凝结气体抽出装置
US7540905B2 (en) Deaerating and degassing system for power plant condensers
CN205793884U (zh) 一种数据中心的四位一体散热系统
US20230307670A1 (en) Thermal transfer in the cathode path of a fuel cell system by means of the evaporation/condensation of product water
CN102141347B (zh) 一种并联式尖峰蒸发式冷凝器
CN1051844C (zh) 热交换器组装件
CN101398252B (zh) 冷凝再沸器系统
CN113758068A (zh) 一种基于电厂循环水的空调系统及其运行方法
CN207850103U (zh) 一种汽侧多通道加热式凝汽器
CN117128782B (zh) 错列式烟气熔盐换热器及熔盐储热系统
CN113418406B (zh) 一种冷却散热装置
CN110953898A (zh) 干湿左右布置一体闭式冷却装置及方法
CN203081517U (zh) 基于混联布置的大小机凝汽器的高低背压热力循环装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination